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Problem

•  A program is trusted to enforce a system’s policy

‣  How do we know?

•  So what can we do?
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What’s a Program?

•  Program parts

‣  Statements (Expressions), Variables, Control Statements, 
Procedures, Arguments, System calls/Library calls

•  What does a program look like from a security 
perspective?

‣  Variables have data (may have secrecy/integrity reqs)

‣  Variable values may come from external sources

‣  Variable values may be assigned to one another

‣  Variables may be written out of the program (sink)
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It’s the Data Flow!!

•  Data input to a program may have security 

requirements

‣  E.g., it is secret

•  The program statements enable the data to “flow” 
through the program

‣  Track each variable’s label (based on the data it’s seen)

•  Enforce a data security requirements on information 
flows

‣  Can that data be sent out to a file?

•  Can connect OS/VM and program enforcement
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Concepts

•  Attach security labels to program data

•  Enable static checking of information flows 

‣  Compatible with Denning’s model

‣  Only a program with legal information flows will compile

•  Programmers can declassify labels

‣  Upgrade integrity

‣  Downgrade secrecy

•  Generalize approach

‣  Label polymorphism

‣  Run-time label checking
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Denning’s Lattice Model

•  Formalizes information flow models

‣  FM = {N, P, SC, /, >}  

•  Shows that the information flow model instances form a lattice

‣  N are objects, P are processes,

‣  {SC, >} is a partial ordered set,

‣  SC, the set of security classes is finite,

‣  SC has a lower bound, 

‣  and / is a lub operator

•  Implicit and explicit information flows

•  Semantics for verifying that a configuration is secure

•  Static and dynamic binding considered

•  Biba and BLP are among the simplest models of this type 
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Implicit and explicit flows

•  Explicit

‣  Direct transfer to b from a (e.g., b = a)

•  Implicit

‣  Where value of b may depend on value of a indirectly (e.g., if a = 0, then b 
= c)

•  Model covers all programs

‣  Statement S

‣  Sequence S1, S2

‣  Conditional c: S1, …, Sm

•  Implicit flows only occur in conditionals
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Preventing Implicit Flows

•  Hard to do without static analysis

•  Consider code fragment

•  Assume b is more sensitive than x

•  With a runtime check

‣   x=1, then b is obviously leaked, but not if x=0

•  Need a static analysis to detect 

owned by everyone. As we go up in the lattice, labels be-

come strictly more restrictive. Data can always be relabeled

to flow upward in the lattice, because restriction does not

create a possible information leak.

The lattice has a well-definedmeet operator, . Its defini-

tion is precisely dual to that of : it takes the intersection of

the owners and the unions of the readers. The meet operator

yields the most restrictive label that is strictly less restrictive

than its operands. This operator doesn’t seem to be very

useful in describing computation, and its use is avoided in

order to preserve the ability to easily infer labels, as shown

in Section 6.

The effect of declassification is that each principal has ac-

cess to certain relabelings that do not accord with the lattice.

However, these relabelings do not leak information.

4 Checking Labels

Labels can be used to annotate code, and the annotated code

can be checked statically to verify that it contains no infor-

mation leaks. In this section, we discuss some issues related

to static analysis of annotated code, thoughwe defer issues of

how to extend a programming language till the next section.

In Section 4.1, we explain the importance of static checking

to information flow control, and the problem of implicit flows

[DD77]. In Section 4.2, we describe a simple way to pre-

vent implicit flows from leaking information by using static

analysis.

4.1 Static vs. Dynamic Checking

Information flow checks can be viewed as an extension to

type checking. For both kinds of static analysis, the com-

piler determines that certain operations are not permitted to

be performed on certain data values. Type checks may be

performed at compile time or at run time, though compile-

time checks are obviously preferredwhen applicable because

they impose no run-time overhead. Access control checks are

usually performed at run time, although some access control

checks may be performed at compile time [JL78, RSC92].

In general, it seems that some access control checks must be

performed dynamically in order to give the system sufficient

flexibility.

