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Security Problems

•  We have discussed lots of security problems 

‣  Malware on your computer

‣  Attacks on memory errors

‣  Return-oriented attacks

‣  Compromised software

‣  Compromised operating systems, etc.

•  Is there any way new hardware features could 
prevent some attack vectors?
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Hardware Features

•  ARM TrustZone 

‣  Restrict execution of compromised operating systems

•  Intel Processor Trace (IPT)

‣  Track control flow events

•  Intel Memory Protection Extensions (MPX)

‣  Check and enforce memory bounds
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Goals

•  Restrict kernel to only execute approved code

•  Monitor kernel operations to enforce security 

•  Even when the kernel has been compromised
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Execution Integrity


•  All programs run approved code in expected ways

‣  Lifetime Code Integrity

•  Even if compromised

•  Restrict execution to approved code only 

‣  Control-Flow Integrity

•  Mediate indirect branches in programs

•  Reject those that are unexpected
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Lifetime Kernel Code Integrity
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Attack on Permissions

•  Tamper with permissions
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Attack on Mappings


•  Tamper with mappings
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Goal


27




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Background: TrustZone


•  Resources are partitioned into two distinct worlds

‣  Physical memory, interrupts, peripherals, etc.

•  Each world has its autonomy over its own resources

•  Secure world can access normal world resources, but 
not vice versa

•  Run in time-sliced fashion

28
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ARM TrustZone

•  Main limitation is that Trusted Computing technologies are 

designed only to build proofs of system boot

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

SPROBE Placement
• Recall the specific attacks

‣ Change to a different set of page tables that are under 
attacker’s control

• instrument all instructions that can be potentially used 
to switch the page table root

‣ Modify page table entries in place

• write-protect the whole page tables and instrument the 
first instruction in page fault handler

�13
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SPROBES Invariants

•  S1: Execution of user space code from the kernel must 

never be allowed. 

•  S2: W⊕X protection employed by the operating system 
must always be enabled. 

•  S3: The page table base address must always correspond to 
a legitimate page table. 

•  S4: Any modification to the page table entry must not make 
a kernel code page writable or make a kernel data page 
executable. 

•  S5: MMU must be kept enabled to ensure all existing 
memory protections function properly. 

30
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SPROBE Mechanism


•  We need an instrumentation mechanism that enables 
the secure world to be notified upon events of its 
choice in the normal world

31


normal world

push					{r1-r3}	
stmia				sp!,r10	
...	
mov						pc,lr	

secure world

sprobe_handler()	
{	
		check_kernel();	
		restore_insn();	
		return_to_ns();	
}	

smc						#0	
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SPROBE Placement
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Normal World Kernel Space

mcr				p15,0,r0,c1,c0,0;	SCTLR	
add				pc,sl,#16	
...	
mcr				p15,0,r0,c2,c0,0;	TTBRx	
bne				0xc0008068	
...	
mcr				p15,0,r0,c2,c0,2;	TTBCR	
subs			pc,r1,#4	

exception_vector_table:	
reset:				b	init	
...	
abort:				b	abort_handler	

…
…

page	tables	
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Evaluation

•  Setup

‣  Linux 2.6.38 in the normal world

‣  Fast Models 8.1 for emulation

•  12 SPROBES are inserted into the Linux kernel

‣  6 for enforcing W⊕X protection and MMU Enable 
(S2+S5)

‣  4 for monitoring changes to page table root (S3)

‣  1 for monitoring changes to page table configuration (S4)

‣  1 for monitoring modifications to page table entries (S4)

‣  Reject page table entries with wrong user/kernel bits (S1)
33
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Evaluation
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SPROBES Type Hit Frequency Overheads

1 N/A 0%

2 313,836 1.8%

3 N/A 0%

4 85,982 6.5%
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A Little Bit More…


•  Samsung has implemented the same idea and 
deployed this technique on millions of devices      
[CCS 2014]
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Another Problem

•  Return-oriented attacks

‣  Can hardware help detect those attacks?
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Intel Processor Trace

•  A new hardware feature that enables efficient 

recording of control-flow and timing information 
about software execution (3-5% overhead)

‣  Initially available on the Broadwell processor

‣  Fully implemented on the Skylake processor

•  At each control choice, record a packet in memory

‣  Conditional branches

‣  Indirect call

‣  Returns

•  Enough to reconstruct the actual control flow
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Intel PT Example


