
Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

Advanced Systems Security:�
Program Diversity

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Anatomy of Control Flow Attacks

2

•  Two steps

•  First, the attacker changes the control
flow of the program

‣  In buffer overflow, overwrite the return
address on the stack

•  Second, the attacker uses this change to
run code of their choice

‣  In buffer overflow, inject code on stack

‣  Or use existing code in ROP attack

•  CFI prevents exploitation (incomplete)

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Anatomy of Control Flow Attacks

3

•  Two steps

•  First, the attacker changes the control
flow of the program

‣  In buffer overflow, overwrite the return
address on the stack

•  Second, the attacker uses this change to
run code of their choice

‣  In buffer overflow, inject code on stack

‣  Or use existing code in ROP attack

•  Another way to prevent both?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Apply Crypto to Code

4

•  Can we randomize the program’s execution in such
a way that an adversary cannot select gadgets?

•  Given a secret key and a program address space,
encrypt the address space such that

‣  the probability that an adversary can locate a particular
instruction (start of gadget or flawed code) is sufficiently
low

‣  and the program still runs correctly and efficiently

•  Called address space randomization

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 5

Goal

•  Move the code and data so that you

cannot predict where gadgets will be

‣  What is the best way to make
unpredictable?

‣  What is the easiest way to make
unpredictable?

CSE543 - Introduction to Computer and Network Security Page

ASLR

31

Text

Data

Stack

Heap

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 6

Goal

•  Move the code and data so that you

cannot predict where gadgets will be

‣  What is the best way to make
unpredictable?

•  Randomize code and data location for each
instruction and variable

‣  What is the easiest way to make
unpredictable?

CSE543 - Introduction to Computer and Network Security Page

ASLR

31

Text

Data

Stack

Heap

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 7

Goal

•  Move the code and data so that you

cannot predict where gadgets will be

‣  What is the best way to make
unpredictable?

•  Randomize code and data location for each
instruction and variable

‣  What is the easiest way to make
unpredictable?

•  Just move the base address of the segment

•  Called Address Space Layout Randomization

CSE543 - Introduction to Computer and Network Security Page

ASLR

31

Text

Data

Stack

Heap

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 8

ASLR Impact

•  How does it prevent exploitation of

attacks?

•  Suppose you find a buffer overflow
flaw

‣  You insert shellcode onto the stack

‣  And jump to the stack address

•  With ASLR on the stack segment

‣  Cannot predict the target stack address

‣  Can you overflow return address?

CSE543 - Introduction to Computer and Network Security Page

ASLR

31

Text

Data

Stack

Heap

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 9

ASLR Impact

•  How does it prevent finding of attacks?

•  Suppose you find a heap overflow flaw

‣  You want to modify a function pointer

•  At known offset – oops, still works

•  At unknown offset – cannot predict

•  With ASLR on the heap segment

‣  Cannot predict absolute addresses

‣  Why not?

CSE543 - Introduction to Computer and Network Security Page

ASLR

31

Text

Data

Stack

Heap

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 10

ASLR Impact

•  How does it prevent exploitation of

attacks?

•  Suppose you find a buffer overflow
flaw

‣  You launch an ROP attack

‣  And jump to the code address of first
gadget

•  With ASLR on the code segment

‣  Cannot predict the target code address

‣  Why not?
CSE543 - Introduction to Computer and Network Security Page

ASLR

31

Text

Data

Stack

Heap

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 11

Relationship to DEP

•  ASLR is a complementary defense relative to DEP/CFI

•  DEP restricts what may be executed as code

•  CFI restricts control flow paths that may be executed

•  ASLR prevents some memory attacks

‣  Absolute writes over memory (e.g., global)

‣  Relative writes are still possible

•  Also, ASLR makes gadgets harder to find

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 12

What Makes Good ASLR?

•  Symantec paper investigates ASLR in Windows

•  What are choices regarding ASLR use?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 13

What Makes Good ASLR?

•  Symantec paper investigates ASLR in Windows

•  What are choices regarding ASLR use?

‣  How many offsets?

•  Limits?

•  Impact on libraries?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 14

What Makes Good ASLR?

•  Symantec paper investigates ASLR in Windows

•  What are choices regarding ASLR use?

‣  How many offsets?

•  Limits?

•  Impact on libraries?

‣  Distribution?

•  Impact of an uneven distribution?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 15

What Makes Good ASLR?

•  Symantec paper investigates ASLR in Windows

•  What are choices regarding ASLR use?

‣  How many offsets?

•  Limits?

•  Impact on libraries?

‣  Distribution?

•  Impact of an uneven distribution?

‣  Sequence?

•  What should the next offset be?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 16

Risks

•  How would you attack ASLR?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 17

Memory Disclosure Attacks

•  What is the risk to ASLR?

‣  Memory Disclosure

•  Consider a buffer overread

‣  E.g., Heartbleed

•  Instead of reading a key value

‣  What would you read to attack ASLR?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 18

Direct Disclosure

•  Adversary is able to directly read code pointers from

code pages

in JIT-ROP defenses by preventing indirect memory
disclosure through code-pointer hiding.

• Novel techniques. We introduce compiler transfor-
mations that extend execute-only memory to protect
against the new class of indirect information disclosure.
We also present a new way to implement execute-only
memory that leverages hardware-accelerated memory
protections.