By contrast, fine-grained informationflow control is prac-

tical only with some static analysis, which may seem odd;

after all, any check that can be performed by the compiler

can be performed at run time as well. The difficultywith run-

time checks is exactly the fact that they can fail. In failing,

they may communicate information about the data that the

program is running on. Unless the information flow model

is properly constructed, the fact of failure (or its absence)

can serve as a covert channel. By contrast, the failure of

a compile-time check reveals no information about the ac-

Figure 3: Implicit information flow

tual data passing through a program. A compile-time check

only provides information about the program that is being

compiled. Similarly, link-time and load-time checks provide

information only about the program, and may be considered

to be static checks for the purposes of this work.

Implicit information flows [DD77] are difficult to prevent

without static analysis. For example, consider the segment

of code shown in Figure 3 and assume that the storage lo-

cations and belong to different security classes and

, respectively. (We will follow the literature in using the

notation to refer to the label of the expression .) In par-

ticular, assume is more sensitive than (more generally,

), so data should not flow from to . However, the

code segment stores 1 into if is true, and 0 into if is

false; effectively contains the value of . A run-time check

can easily detect that the assignment communicates

information improperly, and abort the program at this point.

Consider, however, the case where is false: no assignment

to occurs within the context in which affects the flow

of control. The fact of the program’s aborting or continuing

implicitly communicates information about the value of ,

which can be used in at least the case where is false.

We could imagine inspecting the body of the statement

at run time to see whether it contains disallowed operations,

but in general this requires evaluating all possible execution

paths of the program, which is clearly infeasible. Another

possibility is to restrict all writes that follow the statement

on the grounds that once the process has observed , it is irre-

vocably tainted. However, this approach seems too restrictive

to be practical. The advantage of compile-time checking is

that in effect, static analysis efficiently constructs proofs that

no possible execution path contains disallowed operations.

To provide flexibility, some information flow checks are

desirable at run time; such checks are allowed as long as

their success or failure does not communicate information

improperly—which must itself be checked statically! We

examine run-time information flow checks later, in Sec-

tion 5.10.

4.2 Basic Block Labels

As described in Section 3.1, when a data value is extracted

from a slot, it acquires the slot label. Furthermore, to ensure

that writing to a slot does not leak information, the label on

the slot must be more restrictive than the label on the data

7
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Static and Dynamic Binding


•  Static binding

‣  Security class of an object is fixed

‣  This is the case for BLP and Biba

‣  This is the case for most system models

•  Dynamic binding

‣  Security class of an object can change

‣  For b = a, then the security class of b is b / a

‣  E.g., High-water mark secrecy, LOMAC, IX, …
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Semantics


•  Program is secure if:

‣  Explicit flow from S is secure

‣  Explicit flow of all statements in a sequence are secure 
(e.g., S1; S2)

‣  Conditional c: S1, …, Sm is secure if:

•  The explicit flows of all statements S1, …, Sm are secure

•  The implicit flows between c and the objects in Si are secure
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Type Safety
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Security Types
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Decentralized Label Model

•  Labels have owners and readers

‣  Owner: whose data was observed 
to generate value

‣  Reader: principals allowed by an 
owner to read

‣  Readers are specified by each 
owner

•  Label representation

‣  L = {o1: r1, r2; o2: r2, r3}

•  Channel

‣  Values are written to output 
channels

‣  Each channel has a set of readers

•  Effective Readers

‣  Intersection of all reader sets of 
the label

‣  Effective readers of L are {r2} 
because only it can read from o1 
and o2

•  Act for

‣  Readers can “act for” others, using 
their permissions

•  Semantics

‣  A value can be written to a channel 
only if each channel reader has 
authority to act for some effective 
reader for the value
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Figure 1: Medical Study Scenario

of a principal in the system, and may therefore modify the

policies that have been attached to data by that principal.

One goal of these two examples is show how our approach

limits the trust that is needed by participants in the system;

the double ovals identify the places where special trust is

needed.