49


A

B

Basic Blocks

jmp	D	

jcc	E	

C

call	*rax	

D

jcc	B	

E

ret	

F

syscall	

Trace Packets

PGE  A

TNT
Taken

End

Not Taken

TIP  F

PGD  0
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System Overview
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User Space Kernel Space
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System Overview
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User Space Kernel Space
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System Overview
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User Space Kernel Space
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System Overview
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User Space Kernel Space
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System Overview
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User Space Kernel Space
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System Overview
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User Space Kernel Space
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System Overview
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User Space Kernel Space
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System Overview
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User Space Kernel Space
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What To Do? 
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CFI Policies

•  Coarse-grained Policy

‣  Check if the targets of indirect control transfers are valid

‣  Requires decoding the trace packets to find each target

•  Fine-grained Policy

‣  Check if the source and destination are a legitimate pair

‣  Requires control-flow recovery to identify source

•  Stateful Policy

‣  Check if an indirect control transfer is legitimate based on 
the program state (e.g., shadow stack)

‣  Requires sequential processing if state spans trace buffers
59
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Fine-Grained CFI

•  Recover the control flow from the trace buffer and 

the program binaries to identify sources 

‣  Disassemble the binary online in basic blocks

‣  Traverse basic blocks using the trace buffer to find sources 
of indirect control transfers

•  Authorize each indirect control transfer target against 
that program’s fine-grained policy for source

‣  For each indirect control transfer found in the trace 
ensure that the destination is in the legal target set of the 
corresponding source

61




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Control-Flow Recovery

•  Basic blocks are executed many times in practice, but 

we only want to disassemble the same basic block 
once…

•  Question: given a block address, how do we find the 
disassembled information efficiently?

•  Hashtable? No!

‣  The hash function takes a few cycles

‣  A conflict could take even more cycles

‣  Requires locking when accessed by multiple threads

62




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Our Solution: Mirror Pages
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Our Solution: Mirror Pages
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…

Mirror Pages
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Our Solution: Mirror Pages
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…

Mirror Pages

Disassembled 
Information
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Evaluation

•  SPEC CPU2006

‣  Average: 9.5%, Median: 5.6% for the combination policy

‣  Comparable to the state-of-the-art shadow stack impl.

66
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CFI-Focused Logging

•  What if hardware logging was designed for CFI 

enforcement?

‣  Can we eliminate need for control-flow recovery to 
enforce fine-grained CFI policies?

•  Just need the source-destination pair for each indirect control 
transfer?  1 extra packet for each indirect op, no TNT packets

•  Reduce trace size 58% and processing time 92% on average 

‣  Can we focus control-flow recovery to enforce stateful 
CFI policies?  E.g., shadow-stack and forward edge

•  Shadow stack depends on complete control flow à CET

•  Can enforce PathArmor [CCS 2015] with ~1% of original trace
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Intel CET

•  Intel Control-Flow Enforcement Technology (CET) 

aims to enforce shadow stack defenses in hardware

‣  Announced in June 2017

•  Shadow Stack on backward edge

‣  Exception on failure – for handler to deal with

•  Indirect Branch Tracking on forward edge

‣  Restrict indirect calls/jumps to valid targets

•  Issue: precision of these restrictions

‣  Weak – Single class of valid targets for all calls (coarse)

68
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Hardware Security Issues

•  Meltdown and Spectre attacks

‣  Both based on branch prediction and speculative 
execution

•  A branch prediction causes a speculative execution to occur that 
is only committed when the prediction is correct

‣  But the speculative execution causes measurable side 
effects 

•  That can enable an adversary to read arbitrary memory from a 
victim process

•  Sound solutions require fixes to processors and 
updates to ISAs – ad hoc solutions used for now
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Spectre Attack

•  Attacker locates a sequence of instructions within a 

victim program that would act as a covert channel 

‣  From knowledge of victim binary

•  Attacker tricks the CPU to execute these 
instructions speculatively and erroneously

‣  Leak victims info to measurable channel

•  Cache contents can survive nominal state reversion

•  To make real, use a cache-based side channel, such 
as Flush+Reload

70




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Spectre Attack

•  Exploiting Conditional Branches

•  Suppose an adversary controls the value of ‘x’

•  Adversary performs the following sequence

‣  First, invoke the program with legal inputs to train the branch 
predictor to speculatively execution the branch to compute ‘y’

‣  Next, invoke the program with an ‘x’ outside bounds of array1 
and where array1_size is uncached

‣  The operation will read a value from outside the array, and update 
the cache at a memory location based on the value at array1[x]

•  Can learn the value at array1[x] from location of cache update
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rectness of its initial guess. If the guess was wrong, the
processor discards the (incorrect) speculative execution
by reverting the register state back to the stored check-
point, resulting in performance comparable to idling. In
case the guess was correct, however, the speculative ex-
ecution results are committed, yielding a significant per-
formance gain as useful work was accomplished during
the delay.

