
Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page
 1

Advanced Systems Security �
Fuzz Testing

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Detect Vulnerabilities

2

•  We want to develop techniques to detect
vulnerabilities automatically before they are
exploited

‣  What’s a vulnerability?

‣  How to find them?

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Vulnerability

3

•  How do you define computer ‘vulnerability’?

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Vulnerability

4

•  How do you define computer ‘vulnerability’?
‣  Flaw

‣  Accessible to adversary

‣  Adversary has ability to exploit

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

One Approach

5

•  Run the program on various inputs

‣  See what happens

‣  Maybe you will find a flaw

•  How should you choose inputs?

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Dynamic Analysis Options

6

•  Regression Testing

‣  Run program on many normal inputs and look for bad
behavior in the responses

•  Typically looking for behavior that differs from expected –
e.g., a previous version of the program

•  Fuzz Testing

‣  Run program on many abnormal inputs and look for bad
behavior in the responses

•  Looking for behaviors that may be triggered by adversaries

‣  Bad behaviors are typically crashes caused by memory errors

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Dynamic Analysis Options

7

•  Why do you think fuzz testing is more
appropriate for finding vulnerabilities than
regression testing?

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Fuzz Testing

8

•  Fuzz Testing

‣  Idea proposed by Bart Miller at Wisconsin in 1988

•  Problem: People assumed that utility programs
could correctly process any input values

‣  Available to all

•  Result: Found that they could crash 25-33% of
UNIX utility programs

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Fuzz Testing

9

•  Fuzz Testing

‣  Idea proposed by Bart Miller at Wisconsin in 1988

•  Approach

‣  Generate random inputs

‣  Run lots of programs using random inputs

‣  Identify crashes of these programs

‣  Correlate with the random inputs that caused the
crashes

•  Problems: Not checking returns, Array indices…

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Fuzzing Example

10

•  Fuzz Testing

‣  Example

format.c (line 276):
...
while (lastc != ’\n’) {

rdc();
}
...

input.c (line 27):
rdc()
{ do { readchar(); }

while (lastc == ’ ’ || lastc == ’\t’); return (lastc);
}

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Challenges

11

•  Idea: Search for possibly accessible and
exploitable flaws in a program by running the
program under a variety of inputs

•  Challenge: Selecting input values for the program

‣  What should be the goals in choosing input values for
dynamic analysis?

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Challenges

12

•  Idea: Search for possibility exploitable flaws in a
program by running the program under a variety
of inputs

•  Challenge: Selecting input values for the program

‣  What should be the goals in choosing input values for
dynamic analysis?

‣  Find all exploitable flaws

‣  With the fewest possible input values

•  How should these goals impact input choices?

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Black Box Fuzzing

•  Like Miller ‒ Feed the program random inputs
and see if it crashes

•  Pros: Easy to configure

•  Cons: May not search efficiently

‣  May re-run the same path over again (low coverage)

‣  May be very hard to generate inputs for certain
paths (checksums, hashes, restrictive conditions)

‣  May cause the program to terminate for logical
reasons ‒ fail format checks and stop

13

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Black Box Fuzzing

•  Example

function(char *name, char *passwd, char *buf)

{

if (authenticate_user(name, passwd)) {

if (check_format(buf)) {

update(buf);

}

}

}

14

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Mutation-Based Fuzzing

•  Supply a well-formed input

‣  Generate random changes to that input

•  No assumptions about input

‣  Only assumes that variants of well-formed input may
problematic

•  Example: zzuf

‣  http://sam.zoy.org/zzuf/

‣  Reading: The Fuzzing Project Tutorial

15

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Mutation-Based Fuzzing

•  Example: zzuf

‣  http://sam.zoy.org/zzuf/

•  The Fuzzing Project Tutorial

‣  zzuf -s 0:1000000 -c -C 0 -q -T 3 objdump -x
win9x.exe

‣  Fuzzes the program objdump using the sample
input win9x.exe

‣  Try 1M seed values (-s) from command line (-c) and
keep running if crashed (-C 0) with timeout (-T 3)

16

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Mutation-Based Fuzzing

•  Easy to setup, and not dependent on program
details

•  But may be strongly biased by the initial input

•  Still prone to some problems
‣  May re-run the same path over again (same test)