• Covering statically & dynamically generated code.
We introduce the first technique that extends coverage
of execute-only memory to secure just-in-time (JIT)
compiled code.

• Realistic and extensive evaluation. We provide a full-
fledged prototype implementation of Readactor that
diversifies applications, and present the results of a
detailed evaluation. We report an average overhead
of 6.4% on compute-intensive benchmarks. Moreover,
our solution scales beyond benchmarks to programs as
complex as Google’s popular Chromium web browser.

II. RETURN-ORIENTED PROGRAMMING

In general, code-reuse attacks execute benign and legitimate
code to perform illegal actions. To do so, the adversary exploits
a memory corruption error (such as a buffer overflow) to transfer
control to existing instruction sequences that are chained
together to perform the malicious behavior.

The most common code-reuse technique is return-oriented
programming (ROP) [53]. The basic idea of ROP is to invoke
short instruction sequences (gadgets, in ROP parlance) one after
another. To successfully launch an attack, the adversary first
needs to identify—using an offline static analysis phase—which
gadgets and library functions satisfy the attack goal. Once all
gadgets are identified, the adversary injects pointers into the
data area of the application, where each pointer references a
gadget.

For a conventional stack-overflow vulnerability, the adver-
sary writes the pointers onto the stack and overwrites the return
address of the vulnerable function with the address of the first
gadget. This can be achieved by overflowing a stack-allocated
buffer and writing a new pointer address to the stack slot
containing the return address.

Once the vulnerable function executes a return instruction,
the control flow is redirected to the first gadget, which itself
ends with a return instruction. Return instructions play an
important role1 as they are responsible for chaining multiple
sequences together. This attack principle has been shown to
be Turing-complete, meaning that the adversary can perform
arbitrary, malicious computations [53].

III. THE THREAT OF MEMORY DISCLOSURE

Simple code randomization such as address space layout
randomization (ASLR) complicates ROP attacks by randomiz-
ing the base addresses of code segments. Hence, the adversary
must guess where the required instruction sequences reside
in memory. Recent research has shown that randomization

1ROP does not necessarily require return instructions, but can leverage
indirect jumps or calls to execute a chain of ROP gadgets [12, 14].

JMP label

CALL Func_A

Code page 1

Readable-writable
Readable-executable

Direct
disclosure

Adversary

Function pointer 2

Return address

Stack / Heap

label:
asm_ins
asm_ins
...

Func_A:
asm_ins
asm_ins
...

Code page 2 Code page 3

Indirect
disclosure

Data pages

Function pointer 1

Code pages

Figure 1: Direct and indirect memory disclosure.

at the level of functions, basic blocks, or individual instruc-
tions enhances security (see [40] for a detailed overview of
fine-grained code randomization) relative to ASLR because
these approaches randomize the internal code structure of an
application.

However, the adversary can sometimes use memory disclo-
sure vulnerabilities to learn the memory layout and randomized
locations of machine code in an application. Using this
information, the adversary can reliably infer the runtime
addresses of instruction sequences and bypass the underlying
code randomization. In general, the adversary can launch direct
and indirect memory disclosure attacks; Figure 1 illustrates
both classes of disclosure.

In a direct memory disclosure attack, the adversary is
able to directly read code pointers from code pages. Such
pointers are typically embedded in direct branch instructions
such as direct jumps and calls. The top of Figure 1 shows how
the adversary can access a single code page (code page 1),
dynamically disassemble it, and identify other code pages
(pages 2 and 3) via direct call and jump instructions. By
performing this recursive disassembly process on-the-fly, the
adversary can directly disclose all gadgets needed to relocate
a ROP attack to match the diversified code [59].

Two protection methods have been proposed to prevent
direct memory disclosure: rewriting inter-page references and
redirecting attempts to read code pages. In the first approach,
direct code references in calls and jumps between code pages
are replaced by indirect branches to prevent the adversary
from following these code pointers [6]. A conceptually simpler
alternative is to prevent read access to code pages that are not
currently executing [7], e.g., code page 2 and 3 in Figure 1.

Unfortunately, obfuscating code pointers between pages
does not prevent indirect memory disclosure attacks, where
the adversary only harvests code pointers stored on the data
pages of the application which are necessarily readable (e.g., the
stack and heap). Examples of such pointers are return addresses
and function pointers on the stack, and code pointers in C++
virtual method tables (vtables). We conducted experiments that
indicate that the adversary can bypass countermeasures that

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 19

Indirect Disclosure

•  Adversary harvests code pointers stored on the data

pages of the application that are necessarily readable

in JIT-ROP defenses by preventing indirect memory
disclosure through code-pointer hiding.

• Novel techniques. We introduce compiler transfor-
mations that extend execute-only memory to protect
against the new class of indirect information disclosure.
We also present a new way to implement execute-only
memory that leverages hardware-accelerated memory
protections.

• Covering statically & dynamically generated code.
We introduce the first technique that extends coverage
of execute-only memory to secure just-in-time (JIT)
compiled code.

• Realistic and extensive evaluation. We provide a full-
fledged prototype implementation of Readactor that
diversifies applications, and present the results of a
detailed evaluation. We report an average overhead
of 6.4% on compute-intensive benchmarks. Moreover,
our solution scales beyond benchmarks to programs as
complex as Google’s popular Chromium web browser.

