\ Systems and Internet
‘ Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

Advanced Systems Security:
Program Diversity

Trent Jaeger
Systems and Internet Infrastructure Security (S11S) Lab
Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 1

PENNSTATE

Anatomy of Control Flow Attacks g

e Two steps

o First, the attacker changes the control
flow of the program s

mmmmmm

» In buffer overflow, overwrite the return
address on the stack

sssss
cccccc

|||||||||||

e Second, the attacker uses this change to
run code of their choice

» In buffer overflow, inject code on stack

» Or use existing code in ROP attack

o CFIl prevents exploitation (incomplete)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 2

PENNSTATE

Anatomy of Control Flow Attacks g

e Two steps

o First, the attacker changes the control
flow of the program s

mmmmmm
vvvvvvvvvvv

» In buffer overflow, overwrite the return
address on the stack

sssss
cccccc

|||||||||||

e Second, the attacker uses this change to
run code of their choice

Fibula

» In buffer overflow, inject code on stack

» Or use existing code in ROP attack

e Another way to prevent both!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 3

PENNSTATE

Apply Crypto to Code =

e Can we randomize the program’s execution in such
a way that an adversary cannot select gadgets!?

e Given a secret key and a program address space,
encrypt the address space such that

» the probability that an adversary can locate a particular
instruction (start of gadget or flawed code) is sufficiently
low

» and the program still runs correctly and efficiently

e Called address space randomization

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 4

PENNSTATE

|_Zive)

e Move the code and data so that you
cannot predict where gadgets will be

» What is the best way to make ¢
unpredictable?

» What is the easiest way to make T
unpredictable?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 5

PENNSTATE

|_Zive)

e Move the code and data so that you
cannot predict where gadgets will be

» What is the best way to make ¢
unpredictable?

e Randomize code and data location for each T
instruction and variable

» What is the easiest way to make
unpredictable?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 6

PENNSTATE

|_Zive)

e Move the code and data so that you
cannot predict where gadgets will be

» What is the best way to make ¢
unpredictable?

e Randomize code and data location for each T
instruction and variable

» What is the easiest way to make
unpredictable?

e Just move the base address of the segment

e Called Address Space Layout Randomization

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 7

PENNSTATE

ASLR Impact =

e How does it prevent exploitation of

attacks?

e Suppose you find a buffer overflow ¢
flaw
» You insert shellcode onto the stack T

» And jump to the stack address

e With ASLR on the stack segment

» Cannot predict the target stack address

» Can you overflow return address!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 8

ASLR Impact e

e How does it prevent finding of attacks?

e Suppose you find a heap overflow flaw ¢

» You want to modify a function pointer
e At known offset — oops, still works T

e At unknown offset — cannot predict

e With ASLR on the heap segment

» Cannot predict absolute addresses

» Why not!

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 9

ASLR Impact -

e How does it prevent exploitation of

attacks?

e Suppose you find a buffer overflow ¢
flaw
» You launch an ROP attack T

» And jump to the code address of first
gadget

e With ASLR on the code segment

» Cannot predict the target code address

» Why not?

Systems and Internet Infrastructure Security (SIIS) Laboratory

Relationship to DEP pENN%TE

e ASLR is a complementary defense relative to DEP/CFI
e DEP restricts what may be executed as code
e CFl restricts control flow paths that may be executed

e ASLR prevents some memory attacks
» Absolute writes over memory (e.g., global)

» Relative writes are still possible

e Also, ASLR makes gadgets harder to find

Systems and Internet Infrastructure Security (SIIS) Laboratory

What Makes Good ASLR? PENN%TE

e Symantec paper investigates ASLR in Windows

e What are choices regarding ASLR use!

Systems and Internet Infrastructure Security (SIIS) Laboratory

What Makes Good ASLR? PENN%TE

e Symantec paper investigates ASLR in Windows

e What are choices regarding ASLR use!

