
Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Advanced Systems Security:�
Future

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Penn State University

1

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Privilege Separation

2

•  Has been promoted for some time

‣  Software-Fault Isolation (1993)

‣  Kernel driver isolation (1990s)

‣  OpenSSH (early 2000s)

•  Can be a time-consuming task

‣  Automate ‒ not there yet

•  Questions

‣  What is the state of automating privilege separation?

‣  Do we still need it?

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

PtrSplit

•  Automated privilege separation

‣  Function partitioning

‣  And IDL generation

‣  To generate RPC (marshalling/unmarshalling) code

3

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

DATS

•  Combines a number of technologies that we have studied this

semester into one system

•  Single use services

‣  Launch service for particular user/request

•  Unique web-application instance (container)

•  Access control

‣  Limit that single-use service to only the user/request permissions

•  Folder-level ACLs

•  Privilege separation

‣  Isolate untrusted front-end from processing of key data (folders)

•  Within web applications, but trust the backend storage (storage declassifier)

4

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

DATS

5

•  Different view of sharing
Application-Centric

Users

Labels /
Folders

Apps

Storage

Users

Labels /
Folders

Data Containers
(Apps+Storage)

Dave Alice Bob Eve

Fracture Fever Flu

Messaging Scheduling

Data-Centric

Dave Alice Bob Eve

Fracture Fever Flu

Messaging Scheduling

Msg @
Fracture

Event @
Fracture

Messaging Scheduling

Msg @
Fever

Event @
Fever

Messaging Scheduling

Msg @
Flu

Event @
Flu

Msg @
Fracture

Msg @
Fever

Msg @
Flu

Event @
Fracture

Event @
Fever

Event @
Flu

! ! !

! !

Figure 1. Current systems have application-centric access con-
trols (top) and cannot prevent data leaks; e.g., a compromised or ma-
licious “Scheduling” application can leak Alice’s events to Eve (from
“Fracture” to “Flu”). Data-centric access controls (bottom) enforce
users’ ACLs on all applications: data is con�ned to its respective label.

Hails [38] provides a Haskell framework that attaches la-
bels to data in database models), but this compromises pro-
grammability. Developers rely on large bodies of existing
frameworks and languages, therefore we cannot limit them
to only using vetted options. The advantage of most OS
container technologies is that they can isolate unmodi�ed
code.

Data containers raise two new challenges. Usability: for
example, a calendar application cannot aggregate the in-
formation from appointments in di�erent data objects into
a single page. E�ciency: applications cannot use a single
storage service, like deduplication, across data objects.

In this paper we present the DATS system, which refactors
authentication and access controls outside of untrusted web
applications. DATS couples data containers along with two
new robust declassi�cation [76] mechanisms in a novel way
to trivially enforce access controls at the container level. It
leverages the model-view-controller (MVC) pattern, com-
mon in many web applications, to provide application pro-
grammability by presenting a familiar programming model
to developers and supporting several existing web applica-
tion languages and frameworks.
First, DATS recovers usability by securely composing

views from multiple data objects. Applications can provide

an untrusted view template to a trusted template declas-
si�er to aggregate information from each per-data object
container into a single page, like in many templating lan-
guages [16]. The declassi�er transparently applies language
level IFC to prevent information leaks across data objects.

Second, DATS improves e�ciency by securely sharing un-
trusted storage services across data objects. Applications can
use a trusted storage declassi�er that interposes between ap-
plications and untrusted sharedmodels (e.g., for dedupli-
cation, key-values stores, compression, etc.). The declassi�er
performs integrity checks on each data read operation (i.e.,
“get(keyx)”) to ensure that it only returns the value from
the most recent “put(keyx, val)” operation on the same
data object – interestingly, we use this to ensure that storage
does not leak information across data objects.
Container technologies are available in production sys-

tems, but replicating an application per data object has in-
trinsic ine�ciencies known as multi-execution [26]. Perfor-
mance is largely secondary for enterprises (they have far
fewer users than internet-scale services), but multi-execution
can become problematic when operating across a large num-
ber of data objects (e.g., search). Therefore, we explore using
hardware-assisted thread containers to avoidmulti-execution.

DATS and the client browser are the only components that
reside in the trusted computing base (TCB), while ensuring
applications remain programmable, usable, and e�cient. IFC
e�orts like Hails [38] and Jeeves [74] are instead a great �t
to the trusted developers of DATS’s TCB. Enterprises can
then leverage the vast space of existing and untrusted web
applications, frameworks, languages, and developers while
at the same time avoid costly application code audits. We
make the following contributions:

• We introduce DATS, a programming model that en-
ables web services to be run in data containers — DATS
uses two new robust declassi�ers to retain function-
ality and OS-level multi-execution to minimize con-
straints on programmers (§§ 3 and 4).

