

Advanced Systems Security Fuzz Testing

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab
Computer Science and Engineering Department
Pennsylvania State University

Detect Vulnerabilities

- We want to develop techniques to detect vulnerabilities automatically before they are exploited
 - What's a vulnerability?
 - How to find them?

Vulnerability

How do you define computer 'vulnerability'?

Vulnerability

- How do you define computer 'vulnerability'?
 - Flaw
 - Accessible to adversary
 - Adversary has ability to exploit

One Approach

- Run the program on various inputs
 - See what happens
 - Maybe you will find a flaw
- How should you choose inputs?

Dynamic Analysis Options

Regression Testing

- Run program on many normal inputs and look for bad behavior in the responses
 - Typically looking for behavior that differs from expected –
 e.g., a previous version of the program

Fuzz Testing

- Run program on many abnormal inputs and look for bad behavior in the responses
 - Looking for behaviors that may be triggered by adversaries
 - Bad behaviors are typically crashes caused by memory errors

Dynamic Analysis Options

 Why do you think fuzz testing is more appropriate for finding vulnerabilities than regression testing?

Fuzz Testing

- Fuzz Testing
 - ▶ Idea proposed by Bart Miller at Wisconsin in 1988
- Problem: People assumed that utility programs could correctly process any input values
 - Available to all
- Result: Found that they could crash 25-33% of UNIX utility programs

Fuzz Testing

- Fuzz Testing
 - ▶ Idea proposed by Bart Miller at Wisconsin in 1988
- Approach
 - Generate random inputs
 - ▶ Run lots of programs using random inputs
 - Identify crashes of these programs
 - Correlate with the random inputs that caused the crashes
- Problems: Not checking returns, Array indices...

Fuzzing Example

- Fuzz Testing
 - Example

```
format.c (line 276):
...
while (lastc != '\n') {
   rdc();
}
...
input.c (line 27):
rdc()
{ do { readchar(); }
   while (lastc == ' ' || lastc == '\t'); return (lastc);
}
```

Challenges

- Idea: Search for possibly accessible and exploitable flaws in a program by running the program under a variety of inputs
- Challenge: Selecting input values for the program
 - What should be the goals in choosing input values for dynamic analysis?

Challenges

- Idea: Search for possibility exploitable flaws in a program by running the program under a variety of inputs
- Challenge: Selecting input values for the program
 - What should be the goals in choosing input values for dynamic analysis?
 - Find all exploitable flaws
 - With the fewest possible input values
- How should these goals impact input choices?

Black Box Fuzzing

- Like Miller Feed the program random inputs and see if it crashes
- Pros: Easy to configure
- Cons: May not search efficiently
 - May re-run the same path over again (low coverage)
 - May be very hard to generate inputs for certain paths (checksums, hashes, restrictive conditions)
 - May cause the program to terminate for logical reasons – fail format checks and stop

Black Box Fuzzing

Example

```
function( char *name, char *passwd, char *buf )
{
    if ( authenticate_user( name, passwd )) {
        if ( check_format( buf )) {
            update( buf );
        }
    }
}
```

Mutation-Based Fuzzing

- Supply a well-formed input
 - Generate random changes to that input
- No assumptions about input
 - Only assumes that variants of well-formed input may problematic
- Example: zzuf
 - http://sam.zoy.org/zzuf/
 - Reading: The Fuzzing Project Tutorial

Mutation-Based Fuzzing

- Example: zzuf
 - http://sam.zoy.org/zzuf/
- The Fuzzing Project Tutorial
 - zzuf -s 0:1000000 -c -C 0 -q -T 3 objdump -x win9x.exe
 - Fuzzes the program objdump using the sample input win9x.exe
 - Try IM seed values (-s) from command line (-c) and keep running if crashed (-C 0) with timeout (-T 3)

Mutation-Based Fuzzing

- Easy to setup, and not dependent on program details
- But may be strongly biased by the initial input
- Still prone to some problems
 - May re-run the same path over again (same test)
 - May be very hard to generate inputs for certain paths (checksums, hashes, restrictive conditions)

Generation-Based Fuzzing

- Generational fuzzer generate inputs "from scratch" rather than using an initial input and mutating
- However, to overcome problems of naïve fuzzers they often need a format or protocol spec to start
- Examples include
 - SPIKE, Peach Fuzz
- However format-aware fuzzing is cumbersome, because you'll need a fuzzer specification for every input format you are fuzzing

Generation-Based Fuzzing

- Can be more accurate, but at a cost
- Pros: More complete search
 - Values more specific to the program operation
 - Can account for dependencies between inputs
- Cons: More work
 - Get the specification
 - Write the generator ad hoc
- Need to do for each program

Grey Box Fuzzing

- Rather than treating the program as a black box, instrument the program to track the paths run
- Save inputs that lead to new paths
 - Associated with the paths they exercise
- Example
 - American Fuzzy Lop (AFL)
- "State of the practice" at this time