II. RETURN-ORIENTED PROGRAMMING

In general, code-reuse attacks execute benign and legitimate
code to perform illegal actions. To do so, the adversary exploits
a memory corruption error (such as a buffer overflow) to transfer
control to existing instruction sequences that are chained
together to perform the malicious behavior.

The most common code-reuse technique is return-oriented
programming (ROP) [53]. The basic idea of ROP is to invoke
short instruction sequences (gadgets, in ROP parlance) one after
another. To successfully launch an attack, the adversary first
needs to identify—using an offline static analysis phase—which
gadgets and library functions satisfy the attack goal. Once all
gadgets are identified, the adversary injects pointers into the
data area of the application, where each pointer references a
gadget.

For a conventional stack-overflow vulnerability, the adver-
sary writes the pointers onto the stack and overwrites the return
address of the vulnerable function with the address of the first
gadget. This can be achieved by overflowing a stack-allocated
buffer and writing a new pointer address to the stack slot
containing the return address.

Once the vulnerable function executes a return instruction,
the control flow is redirected to the first gadget, which itself
ends with a return instruction. Return instructions play an
important role1 as they are responsible for chaining multiple
sequences together. This attack principle has been shown to
be Turing-complete, meaning that the adversary can perform
arbitrary, malicious computations [53].

III. THE THREAT OF MEMORY DISCLOSURE

Simple code randomization such as address space layout
randomization (ASLR) complicates ROP attacks by randomiz-
ing the base addresses of code segments. Hence, the adversary
must guess where the required instruction sequences reside
in memory. Recent research has shown that randomization

1ROP does not necessarily require return instructions, but can leverage
indirect jumps or calls to execute a chain of ROP gadgets [12, 14].

JMP label

CALL Func_A

Code page 1

Readable-writable
Readable-executable

Direct
disclosure

Adversary

Function pointer 2

Return address

Stack / Heap

label:
asm_ins
asm_ins
...

Func_A:
asm_ins
asm_ins
...

Code page 2 Code page 3

Indirect
disclosure

Data pages

Function pointer 1

Code pages

Figure 1: Direct and indirect memory disclosure.

at the level of functions, basic blocks, or individual instruc-
tions enhances security (see [40] for a detailed overview of
fine-grained code randomization) relative to ASLR because
these approaches randomize the internal code structure of an
application.

However, the adversary can sometimes use memory disclo-
sure vulnerabilities to learn the memory layout and randomized
locations of machine code in an application. Using this
information, the adversary can reliably infer the runtime
addresses of instruction sequences and bypass the underlying
code randomization. In general, the adversary can launch direct
and indirect memory disclosure attacks; Figure 1 illustrates
both classes of disclosure.

In a direct memory disclosure attack, the adversary is
able to directly read code pointers from code pages. Such
pointers are typically embedded in direct branch instructions
such as direct jumps and calls. The top of Figure 1 shows how
the adversary can access a single code page (code page 1),
dynamically disassemble it, and identify other code pages
(pages 2 and 3) via direct call and jump instructions. By
performing this recursive disassembly process on-the-fly, the
adversary can directly disclose all gadgets needed to relocate
a ROP attack to match the diversified code [59].

Two protection methods have been proposed to prevent
direct memory disclosure: rewriting inter-page references and
redirecting attempts to read code pages. In the first approach,
direct code references in calls and jumps between code pages
are replaced by indirect branches to prevent the adversary
from following these code pointers [6]. A conceptually simpler
alternative is to prevent read access to code pages that are not
currently executing [7], e.g., code page 2 and 3 in Figure 1.

Unfortunately, obfuscating code pointers between pages
does not prevent indirect memory disclosure attacks, where
the adversary only harvests code pointers stored on the data
pages of the application which are necessarily readable (e.g., the
stack and heap). Examples of such pointers are return addresses
and function pointers on the stack, and code pointers in C++
virtual method tables (vtables). We conducted experiments that
indicate that the adversary can bypass countermeasures that

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 20

Fine-Grained Randomization

•  Can we make harvesting more difficult with fine-

grained randomization of code and data?

‣  Yes, but at a significant cost

•  E.g., cache locality is completely lost

•  See, P. Larsen, A. Homescu, S. Brunthaler, and M.
Franz. SoK: Automated software diversity. In 35th
IEEE Symposium on Security and Privacy, S&P, 2014.

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 21

Other Alternatives

•  Prevent read access to code pages that are not

currently executing

‣  Prevents only direct disclosures

•  Adversary can bypass this countermeasures using
indirect disclosures

‣  E.g., virtual tables for C++

‣  Doing disassembly on the fly

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 22

Readactor Solution

•  To prevent attacks based on direct disclosure,

‣  Leverage virtualization capabilities in commodity x86
processors to map code pages with execute-only
permissions at all times

•  To prevent attacks based on indirect disclosure,

‣  Hide the targets of all function pointers and return
addresses

•  Use compiler-based solution to obtain more precise
control-flow information for indirect targets

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 23

Memory Management

•  Readacted applications use virtualization hardware to

map pages differently than legacy applications

‣  Can work together, however
compiler and linker. If a code page is labeled with only execute
permission, the operating system sets the page to point to a
page marked execute-only in the EPT. Note that access control
is enforced for each translation step. Hence, a read operation
on the code page is allowed during the translation of the virtual
to the guest physical page. But, when the guest physical page is
translated to the host physical page, an access fault is generated,
because the EPT permission is set to execute-only. Similar to
the access permissions of a standard x86 page table, the EPT
permissions cannot be bypassed by software. However, EPTs
are only available when the operating system is executing as a
virtualized guest. The next section describes how we addressed
this challenge.