‣  May be very hard to generate inputs for certain paths
(checksums, hashes, restrictive conditions)

17

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Generation-Based Fuzzing

•  Generational fuzzer generate inputs “from scratch”

rather than using an initial input and mutating

•  However, to overcome problems of naïve fuzzers
they often need a format or protocol spec to start

•  Examples include

‣  SPIKE, Peach Fuzz

•  However format-aware fuzzing is cumbersome,
because you'll need a fuzzer specification for every
input format you are fuzzing

18

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Generation-Based Fuzzing

•  Can be more accurate, but at a cost

•  Pros: More complete search

‣  Values more specific to the program operation

‣  Can account for dependencies between inputs

•  Cons: More work

‣  Get the specification

‣  Write the generator ‒ ad hoc

•  Need to do for each program

19

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Grey Box Fuzzing

•  Rather than treating the program as a black box,

instrument the program to track the paths run

•  Save inputs that lead to new paths

‣  Associated with the paths they exercise

•  Example

‣  American Fuzzy Lop (AFL)

•  “State of the practice” at this time

20

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

AFL

•  Provides compiler wrappers for gcc to instrument

target program to collect fuzzing stats

•  http://lcamtuf.coredump.cx/afl/

21

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

AFL Display

•  Tracks the execution of the fuzzer

•  Key information are

‣  “total paths” ‒ number of different execution paths tried

‣  “unique crashes” ‒ number of unique crash locations

26

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

AFL Output

•  Shows the results of the fuzzer

‣  E.g., provides inputs that will cause the crash

•  File “fuzzer_stats” provides summary of stats ‒ UI

•  File “plot_data” shows the progress of fuzzer

•  Directory “queue” shows inputs that led to paths

•  Directory “crashes” contains input that caused crash

•  Directory “hangs” contains input that caused hang

27

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

AFL Operation

•  How does AFL work?

‣  http://lcamtuf.coredump.cx/afl/technical_details.txt

•  The instrumentation captures branch (edge)
coverage, along with coarse branch-taken hit counts.
‣  cur_location = <COMPILE_TIME_RANDOM>;

‣  shared_mem[cur_location ^ prev_location]++;

‣  prev_location = cur_location >> 1;

•  Record branches taken with low collision rate

•  Enables distinguishing unique paths

30

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

AFL Operation

•  How does AFL work?

‣  http://lcamtuf.coredump.cx/afl/technical_details.txt

•  When a mutated input produces an execution trace
containing new tuples, the corresponding input file is
preserved and routed for additional processing

‣  Otherwise, input is discarded

•  Mutated test cases that produced new state
transitions are added to the input queue and used as
a starting point for future rounds of fuzzing

31

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

AFL Operation

•  How does AFL work?

‣  http://lcamtuf.coredump.cx/afl/technical_details.txt

•  Fuzzing strategies

‣  Highly deterministic at first ‒ bit flips, add/sub integer
values, and choose interesting integer values

‣  Then, non-deterministic choices ‒ insertions, deletions, and
combinations of test cases

32

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Grey Box Fuzzing

•  Finds flaws, but still does not understand the program

•  Pros: Much better than black box testing

‣  Essentially no configuration

‣  Lots of crashes have been identified

•  Cons: Still a bit of a stab in the dark

‣  May not be able to execute some paths

‣  Searches for inputs independently from the program

•  Need to improve the effectiveness further

33

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

White Box Fuzzing

•  Combines test generation with fuzzing

‣  Test generation based on static analysis and/or symbolic
execution

‣  Rather than generating new inputs and hoping that they
enable a new path to be executed, compute inputs that will
execute a desired path

•  And use them as fuzzing inputs

•  Goal: Given a sequential program with a set of input
parameters, generate a set of inputs that maximizes
code coverage

34

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Helping Fuzzing

35

•  One problem in fuzzing is to generate inputs to
cover all paths

‣  Can symbolic execution help with this?

‣  Driller: Augmenting Fuzzing through Symbolic Execution

•  Slides from Nick Stephens at NDSS 2016

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Helping Fuzzing

36

x = int(input())
if x > 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

Let's fuzz it!

1 ⇒ "You lose!"