AFL

 Provides compiler wrappers for gcc to instrument target program to collect fuzzing stats

http://lcamtuf.coredump.cx/afl/

AFL Display

Tracks the execution of the fuzzer

- Key information are
 - "total paths" number of different execution paths tried
 - "unique crashes" number of unique crash locations

AFL Output

- Shows the results of the fuzzer
 - E.g., provides inputs that will cause the crash
- File "fuzzer_stats" provides summary of stats UI
- File "plot_data" shows the progress of fuzzer
- Directory "queue" shows inputs that led to paths
- Directory "crashes" contains input that caused crash
- Directory "hangs" contains input that caused hang

AFL Operation

- How does AFL work?
 - http://lcamtuf.coredump.cx/afl/technical_details.txt
- The instrumentation captures branch (edge)
 coverage, along with coarse branch-taken hit counts.

```
cur_location = <COMPILE_TIME_RANDOM>;
shared_mem[cur_location ^ prev_location]++;
prev_location = cur_location >> 1;
```

- Record branches taken with low collision rate
- Enables distinguishing unique paths

AFL Operation

- How does AFL work?
 - http://lcamtuf.coredump.cx/afl/technical_details.txt
- When a mutated input produces an execution trace containing new tuples, the corresponding input file is preserved and routed for additional processing
 - Otherwise, input is discarded
- Mutated test cases that produced new state transitions are added to the input queue and used as a starting point for future rounds of fuzzing

AFL Operation

- How does AFL work?
 - http://lcamtuf.coredump.cx/afl/technical_details.txt
- Fuzzing strategies
 - Highly deterministic at first bit flips, add/sub integer values, and choose interesting integer values
 - Then, non-deterministic choices insertions, deletions, and combinations of test cases

Grey Box Fuzzing

- Finds flaws, but still does not understand the program
- Pros: Much better than black box testing
 - Essentially no configuration
 - Lots of crashes have been identified
- Cons: Still a bit of a stab in the dark
 - May not be able to execute some paths
 - Searches for inputs independently from the program
- Need to improve the effectiveness further

White Box Fuzzing

- Combines test generation with fuzzing
 - Test generation based on static analysis and/or symbolic execution
 - Rather than generating new inputs and hoping that they enable a new path to be executed, compute inputs that will execute a desired path
 - · And use them as fuzzing inputs
- Goal: Given a sequential program with a set of input parameters, generate a set of inputs that maximizes code coverage

Helping Fuzzing

- One problem in fuzzing is to generate inputs to cover all paths
 - Can symbolic execution help with this?
 - Driller: Augmenting Fuzzing through Symbolic Execution
 - Slides from Nick Stephens at NDSS 2016

Helping Fuzzing


```
x = int(input())
if x > 10:
    if x < 100:
        print "You win!"
    else:
        print "You lose!"
else:
    print "You lose!"</pre>
```

```
Let's fuzz it!
```

```
1 ⇒ "You lose!"

593 ⇒ "You lose!"

183 ⇒ "You lose!"

4 ⇒ "You lose!"

498 ⇒ "You lose!"

48 ⇒ "You win!"
```

Helping Fuzzing


```
x = int(input())
if x > 10:
    if x^2 == 152399025:
        print "You win!"
    else:
        print "You lose!"
else:
    print "You lose!"
```

Let's fuzz it!

With Symbolic Execution


```
x = input()
if x >= 10:
    if x % 1337 == 0:
        print "You win!"
    else:
        print "You lose!"
else:
    print "You lose!"
```


With Symbolic Execution


```
x = input()
if x >= 10:
    if x % 1337 == 0:
        print "You win!"
    else:
        print "You lose!"
else:
    print "You lose!"
```


Different Approaches

Fuzzing

- Good at finding solutions for general conditions
- Bad at finding solutions for specific conditions

Symbolic Execution

- Good at finding solutions for specific conditions
- Spends too much time iterating over general conditions

Fuzzing vs. Symbolic Exec


```
x = input()

def recurse(x, depth):
    if depth == 2000
        return 0
    else {
        r = 0;
        if x[depth] == "B":
            r = 1
        return r + recurse(x
[depth], depth)

if recurse(x, 0) == 1:
    print "You win!"
```

```
x = int(input())
if x >= 10:
    if x^2 == 152399025:
        print "You win!"
    else:
        print "You lose!"
else:
    print "You lose!"
```

Fuzzing Wins

Symbolic Execution Wins

"Cheap" fuzzing coverage

Take Away

- Goal is to detect vulnerabilities in our programs before adversaries exploit them
- One approach is dynamic testing of the program
 - Fuzz testing aims to achieve good program coverage with little effort for the programmer
 - Challenge is to generate the right inputs
- Black box (Mutational and generation), Grey box, and White box approaches are being investigated
 - AFL (Grey box) is now commonly used