B. Hypervisor

Our approach can be used in two different scenarios:
software already operating inside a virtualized environment,
and software executing directly on physical hardware. For the
former case, common in cloud computing environments, the
execute-only interface can be implemented as an extension to
an existing hypervisor [43, 47, 48, 64, 66]. We chose to focus
on the second, non-virtualized scenario for two reasons: First,
while standard virtualization is common for cloud computing,
we want a more general approach that does not require the
use of a conventional hypervisor (and its associated overhead).
Many of the attacks we defend against (including our indirect
JIT-ROP attack in Section III) require some form of scripting
capability [15, 16, 20, 59] and therefore target software like
browsers and document viewers running on non-virtualized end-
user systems. Second, implementing a thin hypervisor allows us
to measure the overhead of our technique with greater precision.

Our hypervisor is designed to transparently transfer the
currently running operating system into a virtual environment
on-the-fly. Our thin hypervisor design is inspired by hypervisor
rootkits that transparently switch an operating system from
executing on physical hardware to executing inside a virtual
environment that hides the rootkit [38, 54]. Unlike rootkits,
however, our hypervisor interfaces with the operating system it
hosts by providing an interface to manage EPT permissions and
to forward EPT access violations to the OS. Our hypervisor
also has the capability to revert the virtualized operating system
back to direct hardware execution without rebooting if needed
for testing or error handling. For performance and security
reasons, we keep our hypervisor as small as possible; it uses
less than 500 lines of C code.

Figure 5 shows how we enable execute-only page permis-
sions by creating two mappings of the host physical memory:
a normal and a readacted mapping. The EPT permissions for
the normal mapping allow the conventional page table to fully
control the effective page permissions. As previously mentioned,
the final permission for a page is the intersection of the page
table permission and the EPT permission. Hence, setting the
EPT permissions to RWX for the normal mapping means that
only the permissions of the regular page table are enforced. We
set the EPT permissions for the readacted mapping to execute-
only so that any read or write access to an address using
this mapping results in an access fault. The operating system
can map virtual memory to physical memory using either of
these mappings. When a block of memory is mapped through
the readacted mapping, execute-only permissions are enforced.

Data
Pages

Code
Pages

MMU

Hypervisor

Operating
System

Processor

Access
Violations

Code
Pages

Data
Pages

Normal
mapping

Readacted
mapping

Readacted App Legacy App

Execute-onlyReadable-writable
Readable-executable

Figure 5: Readactor uses a thin hypervisor to enable the
extended page tables feature of modern x86 processors. Virtual
memory addresses of protected applications (top left) are
translated to physical memory using a readacted mapping to
allow execute-only permissions whereas legacy applications
(top right) use a normal mapping to preserve compatibility. The
hypervisor informs the operating systems of access violations.

When the normal mapping is used, executable memory is also
readable.

Our use of extended page tables is fully compatible with
legacy applications. Legacy applications can execute without
any modification when Readactor is active, because the normal
mapping is used by default. Readactor also supports code
sharing between legacy and readacted applications. Legacy
applications accessing readacted libraries will receive an
execute-only mapping of the library, thus securing the library
from disclosure. Readacted applications that require a legacy,
un-readacted library can load it normally, but the legacy library
will still be vulnerable to information disclosure.

C. Operating System

To simplify implementation and testing, our prototype
uses the Linux kernel. However, our fundamental approach is
operating system agnostic and can be ported to other operating
systems. We keep our patches to the Linux kernel as small
as possible (the patch contains 82 lines of code and simply
supports the mapping of execute-only pages). Our patch changes
how the Linux kernel writes page table entries. When a
readacted application requests execute-only memory, we set
the guest physical address to point to the readacted mapping
rather than the normal mapping.

VII. READACTOR – COMPILER INSTRUMENTATION

To support the Readactor protections, we modified the
LLVM compiler infrastructure [41] to (i) generate diversified
code, (ii) prevent benign code from reading data residing in
code pages, and (iii) prevent the adversary from exploiting
code pointers to perform indirect disclosure attacks.

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 24

Memory Management

•  See difference between how code and data pages are

mapped

‣  Why does this prevent direct disclosure?

Function pointer 1

Return address

Stack / Heap

Data pages (readable-writeable)

Function A:
asm_ins
asm_ins
JUMP Trampoline B
Call_Site_B:
...

Code page (execute-only)

Trampoline A

Code page (execute-only)

Trampoline B

Readactor
Trampolines

Data reference to code Code reference to code

Figure 3: Readacted applications replace code pointers in
readable memory with trampoline pointers. The trampoline
layout is not correlated with the function layout. Therefore,
trampoline addresses do not leak information about the code
to which they point.

tion against all forms of memory disclosure at this granularity,
since indirect disclosure of a code address gives the adversary
no information about the location of any other instruction.
However, ideal fine-grained randomization is inefficient and
does not allow code sharing between processes. Hence, practical
protection schemes randomize code at a coarser granularity to
reduce the performance overhead [40]. Efficient use of modern
processor instruction caches requires that frequently executed
instructions are adjacent, e.g., in sequential basic blocks.
Furthermore, randomization schemes such as Oxymoron [6]
that allow code pages to be shared between processes lead to
significantly lower memory usage but randomize at an even
coarser granularity (i.e., page-level randomization).