593 ⇒ "You lose!"

183 ⇒ "You lose!"

4 ⇒ "You lose!"

498 ⇒ "You lose!"

4

48 ⇒ "You win!"

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Helping Fuzzing

37

x = int(input())
if x > 10:

if x^2 == 152399025:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

Let's fuzz it!

1 ⇒ "You lose!"

593 ⇒ "You lose!"

183 ⇒ "You lose!"

4 ⇒ "You lose!"

498 ⇒ "You lose!"

42 ⇒ "You lose!"

3 ⇒ "You lose!"

6

……….

57 ⇒ "You lose!"

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

With Symbolic Execution

38

x = input()
if x >= 10:

if x % 1337 == 0:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

???

x < 10 x >= 10

x >= 10
x % 1337 != 0

x >= 10
x % 1337 == 0

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

With Symbolic Execution

39

x = input()
if x >= 10:

if x % 1337 == 0:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

???

x < 10 x >= 10

x >= 10
x % 1337 != 0

x >= 10
x % 1337 == 0

1337

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Different Approaches

40

Different Approaches

Fuzzing
- Good at finding solutions

for general conditions

- Bad at finding solutions for
specific conditions

Symbolic Execution
- Good at finding solutions

for specific conditions

- Spends too much time
iterating over general
conditions

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Fuzzing vs. Symbolic Exec

41

Fuzzing vs. Symbolic Execution

Fuzzing Wins Symbolic Execution Wins

x = input()

def recurse(x, depth):
 if depth == 2000
 return 0
 else {
 r = 0;
 if x[depth] == “B”:
 r = 1
 return r + recurse(x
[depth], depth)

if recurse(x, 0) == 1:
 print “You win!”

x = int(input())
if x >= 10:

if x^2 == 152399025:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Combining the Two

42

Combining the Two (High-level)
Test Cases

Control Flow Graph

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Combining the Two

43

Combining the Two

“Y”

“X”

Test Cases

“Cheap” fuzzing coverage

Control Flow Graph

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Combining the Two

44

Combining the Two

“Y”

“X”

Test Cases

“Cheap” fuzzing coverage

Tracing via Symbolic
Execution

!

Control Flow Graph

Reachable?
Combining the Two

“Y”

“X”

Test Cases

“Cheap” fuzzing coverage

Tracing via Symbolic
Execution

!

Control Flow Graph

Reachable?

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Combining the Two

45

Combining the Two

“Y”

“X”

Test Cases

“Cheap” fuzzing coverage

Tracing via Symbolic
Execution

“MAGIC”

New test cases generated

Control Flow Graph

Synthesized!
Combining the Two

“Y”

“X”

Test Cases

“Cheap” fuzzing coverage

Tracing via Symbolic
Execution

“MAGIC”

New test cases generated

Control Flow Graph

Synthesized!

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Combining the Two

46

Combining the Two

“Y”

“X”

Test Cases

“Cheap” fuzzing coverage

Tracing via Symbolic
Execution

“MAGIC”

New test cases generated
“MAGICY”

Control Flow Graph

Towards completer code coverage!

Combining the Two

“Y”

“X”

Test Cases

“Cheap” fuzzing coverage

Tracing via Symbolic
Execution

“MAGIC”

New test cases generated
“MAGICY”

Control Flow Graph

Towards completer code coverage!

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Combining the Two

47

Combining the Two

“Y”

“X”

Test Cases

“Cheap” fuzzing coverage

Tracing via Symbolic
Execution

“MAGIC”

New test cases generated
“MAGICY”

Control Flow Graph

Towards completer code coverage!

Combining the Two

“Y”

“X”

Test Cases

“Cheap” fuzzing coverage

Tracing via Symbolic
Execution

“MAGIC”

New test cases generated
“MAGICY”

Control Flow Graph

Towards completer code coverage!

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Take Away

•  Goal is to detect vulnerabilities in our programs

before adversaries exploit them

•  One approach is dynamic testing of the program

‣  Fuzz testing aims to achieve good program coverage with
little effort for the programmer

‣  Challenge is to generate the right inputs

•  Black box (Mutational and generation), Grey box,
and White box approaches are being investigated

‣  AFL (Grey box) is now commonly used

49