From a security perspective, speculative execution in-
volves executing a program in possibly incorrect ways.
However, as processors are designed to revert the results
of an incorrect speculative execution on their prior state
to maintain correctness, these errors were previously as-
sumed not to have any security implications.

1.1 Our Results

Exploiting Speculative Execution. In this paper, we
show a new class of microarchitectural attacks which we
call Spectre attacks. At a high level, Spectre attacks trick
the processor into speculatively executing instructions
sequences that should not have executed during correct
program execution. As the effects of these instructions
on the nominal CPU state will be eventually reverted, we
call them transient instructions. By carefully choosing
which transient instructions are speculatively executed,
we are able to leak information from within the victim’s
memory address space.

We empirically demonstrate the feasibility of Spectre
attacks by using transient instruction sequences in order
to leak information across security domains.

Attacks using Native Code. We created a simple vic-
tim program that contains secret data within its memory
access space. Next, after compiling the victim program
we searched the resulting binary and the operating sys-
tem’s shared libraries for instruction sequences that can
be used to leak information from the victim’s address
space. Finally, we wrote an attacker program that ex-
ploits the CPU’s speculative execution feature in order to
execute the previously-found sequences as transient in-
structions. Using this technique we were able to read the
entire victim’s memory address space, including the se-
crets stored within it.

Attacks using JavaScript. In addition to violating pro-
cess isolation boundaries using native code, Spectre at-
tacks can also be used to violate browser sandboxing, by
mounting them via portable JavaScript code. We wrote a
JavaScript program that successfully reads data from the
address space of the browser process running it.

1.2 Our Techniques

At a high level, a Spectre attack violates memory isola-
tion boundaries by combining speculative execution with

data exfiltration via microarchitectural covert channels.
More specifically, in order to mount a Spectre attack,
an attacker starts by locating a sequence of instructions
within the process address space which when executed
acts as a covert channel transmitter which leaks the vic-
tim’s memory or register contents. The attacker then
tricks the CPU into speculatively and erroneously exe-
cuting this instruction sequence, thereby leaking the vic-
tim’s information over the covert channel. Finally, the at-
tacker retrieves the victim’s information over the covert
channel. While the changes to the nominal CPU state
resulting from this erroneous speculative execution are
eventually reverted, changes to other microarchitectural
parts of the CPU (such as cache contents) can survive
nominal state reversion.

The above description of Spectre attacks is general,
and needs to be concretely instantiated with a way
to induce erroneous speculative execution as well as
with a microarchitectural covert channel. While many
choices are possible for the covert channel compo-
nent, the implementations described in this work use a
cache-based covert channel using Flush+Reload [37] or
Evict+Reload [28] techniques.

We now proceed to describe our techniques for induc-
ing and influencing erroneous speculative execution.

Exploiting Conditional Branches. To exploit condi-
tional branches, the attacker needs the branch predictor
to mispredict the direction of the branch, then the pro-
cessor must speculatively execute code that would not be
otherwise executed which leaks the information sought
by the attacker. Here is an example of exploitable code:

if (x < array1_size)
y = array2[array1[x] * 256];

In this example, the variable x contains attacker-
controlled data. The if statement compiles to a branch
instruction, whose purpose is to verify that the value
of x is within a legal range, ensuring that the access to
array1 is valid.

For the exploit, the attacker first invokes the relevant
code with valid inputs, training the branch predictor to
expect that the if will be true. The attacker then invokes
the code with a value of x outside the bounds of array1
and with array1 size uncached. The CPU guesses
that the bounds check will be true, the speculatively exe-
cutes the read from array2[array1[x] * 256] using
the malicious x. The read from array2 loads data into
the cache at an address that is dependent on array1[x]
using the malicious x. The change in the cache state is
not reverted when the processor realizes that the specu-
lative execution was erroneous, and can be detected by
the adversary to find a byte of the victim’s memory. By
repeating with different values of x, this construct can be
exploited to read the victim’s memory.

2
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Meltdown

•  Meltdown has some similarities

•  Uses the speculative execution of the above code with an 
illegal address in ‘data’ to read arbitrary kernel memory

•  Adversary performs the following sequence

‣  Set data to a kernel memory address

‣  The cache entry corresponding to probe_array(data*4096) will be 
updated based on the value at ‘data’

•  Flush+Reload to detect

•  Can leak entire kernel memory
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1 raise_exception();
2 // the line below is never reached
3 access(probe_array[data * 4096]);

Listing 1: A toy example to illustrate side-effects of out-
of-order execution.