2.1 The Medical Study

The medical study example shows that it is possible to give

another party private information and receive the results of its

computation while remaining confident that the data given to

it is not leaked. The purpose of the study is to perform a sta-

tistical analysis of the medical records of a large number of

patients. Obviously, the patients would like to keep specific

details of their medical history private. The patients give per-

mission to the researchers performing the study to use their

medical data to produce statistics, with the understanding

that their names and other identifying information will not

be released. Thus, the patients put some trust in the patient

data extractor,E, which delivers to the researchers a suitably

abridged version of the patient records. The data extractor

has the authority to act for the patient (p), so it can replace

the patient’s policy p: p,H with the researcher-controlled

policy, R: p,R , which allows the extracted data to be read

by the researchers and by the patient.

The researchers would like to use a statistical analysis

package that they have obtained from another source, but

the patients and researchers want the guarantee that the anal-

ysis package will not leak their data to a third party. To

accomplish this, the researchers relabel the patient data with

R: R,S . The analysis package is able to observe but not to
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Figure 2: Bank Scenario

leak the relabeled data since is only a reader, not an owner.

The analysis package performs its computations, using

the patient data, now labeled R: R,S , and its own statistical

database, labeled S: S . The writers of the analysis package

would also like some assurance that their statistical database

is not being leaked to the researchers. The result of the

computation must retain the policies of both R and S, and

therefore acquires the joint label R: R,S; S: S . This label

only allows flows to the principal S, since is the only

principal in both reader sets. The analysis package then

explicitly declassifies the result of the computation, changing

the label to R: R,S so the researchers can read it. Note that

since the analysis package can declassify the analysis result,

it is not forced to declassify all information extracted from

the statistical database, which would probably require more

careful analysis of the analysis code to show that the database

contents were not leaked.

Finally, the researchers may declassify the result of their

study, changing the label R: R,S to the unrestricted label

. This change allows the general public to see their results,

and is acceptable as long as there are so many patients in the

study that information about individual patients cannot be

extracted from the final result.

This example uses declassification in four places. Each

time, declassification takes place according to the simple rule

that a principal may modify its own flow policies. Conven-

tional information flow control has no notion of declassifi-

cation within the label system, and therefore, cannot model

this example.

3
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of a principal in the system, and may therefore modify the

policies that have been attached to data by that principal.

One goal of these two examples is show how our approach

limits the trust that is needed by participants in the system;

the double ovals identify the places where special trust is

needed.

2.1 The Medical Study

The medical study example shows that it is possible to give

another party private information and receive the results of its

computation while remaining confident that the data given to

it is not leaked. The purpose of the study is to perform a sta-

tistical analysis of the medical records of a large number of

patients. Obviously, the patients would like to keep specific

details of their medical history private. The patients give per-

mission to the researchers performing the study to use their

medical data to produce statistics, with the understanding

that their names and other identifying information will not

be released. Thus, the patients put some trust in the patient

data extractor,E, which delivers to the researchers a suitably

abridged version of the patient records. The data extractor

has the authority to act for the patient (p), so it can replace

the patient’s policy p: p,H with the researcher-controlled

policy, R: p,R , which allows the extracted data to be read

by the researchers and by the patient.

The researchers would like to use a statistical analysis

package that they have obtained from another source, but

the patients and researchers want the guarantee that the anal-

ysis package will not leak their data to a third party. To

accomplish this, the researchers relabel the patient data with

R: R,S . The analysis package is able to observe but not to
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leak the relabeled data since is only a reader, not an owner.

The analysis package performs its computations, using

the patient data, now labeled R: R,S , and its own statistical

database, labeled S: S . The writers of the analysis package

would also like some assurance that their statistical database

is not being leaked to the researchers. The result of the

computation must retain the policies of both R and S, and

therefore acquires the joint label R: R,S; S: S . This label

only allows flows to the principal S, since is the only

principal in both reader sets. The analysis package then

explicitly declassifies the result of the computation, changing

the label to R: R,S so the researchers can read it. Note that

since the analysis package can declassify the analysis result,

it is not forced to declassify all information extracted from

the statistical database, which would probably require more

careful analysis of the analysis code to show that the database

contents were not leaked.