To relax the requirement of ideal fine-grained code random-
ization, we observe that indirect JIT-ROP relies on disclosing
code pointers in readable memory. The sources of code pointers
in data pages are (i) C++ virtual tables, (ii) function pointers
stored on the stack and heap, (iii) return addresses, (iv) dynamic
linker structures (i.e., the global offset table on Linux), and
(v) C++ exception handling. Our prototype system currently
handles sources (i)-(iv); protecting code pointers related to C++
exceptions is an ongoing effort requiring additional compiler
modifications which we discuss in Section VII-C.

Figure 3 illustrates our high-level technique to hide code
pointers from readable memory pages. Whenever the program
takes the address of a code location to store in readable memory,
we instead store a pointer to a corresponding trampoline.
Function pointers, for example, now point to trampolines
rather than functions. When a call is made via Function
pointer 1 in Figure 3, the execution is redirected to a
Readactor trampoline (Trampoline A), which then branches
directly to Function A.

Because trampolines are located in execute-only memory
and because the trampoline layout is not correlated with
the layout of functions, trampoline addresses do not leak
information about non-trampoline code. Hence, trampolines
protect the original code pages from indirect memory disclosure
(see Section VII-C for details). This combination allows us to
use a more practical fine-grained randomization scheme, e.g.,
function permutation and register randomization, which adds
negligible performance overhead and aligns with current cache
models.

For a more detailed pictorial overview of the design
of Readactor, see Appendix A. In the following sections,

Virtual
Memory

CODE
Page 1
DATA

Page 2

Page
Table
read-
execute

read-write

Guest
Physical
Memory

Page 1

…
Page 2

…

EPT

execute-
only
…

read-write

…

Host
Physical
Memory

Page 1

…
Page 2

…

Figure 4: Relation between virtual, guest physical, and host
physical memory. Page tables and the EPT contain the access
permissions that are enforced during the address translation.

we describe each component of Readactor in detail. First,
we describe how we enable hardware-assisted execute-only
permission on code pages (Section VI). We then present
our augmented compiler that implements fine-grained code
randomization and code-pointer hiding (Section VII). Finally,
in Section VIII we explain how we extended our approach to
also protect just-in-time compiled code.

VI. READACTOR – EXECUTE-ONLY MEMORY

Enforcing execute-only memory for all executable code is
one of the key components of our system. Below we discuss
the challenges of implementing hardware enforced execute-only
memory on the x86 architecture.

A. Extended Page Tables

The x86 architecture provides two hardware mechanisms to
enforce memory protection: segmentation and paging. Segmen-
tation is a legacy feature and is fully supported only in 32-bit
mode. In contrast, paging is used by modern operating systems
to enforce memory protection. While modern x86 CPUs include
a permission to mark memory as non-executable [4, 35], it
used to be impossible to mark memory as executable and non-
readable at the same time. This changed in late 2008 when
Intel introduced a new virtualization feature called Extended
Page Tables (EPTs) [35]. Modern AMD processors contain a
similar feature called Rapid Virtualization Indexing.

Readactor uses EPTs to enforce execute-only page per-
missions in hardware. EPTs add an additional abstraction
layer during the memory translation. Just as standard paging
translates virtual memory addresses to physical addresses, EPTs
translate the physical addresses of a virtual machine (VM)—the
so-called guest physical memory—to real physical addresses
or host physical memory. The access permissions of each
page are enforced during the respective translations. Hence,
the final permission is determined by the intersection of the
permissions of both translations. EPTs conveniently allow us
to enforce (non-)readable, (non-)writable, and (non-)executable
memory permissions independently, thereby enabling efficient
enforcement of execute-only code pages.

Figure 4 shows the role of the page table and the EPT during
the translation from a virtual page to a host physical page. In
this example, the loaded application consists of two pages: a
code page, marked execute-only, and a data page marked as
readable and writable. These page permissions are set by the

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 25

Trampoline

•  Point function pointers and return addresses (indirect

control transfers) to trampoline code

•  Works because the trampoline layout is not
correlated with the layout of functions

•  I.e., trampoline addresses do not leak information
about non-trampoline code

Function pointer 1

Return address

Stack / Heap

Data pages (readable-writeable)

Function A:
asm_ins
asm_ins
JUMP Trampoline B
Call_Site_B:
...

Code page (execute-only)

Trampoline A

Code page (execute-only)

Trampoline B

Readactor
Trampolines

Data reference to code Code reference to code

Figure 3: Readacted applications replace code pointers in
readable memory with trampoline pointers. The trampoline
layout is not correlated with the function layout. Therefore,
trampoline addresses do not leak information about the code
to which they point.

tion against all forms of memory disclosure at this granularity,
since indirect disclosure of a code address gives the adversary
no information about the location of any other instruction.
However, ideal fine-grained randomization is inefficient and
does not allow code sharing between processes. Hence, practical
protection schemes randomize code at a coarser granularity to
reduce the performance overhead [40]. Efficient use of modern
processor instruction caches requires that frequently executed
instructions are adjacent, e.g., in sequential basic blocks.
Furthermore, randomization schemes such as Oxymoron [6]
that allow code pages to be shared between processes lead to
significantly lower memory usage but randomize at an even
coarser granularity (i.e., page-level randomization).