<instr.>

<instr.>
...

<instr.>

[ Exception ]
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<instr.>

<instr.>

<instr.>

EXCEPTION

HANDLER

<instr.>

<instr.>

[ Terminate ]

Figure 3: If an executed instruction causes an exception,
diverting the control flow to an exception handler, the
subsequent instruction must not be executed anymore.
Due to out-of-order execution, the subsequent instruc-
tions may already have been partially executed, but not
retired. However, the architectural effects of the execu-
tion will be discarded.

of whether this exception is raised due to a memory ac-
cess, e.g., by accessing an invalid address, or due to any
other CPU exception, e.g., a division by zero, the control
flow continues in the kernel and not with the next user
space instruction.

Thus, our toy example cannot access the array in the-
ory, as the exception immediately traps to the kernel and
terminates the application. However, due to the out-of-
order execution, the CPU might have already executed
the following instructions as there is no dependency on
the exception. This is illustrated in Figure 3. Due to the
exception, the instructions executed out of order are not
retired and, thus, never have architectural effects.

Although the instructions executed out of order do not
have any visible architectural effect on registers or mem-
ory, they have microarchitectural side effects. During the
out-of-order execution, the referenced memory is fetched
into a register and is also stored in the cache. If the out-
of-order execution has to be discarded, the register and
memory contents are never committed. Nevertheless, the
cached memory contents are kept in the cache. We can
leverage a microarchitectural side-channel attack such
as Flush+Reload [35], which detects whether a specific
memory location is cached, to make this microarchitec-
tural state visible. There are other side channels as well
which also detect whether a specific memory location
is cached, including Prime+Probe [28, 24, 26], Evict+
Reload [23], or Flush+Flush [10]. However, as Flush+
Reload is the most accurate known cache side channel
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Figure 4: Even if a memory location is only accessed
during out-of-order execution, it remains cached. Iterat-
ing over the 256 pages of probe array shows one cache
hit, exactly on the page that was accessed during the out-
of-order execution.

and is simple to implement, we do not consider any other
side channel for this example.

Based on the value of data in this toy example, a dif-
ferent part of the cache is accessed when executing the
memory access out of order. As data is multiplied by
4096, data accesses to probe array are scattered over
the array with a distance of 4 kB (assuming an 1 B data
type for probe array). Thus, there is an injective map-
ping from the value of data to a memory page, i.e., there
are no two different values of data which result in an ac-
cess to the same page. Consequently, if a cache line of a
page is cached, we know the value of data. The spread-
ing over different pages eliminates false positives due to
the prefetcher, as the prefetcher cannot access data across
page boundaries [14].

Figure 4 shows the result of a Flush+Reload measure-
ment iterating over all pages, after executing the out-of-
order snippet with data = 84. Although the array ac-
cess should not have happened due to the exception, we
can clearly see that the index which would have been ac-
cessed is cached. Iterating over all pages (e.g., in the
exception handler) shows only a cache hit for page 84
This shows that even instructions which are never actu-
ally executed, change the microarchitectural state of the
CPU. Section 4 modifies this toy example to not read a
value, but to leak an inaccessible secret.

4 Building Blocks of the Attack

The toy example in Section 3 illustrated that side-effects
of out-of-order execution can modify the microarchitec-
tural state to leak information. While the code snippet
reveals the data value passed to a cache-side channel, we
want to show how this technique can be leveraged to leak
otherwise inaccessible secrets. In this section, we want
to generalize and discuss the necessary building blocks
to exploit out-of-order execution for an attack.

The adversary targets a secret value that is kept some-
where in physical memory. Note that register contents
are also stored in memory upon context switches, i.e.,

5
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Spectre v Meltdown

•  Which is worse?

•  Meltdown exploits a privilege escalation vulnerability in Intel 
processors that bypasses kernel memory protections

‣  That is a big channel, but only applies to Intel processors

‣  Also, the KAISER patch has already been proposed to address the 
vulnerability being exploited

‣  Can be fixed

•  Spectre applies to AMD, ARM, and Intel 

‣  And there is no patch

‣  And there are variants that can be exploited – e.g., via JavaScript

‣  Do need to find some appropriate victim code tho
73
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Take Away

•  Lots of efforts in exploring hardware features to 

improve security

‣  Isolate code from untrusted kernel – SGX and TZ

‣  Remote attestation – TPMs

‣  Software bounds checking MPX

•  MPX and PT can be applied to CFI enforcement

•  However, there are also security issues with 
hardware

‣  Meltdown and Spectre

‣  Hardware Trojans