Finally, the researchers may declassify the result of their

study, changing the label R: R,S to the unrestricted label

. This change allows the general public to see their results,

and is acceptable as long as there are so many patients in the

study that information about individual patients cannot be

extracted from the final result.

This example uses declassification in four places. Each

time, declassification takes place according to the simple rule

that a principal may modify its own flow policies. Conven-

tional information flow control has no notion of declassifi-

cation within the label system, and therefore, cannot model

this example.
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Relabeling Semantics

•  Basics

‣  Assignment causes a relabel of value

‣  Default is restriction according to *-property
•  A new label contains the owners of the old, but same or fewer 

readers

•  Declassification semantics

‣  An authority for an owner can 
•  Remove that owner 

•  Add readers for that owner 
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Combination Semantics

•  Join (e.g., multiply 2 numbers) 

‣  Assign value of label L to variable with value of label L’ results in a 
join of L and L’

‣  Least restrictive combination

‣  Least upper bound

‣  Union owners and intersect readers

•  Meet (dual of join): 

‣  Most restrictive label that can apply to each input for join to be 
possible

‣  Greatest lower bound

‣  Fewest readers to achieve join label, most owners…
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Label Hierarchies

•  Acts-for defines a hierarchy

‣  HMO acts-for A

‣  B acts-for doctors

‣  Secret acts-for classified

•  Labels as flows -- Forms an information flow lattice

•  Constraints

‣  Reader constraint: flows contain (o, r) and r’ acts-for r, then set contains (o, 
r’)

‣  Owner constraint: flows contain (o,r) and o’ acts-for o, then set contains (o’, 
r)

•  Or flow set does not contain (o’, r) and o’ acts-for o, then set does not contain 
(o, r)
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of a principal in the system, and may therefore modify the

policies that have been attached to data by that principal.

One goal of these two examples is show how our approach

limits the trust that is needed by participants in the system;

the double ovals identify the places where special trust is

needed.

2.1 The Medical Study

The medical study example shows that it is possible to give

another party private information and receive the results of its

computation while remaining confident that the data given to

it is not leaked. The purpose of the study is to perform a sta-

tistical analysis of the medical records of a large number of

patients. Obviously, the patients would like to keep specific

details of their medical history private. The patients give per-

mission to the researchers performing the study to use their

medical data to produce statistics, with the understanding

that their names and other identifying information will not

be released. Thus, the patients put some trust in the patient

data extractor,E, which delivers to the researchers a suitably

abridged version of the patient records. The data extractor

has the authority to act for the patient (p), so it can replace

the patient’s policy p: p,H with the researcher-controlled

policy, R: p,R , which allows the extracted data to be read

by the researchers and by the patient.

The researchers would like to use a statistical analysis

package that they have obtained from another source, but

the patients and researchers want the guarantee that the anal-

ysis package will not leak their data to a third party. To

accomplish this, the researchers relabel the patient data with

R: R,S . The analysis package is able to observe but not to
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leak the relabeled data since is only a reader, not an owner.

The analysis package performs its computations, using

the patient data, now labeled R: R,S , and its own statistical

database, labeled S: S . The writers of the analysis package

would also like some assurance that their statistical database

is not being leaked to the researchers. The result of the

computation must retain the policies of both R and S, and

therefore acquires the joint label R: R,S; S: S . This label

only allows flows to the principal S, since is the only

principal in both reader sets. The analysis package then

explicitly declassifies the result of the computation, changing

the label to R: R,S so the researchers can read it. Note that

since the analysis package can declassify the analysis result,

it is not forced to declassify all information extracted from

the statistical database, which would probably require more

careful analysis of the analysis code to show that the database

contents were not leaked.