To relax the requirement of ideal fine-grained code random-
ization, we observe that indirect JIT-ROP relies on disclosing
code pointers in readable memory. The sources of code pointers
in data pages are (i) C++ virtual tables, (ii) function pointers
stored on the stack and heap, (iii) return addresses, (iv) dynamic
linker structures (i.e., the global offset table on Linux), and
(v) C++ exception handling. Our prototype system currently
handles sources (i)-(iv); protecting code pointers related to C++
exceptions is an ongoing effort requiring additional compiler
modifications which we discuss in Section VII-C.

Figure 3 illustrates our high-level technique to hide code
pointers from readable memory pages. Whenever the program
takes the address of a code location to store in readable memory,
we instead store a pointer to a corresponding trampoline.
Function pointers, for example, now point to trampolines
rather than functions. When a call is made via Function
pointer 1 in Figure 3, the execution is redirected to a
Readactor trampoline (Trampoline A), which then branches
directly to Function A.

Because trampolines are located in execute-only memory
and because the trampoline layout is not correlated with
the layout of functions, trampoline addresses do not leak
information about non-trampoline code. Hence, trampolines
protect the original code pages from indirect memory disclosure
(see Section VII-C for details). This combination allows us to
use a more practical fine-grained randomization scheme, e.g.,
function permutation and register randomization, which adds
negligible performance overhead and aligns with current cache
models.

For a more detailed pictorial overview of the design
of Readactor, see Appendix A. In the following sections,

Figure 4: Relation between virtual, guest physical, and host
physical memory. Page tables and the EPT contain the access
permissions that are enforced during the address translation.

we describe each component of Readactor in detail. First,
we describe how we enable hardware-assisted execute-only
permission on code pages (Section VI). We then present
our augmented compiler that implements fine-grained code
randomization and code-pointer hiding (Section VII). Finally,
in Section VIII we explain how we extended our approach to
also protect just-in-time compiled code.

VI. READACTOR – EXECUTE-ONLY MEMORY

Enforcing execute-only memory for all executable code is
one of the key components of our system. Below we discuss
the challenges of implementing hardware enforced execute-only
memory on the x86 architecture.

A. Extended Page Tables

The x86 architecture provides two hardware mechanisms to
enforce memory protection: segmentation and paging. Segmen-
tation is a legacy feature and is fully supported only in 32-bit
mode. In contrast, paging is used by modern operating systems
to enforce memory protection. While modern x86 CPUs include
a permission to mark memory as non-executable [4, 35], it
used to be impossible to mark memory as executable and non-
readable at the same time. This changed in late 2008 when
Intel introduced a new virtualization feature called Extended
Page Tables (EPTs) [35]. Modern AMD processors contain a
similar feature called Rapid Virtualization Indexing.

Readactor uses EPTs to enforce execute-only page per-
missions in hardware. EPTs add an additional abstraction
layer during the memory translation. Just as standard paging
translates virtual memory addresses to physical addresses, EPTs
translate the physical addresses of a virtual machine (VM)—the
so-called guest physical memory—to real physical addresses
or host physical memory. The access permissions of each
page are enforced during the respective translations. Hence,
the final permission is determined by the intersection of the
permissions of both translations. EPTs conveniently allow us
to enforce (non-)readable, (non-)writable, and (non-)executable
memory permissions independently, thereby enabling efficient
enforcement of execute-only code pages.

Figure 4 shows the role of the page table and the EPT during
the translation from a virtual page to a host physical page. In
this example, the loaded application consists of two pages: a
code page, marked execute-only, and a data page marked as
readable and writable. These page permissions are set by the

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 26

Trampoline for Calls

Legacy Application Readacted Application
Data page (read-write)

Indirect disclosure possible Adversary

vTable:
vTable pointer
…

C++ object:
Function pointer
…

Method_A:
asm_ins
asm_ins

Function_B:
asm_ins
asm_ins

Code page (read-execute) Data page (read-write)

vTable:
vTable_trampoline
…

C++ object:
funcPtr_trampoline
…

Method_A:
asm_ins
asm_ins

Function_B:
asm_ins
asm_ins

Diversified
Code page (execute-only)

Trampolines:
JUMP Method_A
JUMP …
JUMP Function_B

Read access prevented
by Readactor

Data reference to code
Code reference to code

Figure 7: Hiding code pointers stored in the heap and in C++ vtables. Without Readactor, pointers to functions and methods may
leak (left). With Readactor, only pointers to jump trampolines may leak and the layouts of functions and jump trampolines are
randomized (right).