» How many offsets!?
e Limits?

e Impact on libraries?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 13

What Makes Good ASLR? PENN%TE

e Symantec paper investigates ASLR in Windows

e What are choices regarding ASLR use!
» How many offsets!?
e Limits?
e Impact on libraries?
» Distribution?

e Impact of an uneven distribution?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 14

What Makes Good ASLR? PENN%TE

e Symantec paper investigates ASLR in Windows

e What are choices regarding ASLR use!
» How many offsets!?
e Limits!?
e Impact on libraries?
» Distribution!?
e Impact of an uneven distribution?
» Sequence!

e What should the next offset be!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 15

PENNSTATE

|_Zive)

e How would you attack ASLR?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 16

PENNSTATE

Memory Disclosure Attacks =

e What is the risk to ASLR?

» Memory Disclosure

e Consider a buffer overread

» E.g., Heartbleed

e Instead of reading a key value

» What would you read to attack ASLR?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Direct Disclosure >

e Adversary is able to directly read code pointers from

code pages
Code page 1 Code page 2 Code page 3
JMP! label le—
""" g _Lblabel:

asm_ins Func_A:
asm_ins asm_ins
ce- asm_ins

Direct _‘_ L

disclosure | CALL{Func_A ie

% Adversary

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 18

PENNSTATE

Indirect Disclosure 5

e Adversary harvests code pointers stored on the data
pages of the application that are necessarily readable

Adversary
Data pages

Indirect ———————*|Function pointer 2f-----------------

y
disclosure Sl b c

»Return address [1
———»|Function pointer 1| -,

[0 Readable-writable : <71

! Code pages !

[0 Readable-executable Stack / Heap : bag !

: :

| |

| |

| |

| |

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 19

PENNSTATE

Fine-Grained Randomization =

e Can we make harvesting more difficult with fine-
grained randomization of code and data!

» Yes, but at a significant cost

e E.g., cache locality is completely lost

e See, P. Larsen, A. Homescu, S. Brunthaler, and M.
Franz. SoK: Automated software diversity. In 35th
|IEEE Symposium on Security and Privacy, S&P, 2014.

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Other Alternatives S

e Prevent read access to code pages that are not
currently executing

» Prevents only direct disclosures

e Adversary can bypass this countermeasures using
indirect disclosures

» E.g., virtual tables for C++

» Doing disassembly on the fly

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 21

PENNSTATE

Readactor Solution S

e To prevent attacks based on direct disclosure,

» Leverage virtualization capabilities in commodity x86
processors to map code pages with execute-only
permissions at all times

e To prevent attacks based on indirect disclosure,

» Hide the targets of all function pointers and return
addresses

e Use compiler-based solution to obtain more precise
control-flow information for indirect targets

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 22

PENNSTATE

Memory Management S

e Readacted applications use virtualization hardware to
map pages differently than legacy applications

» Can work together, however

Readacted App Legacy App

Code Data Code | Data
Pages | Pages || Pages | Pages

Operating
System
]
v Hypervisor vy
Readacted Normal
mapping mapping
Processor ¥ \
E.E MMU Access
Violations

[OReadable-executable
[JReadable-writable [Execute-only

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 23

PENNSTATE

Memory Management S

e See difference between how code and data pages are
mapped

» Why does this prevent direct disclosure?

Guest :[________ﬂ} Host
_________ Physical | EPT | Physical
Virtual | Page | Memory 3 i Memory
| | = .

Memory L-.-@Ple___: Page 1 : exgzyte | Page 1
CODE I read- J i_ y I
Page 1 | execute | AT

Page 2 7 I_r fi’i”_"fr_’ fe_{_'» Page 2 —»iread—writel—» Page 2
o
! I
e |

Figure 4: Relation between virtual, guest physical, and host
physical memory. Page tables and the EPT contain the access
permissions that are enforced during the address translation.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 24

PENNSTATE

Trampoline =

e Point function pointers and return addresses (indirect
control transfers) to trampoline code

Data pages (readable-writeable) = Code page (execute-only) Code page (execute-only)

Function pointer 1y - Readac‘tor —»{Function A:
! Trampolines asm_ins
! f) asm_ins

Return address o --}-

——|p|Trampoline A <

JUMP Trampoline B
—>|Call_Site_B:

1

|

| \ J
| - _
|

---r» Trampoline B «

Stack / Heap

\L J/

> - -

i___» Datareferencetocode * L Code reference to code

e Works because the trampoline layout is not
correlated with the layout of functions

e l.e, trampoline addresses do not leak information
about non-trampoline code

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 25

PENNSTATE

Trampoline for Calls S

Legacy Application Readacted Application

Diversified
Data page (read-write) Code page (read-execute) Data page (read-write) Code page (execute-only)
O s N\ .
vTable: i ™ Method_A: vTable: Function_B: <
vTable pointer ¢+ -- asm_ins vTable_trampoline +~1---1 asm_ins
asm_ins asm_ins

L)

f.— N (N .
C++ object: - -1» Function_B: C++ object: Method_A: <
Function pointer | -- asm_ins funcPtr_trampoline - } - asm_ins

asm_ins asm_ins

L)

A

.

Trampolines:
-p{ JUMP Method_A 1
JUMP ...
----p{JUMP Function_B

!

Figure 7: Hiding code pointers stored in the heap and in C++ vtables. Without Readactor, pointers to functions and methods may
leak (left). With Readactor, only pointers to jump trampolines may leak and the layouts of functions and jump trampolines are
randomized (right).

T

Indirect disclosure possible Adversary

-~————

- » Data reference to code

*— L, Code reference to code

Read access prevented
by Readactor

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 26

PENNSTATE

Trampoline for Returns =

Legacy Application Readacted Application

Diversified

Stack page (read-write) Code page (read-execute) Stack page (read-write) Code page (execute-only)

Return_addr_1 CALL Method_A
1- -1 call_site_1:
CALL Function_B
Return_addr_2 = -] call_site_2:

A

N

JUMP Function_B_tramp
call_site_2: <

Ret_trampoline_1 F—-=

. J

—{JUMP Method_A_tramp

I
1
1
1
:
. I
Ret_trampoline_2 P call_site 1: <—
I
I
I
I
I
I
I
1

. J

Trampolines:
> CALL Method_A
>

Indirect disclosure possible Adversary 1T *c’;li'\li'f lfl‘j‘r':&sigﬁ—é
7 | ---e-- L > JUMP call_site_2
* =~ ___ Data reference to code Read access prevented > g
*— L Code reference to code by Readactor *

Figure 8: Hiding return addresses stored on the machine stack. Without Readactor, each activation frame on the stack leaks the
location of a function (left). With Readactor, calls go through call trampolines so the return addresses pushed on the stack can
only leak trampoline locations — not return sites (right).

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 27

PENNSTATE

Readactor Limitations =

e Are there any limitations for the Readactor approach?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 28

PENNSTATE

Other Forms of Diversity S

e N-version programming

» Run multiple versions of same program — presumably with
different flaws

e Moving target defense
» Change the system configuration incrementally (IP addrs)
» After N time units or when under attack

e Deception
» Build false versions of legitimate behaviors (honeypot)

» Build inconsistent versions of legitimate behaviors

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 29

PENNSTATE

Inconsistent Syscall Behavior P

e Hypothesis: malware is more sensitive to inconsistent
system call behavior than normal software

e Experiment

» Vary execution of some system calls

» Not all can be varied without breaking programs
e Strategies

» Silence system calls (return bogus value)

» Change response size or some bytes of file offset

» Change delays

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 30

PENNSTATE

Inconsistent Syscall Behavior P

e Hypothesis: malware is more
sensitive to inconsistent

system call behavior than
normal software

e Experimental Results T

Figure 1: Comparison of email bytes sent from bots in
predictable and unpredictable environments.

» Malware behavior degraded
performance e

h N
N 2 w

Number of SYN Per Attack
-
o

e
) 2] -

» Only want to apply to
unknown software

Figure 2: Comparison of SYN-flood attacks in standard
and unpredictable environments. Unpredictability can
increase the DDoS resource requirements.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 31

PENNSTATE

Take Away =

e Memory errors are the classic vulnerabilities in C
programs (buffer overflow)

» Despite years of exploration into defenses a Turing-
complete approach to exploitation remains given an
appropriate memory error (return-oriented programming)

e ASLR has been suggested as the way to block
memory attacks, such as ROP

» May be victimized by disclosure attacks

» Readactor aims to eliminate disclosure

e Alternatives, such as deception, could be applied

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 32