Finally, the researchers may declassify the result of their

study, changing the label R: R,S to the unrestricted label

. This change allows the general public to see their results,

and is acceptable as long as there are so many patients in the

study that information about individual patients cannot be

extracted from the final result.

This example uses declassification in four places. Each

time, declassification takes place according to the simple rule

that a principal may modify its own flow policies. Conven-

tional information flow control has no notion of declassifi-

cation within the label system, and therefore, cannot model

this example.
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of a principal in the system, and may therefore modify the

policies that have been attached to data by that principal.

One goal of these two examples is show how our approach

limits the trust that is needed by participants in the system;

the double ovals identify the places where special trust is

needed.
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The medical study example shows that it is possible to give

another party private information and receive the results of its
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the patient’s policy p: p,H with the researcher-controlled

policy, R: p,R , which allows the extracted data to be read

by the researchers and by the patient.

The researchers would like to use a statistical analysis

package that they have obtained from another source, but

the patients and researchers want the guarantee that the anal-
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leak the relabeled data since is only a reader, not an owner.

The analysis package performs its computations, using

the patient data, now labeled R: R,S , and its own statistical

database, labeled S: S . The writers of the analysis package

would also like some assurance that their statistical database

is not being leaked to the researchers. The result of the

computation must retain the policies of both R and S, and

therefore acquires the joint label R: R,S; S: S . This label

only allows flows to the principal S, since is the only

principal in both reader sets. The analysis package then

explicitly declassifies the result of the computation, changing

the label to R: R,S so the researchers can read it. Note that

since the analysis package can declassify the analysis result,

it is not forced to declassify all information extracted from

the statistical database, which would probably require more

careful analysis of the analysis code to show that the database

contents were not leaked.

Finally, the researchers may declassify the result of their

study, changing the label R: R,S to the unrestricted label

. This change allows the general public to see their results,

and is acceptable as long as there are so many patients in the

study that information about individual patients cannot be

extracted from the final result.

This example uses declassification in four places. Each

time, declassification takes place according to the simple rule

that a principal may modify its own flow policies. Conven-

tional information flow control has no notion of declassifi-

cation within the label system, and therefore, cannot model

this example.
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Language Support

•  Java Information Flow (Jif) has runtime and compilers

‣  Several applications of Jif have been developed

•  Challenge: labeling and error resolution

‣  How do you annotate data with security?

‣  How do you fix errors?

•  Many occur due to implicit flows

•  Research in automatic retrofitting of programs with 
security type annotations and mediation
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Take Away

•  Programs may have the authority to protect security-

sensitive data

‣  OS may allow them to access data with multiple security 
requirements

•  Program data flows for the basis for reasoning about 
how program authority is used

‣  Can secrets flow to public objects?  Can untrusted data 
flow to trusted?

•  Denning model defines secure information flow

•  DLM model generalizes to arbitrary policies 
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Sound relabeling

•  Based on static hierarchy (actsFor)

•  Claim: cannot use static correctness

•  Example:

‣  L1={docs: pA; B: pA, pB}

‣  L2={docs: docs, pA; B: pA, pB}

•  If B => docs

‣  L2={docs: pA; B: pA, pB} -- B overrules docs

•  If pB => docs at runtime

‣  L1={docs: pA, pB; B: pA, pB} -- pB is allowed by B

‣  Inconsistent
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Sound and complete relabeling


•  Choices

‣  A reader may be dropped from some owner’s reader set

‣  A new owner may be added with a reader set

‣  A reader may be added when it actsFor an existing reader in reader set

‣  An owner may be replaced by an owner that actsFor it

•  This is all the sound relabelings

•  What does this mean in the previous case?
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Meet Semantics Clarified


•  Most restrictive label that can be relabeled to both

‣  For inference

•  Join of all pairwise components

‣  Unrelated owners ==> { }

‣  Related owners ==> o’ actsFor o

•  {o: r1, r2} meet {o’: r3, r4} = {o: r1, r2, r3, r4}