Legacy Application Readacted Application

Stack page (read-write)

Indirect disclosure possible Adversary

Read access prevented
by Readactor

Return_addr_1

Return_addr_2

CALL Method_A
call_site_1:

CALL Function_B
call_site_2:

Code page (read-execute) Stack page (read-write)

Ret_trampoline_1

Ret_trampoline_2

JUMP Function_B_tramp
call_site_2:

JUMP Method_A_tramp
call_site_1:

Diversified
Code page (execute-only)

Trampolines:
CALL Method_A
JUMP call_site_1
CALL Function_B
JUMP call_site_2

Data reference to code
Code reference to code

Figure 8: Hiding return addresses stored on the machine stack. Without Readactor, each activation frame on the stack leaks the
location of a function (left). With Readactor, calls go through call trampolines so the return addresses pushed on the stack can
only leak trampoline locations – not return sites (right).

compilers implement efficient exception handling by generating
an exception handling (EH) table that informs the unwinding
routine of the stack contents. These data tables are stored in
readable memory during execution and contain the range of
code addresses for each function and the information to unwind
each stack frame. During stack unwinding, the C++ runtime
library locates the exception handling entry for each return
address encountered on the stack. Since our call trampolines
push the address of a trampoline onto the stack rather than the
real return address, the runtime will try to locate the address
of the call trampoline in the exception handling tables. Hence,
we need to replace the real function bounds in the EH table
with the bounds of the trampolines for that function.

Our prototype compiler implementation does not rewrite the
EH table to refer to trampolines; however, doing so is merely a
matter of engineering effort. No aspect of our approach prevents
us from correctly supporting C++ exception handling. We
found that disabling C++ exception handling was not a critical

limitation in practice, since many C++ projects, including
Chromium, choose not to use C++ exceptions for performance
or compatibility reasons.

Handwritten assembly routines are occasionally used to
optimize performance critical program sections where standard
C/C++ code is insufficient. To prevent this assembly code from
leaking code pointers to the stack, we can rewrite it to use
trampolines at all call sites. Additionally, we can guarantee
that no code pointers are stored into readable memory from
assembly code. Our current implementation does not perform
such analysis and rewriting of handwritten assembly code but
again, doing so would involve no additional research.

While code pointers are hidden from adversaries, trampoline
pointers are stored in readable memory as shown on the right-
hand sides of Figures 7 and 8. Therefore, we must carefully
consider whether leaked trampoline pointers are useful to
adversaries. If the layout of trampolines is correlated with
the function layout, knowing the trampoline pointers informs

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 27

Trampoline for Returns

Legacy Application Readacted Application
Data page (read-write)

Indirect disclosure possible Adversary

vTable:
vTable pointer
…

C++ object:
Function pointer
…

Method_A:
asm_ins
asm_ins

Function_B:
asm_ins
asm_ins

Code page (read-execute) Data page (read-write)

vTable:
vTable_trampoline
…

C++ object:
funcPtr_trampoline
…

Method_A:
asm_ins
asm_ins

Function_B:
asm_ins
asm_ins

Diversified
Code page (execute-only)

Trampolines:
JUMP Method_A
JUMP …
JUMP Function_B

Read access prevented
by Readactor

Data reference to code
Code reference to code

Figure 7: Hiding code pointers stored in the heap and in C++ vtables. Without Readactor, pointers to functions and methods may
leak (left). With Readactor, only pointers to jump trampolines may leak and the layouts of functions and jump trampolines are
randomized (right).

Legacy Application Readacted Application

Stack page (read-write)

Indirect disclosure possible Adversary

Read access prevented
by Readactor

Return_addr_1

Return_addr_2

CALL Method_A
call_site_1:

CALL Function_B
call_site_2:

Code page (read-execute) Stack page (read-write)

Ret_trampoline_1

Ret_trampoline_2

JUMP Function_B_tramp
call_site_2:

JUMP Method_A_tramp
call_site_1:

Diversified
Code page (execute-only)

Trampolines:
CALL Method_A
JUMP call_site_1
CALL Function_B
JUMP call_site_2

Data reference to code
Code reference to code

Figure 8: Hiding return addresses stored on the machine stack. Without Readactor, each activation frame on the stack leaks the
location of a function (left). With Readactor, calls go through call trampolines so the return addresses pushed on the stack can
only leak trampoline locations – not return sites (right).

compilers implement efficient exception handling by generating
an exception handling (EH) table that informs the unwinding
routine of the stack contents. These data tables are stored in
readable memory during execution and contain the range of
code addresses for each function and the information to unwind
each stack frame. During stack unwinding, the C++ runtime
library locates the exception handling entry for each return
address encountered on the stack. Since our call trampolines
push the address of a trampoline onto the stack rather than the
real return address, the runtime will try to locate the address
of the call trampoline in the exception handling tables. Hence,
we need to replace the real function bounds in the EH table
with the bounds of the trampolines for that function.

Our prototype compiler implementation does not rewrite the
EH table to refer to trampolines; however, doing so is merely a
matter of engineering effort. No aspect of our approach prevents
us from correctly supporting C++ exception handling. We
found that disabling C++ exception handling was not a critical

limitation in practice, since many C++ projects, including
Chromium, choose not to use C++ exceptions for performance
or compatibility reasons.

Handwritten assembly routines are occasionally used to
optimize performance critical program sections where standard
C/C++ code is insufficient. To prevent this assembly code from
leaking code pointers to the stack, we can rewrite it to use
trampolines at all call sites. Additionally, we can guarantee
that no code pointers are stored into readable memory from
assembly code. Our current implementation does not perform
such analysis and rewriting of handwritten assembly code but
again, doing so would involve no additional research.