• We evaluate programmability and security by devel-
oping 4 applications and porting 4 existing ones (§§ 5
and 6).

• We evaluate performance with existing OS-level con-
tainers [10, 60] and a HW-capability architecture [32,
66] (§ 7).

2 Motivation
Many enterprises, like hospitals, use web-based applications
for security-sensitive data. Currently, the TCB includes ev-
ery application since an application-level exploit can put
all data at risk. Such applications are thus built, certi�ed,
and audited for security �rst, with performance being a sec-
ondary concern [9]. This accrues large costs from highly
skilled, security-aware programmers and requires arduous

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

DATS

6

•  Different view of sharing

Dave
Fracture

D,A
- Health App

Fever Flu

D,A,B D,E

https://OriginA.dats.com

- Appointments

- Calendar

Manage Appointments

https://OriginB.dats.com
Select Appointment

https://dats.com
Manage ACLs

- Flu
- Fever
- Fracture

- Edit information
- Add attachment
Lorem ipsum dolor sit amet, consectetur adipiscing
elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua.

Flu

https://OriginE.dats.com

- Edit information
- Add attachment
Lorem ipsum dolor sit amet, consectetur adipiscing
elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua.

https://OriginD.dats.com

Fever

- Edit information
- Add attachment
Lorem ipsum dolor sit amet, consectetur adipiscing
elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua.

https://OriginC.dats.com

Fracture

Template

App

Labels /
Folders+ACLs

Storage

</> { JSON }

!"

Health App
container Health App

container

container

container

container

Access Control Mgr.
container

Start

!"#$%!&'()*+

!"#$%&'(#)$
*$+,$+'(#)$

/view?Fracture#/view!$/home%

,*-./*01&2%34&5
&

62*''./*01&2%34&5
'

7&2./*01&2%34&5
(

,*-./*01&2%6*-)84-&2
7&2./*01&2%6*-)84-&2

Fracture Fever Flu

$)*289&%!&:08''4;&2

#&<+08)&%!&:08''4;&2

$)*289&%$&2=4:&

Figure 2. Example web page �ow from a user (“client-side”), DATS’s main components, and an application’s app-template-storage components
(and their relation to MVC). Application code, application data, and storage services are untrusted (grayed areas and colored boxes), while DATS’s
trusted components (boxes with white background) enforce folder non-interference. Application components run inside OS-level containers, which
can very easily enforce per-folder MAC policies. Note that the client’s browser is allowed to run untrusted application code (e.g., JavaScript).

of most applications. DATS thus provides two robust de-
classi�cation [76] mechanisms for cross-folder functionality,
ensuring that untrusted code cannot a�ect declassi�ed data.
Template �les describe how to aggregate information

from multiple folders into a single cross-folder view, making
applications usable. The template in Figure 2 is provided
by the non-folder app in 2a . A trusted Template Declassi-
�er in�ates templates with data from each per-folder app
instance (2b) through a simple form of PL-level IFC: it gen-
erates HTML/JS by processing only one data element at a
time, and each output (e.g., link) can only send information
back to the app instance that produced it (e.g., 3).
Storage services (untrusted storage row in Figure 2) im-

plement the application’s cross-folder models to make stor-
age e�cient. DATS interposes a trusted Storage Declassi�er
on the app–storage communication. The Storage Declas-
si�er uses integrity checking to ensure that each response
value of a “get(key)” request from a folder is the same as
the last “put(key, value)” for that folder. Interestingly,
integrity checking the put-get interface and con�ning the

storage services in a container enables these untrusted ser-
vices to work with plain-text data.

We will now discuss the security invariants in DATS (§ 3.1)
followed by details about each component (§§ 3.2 to 3.6).

3.1 Security Invariants in DATS
DATS guarantees end-to-end folder non-interference, cover-
ing apps and information �ow-secure views and storage.
Each app instance runs in a con�ned container – conceptu-
ally, each container covers server and client devices – with
access to only one folder. This ensures baseline folder non-
interference for app instances.

DATS’s Template Declassi�er in�ates untrusted templates
from the application with untrusted results from many fold-
ers to construct a view, but ensures that communication
from the view back to an app instance only uses data from
that same instance. The Template Declassi�er prevents ex-
plicit information �ows by ensuring each HTML element
that can send a request (e.g., a link) contains information
from at most one folder and points to the app instance that

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

DATS ‒ Take Aways

•  Questions

•  Do programmers know how to build web application instances?

‣  Is this an automated privilege separation task?

•  Can we enforce information flow guarantees comprehensively?

‣  Currently SELinux

‣  Should we use DIFC?

•  Can we really trust the backend? Do we really need to?

‣  Is this another privilege separation problem?

7