While code pointers are hidden from adversaries, trampoline
pointers are stored in readable memory as shown on the right-
hand sides of Figures 7 and 8. Therefore, we must carefully
consider whether leaked trampoline pointers are useful to
adversaries. If the layout of trampolines is correlated with
the function layout, knowing the trampoline pointers informs

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 28

Readactor Limitations

•  Are there any limitations for the Readactor approach?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 29

Other Forms of Diversity

•  N-version programming

‣  Run multiple versions of same program – presumably with
different flaws

•  Moving target defense

‣  Change the system configuration incrementally (IP addrs)

‣  After N time units or when under attack

•  Deception

‣  Build false versions of legitimate behaviors (honeypot)

‣  Build inconsistent versions of legitimate behaviors

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 30

Inconsistent Syscall Behavior

•  Hypothesis: malware is more sensitive to inconsistent

system call behavior than normal software

•  Experiment

‣  Vary execution of some system calls

‣  Not all can be varied without breaking programs

•  Strategies

‣  Silence system calls (return bogus value)

‣  Change response size or some bytes of file offset

‣  Change delays

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 31

Inconsistent Syscall Behavior

•  Hypothesis: malware is more

sensitive to inconsistent
system call behavior than
normal software

•  Experimental Results

‣  Malware behavior degraded
performance

‣  Only want to apply to
unknown software

low benign code to run. We found that the following
system calls are critical to process start-up and execu-
tion, and cannot be easily varied: fstat(), getuid(),
ioperm(), set thread area(), and mprotect(). In
other cases, perturbing system call parameters leads
to non-fatal deviations. For instance, decreasing the
length of a write() will cause a keylogger to lose
keystrokes, silencing a send() might cause a process
to fail sending an e-mail, and extending the time of a
nanosleep() will just slow down a process. We try to
balance risks to benign processes with harm to malware
through an experimentally-determined unpredictability
threshold, which bounds the amount of unexpected vari-
ation in system call behavior.

We studied these strategies for spectrum behavior:
Strategy 1: Silence the system call: we immedi-

ately return a fabricated value upon system call invo-
cation. This strategy only succeeds when subsequent
system calls are not highly dependent on the silenced
action. For example, this strategy worked for read()
and write(), but not on open(), where a subsequent
read() or write() would fail.

Strategy 2: Change bu↵er bytes: we randomly
change some bytes or shorten the length of a bu↵er
passed to a system call, such as read(), write(),
send() and recv(). This strategy corrupts execution
of some scripts, and can frustrate attempts to read or ex-
filtrate sensitive data.

Strategy 3: Add more wait time: the goal of this
strategy is to slow down a questionable process, for ex-
ample rate-limiting network attacks. We randomly in-
crease the time a nanosleep() call yields the CPU.

Strategy 4: Change file o↵set: this approach simu-
lates file corruption by randomly changing the o↵set in a
file descriptor between read()s and write()s.

We first applied unpredictability to the Linux Keylog-
ger (LKL) [60], a user-space keylogger, using strategies
1, 2 and 4. The keylogger not only lost valid keystrokes
but also had some noise data added to the log file.

Next we applied unpredictability to the BotNET [61]
malware, which is mainly a communication library for
the IRC protocol that was refined to add spam and SYN-
flood capabilities. We used the IRC client platform
irssi [62] to configure the botnet architecture with a bot
herder, bots and victims. The unpredictable strategies
were applied to one of the bots.

We first tested commands that successfully reached the
bot, such as adduser, deluser, list, access, memo,
sendMail and part. The bot reads commands one byte
at a time, and one lost byte will cause a command to fail.
Randomly silencing a subset of read() system calls in
our unpredictable environment results in losing 40% of
the commands from the bot herder.

We measured the impact of the unpredictable environ-

Figure 1: Comparison of email bytes sent from bots in
predictable and unpredictable environments.

Figure 2: Comparison of SYN-flood attacks in standard
and unpredictable environments. Unpredictability can
increase the DDoS resource requirements.

ment on the ability of the bot to send spam emails, shown
in Figure 1. In the normal environment, nine emails
varying in length from 10 to 90 bytes were successfully
sent. In the unpredictable environment only partial ran-
dom bytes were sent out by arbitrarily reducing the bu↵er
size of send() in the bot process. In the case of a spam
bot, truncated emails will streamline the filtering process,
not only for automatic filters, but also for the end users.

We also performed a SYN-flood attack to analyze the
e↵ectiveness of the unpredictable environment in miti-
gating DDoS attacks. In a standard environment, one
client can bring down a server in one minute with SYN
packets. When we set the unpredictability threshold to
70% and applied strategies 1 and 3, the rate of SYN pack-
ets arriving at the victim server decreased (Figure 2), re-
quiring two additional bots to achieve the same outcome.

Preliminary tests with Thunderbird, Firefox and Skype
running in the unpredictable environment showed that
these applications can run normally most of the time, oc-
casionally showing warnings, and with some functional-
ities temporarily unavailable.

4 Spectrum-Behavior OS

Chameleon combines inconsistent and consistent decep-
tion with software diversity for active defense of com-

4

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 32

Take Away

•  Memory errors are the classic vulnerabilities in C

programs (buffer overflow)

‣  Despite years of exploration into defenses a Turing-
complete approach to exploitation remains given an
appropriate memory error (return-oriented programming)

•  ASLR has been suggested as the way to block
memory attacks, such as ROP

‣  May be victimized by disclosure attacks

‣  Readactor aims to eliminate disclosure

•  Alternatives, such as deception, could be applied

