
Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page
 1

Advanced Systems Security:�
Confused Deputy

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Talk Outline

•  Problem: Processes need resources from system

‣  Just a simple open(filename, …) right?

‣  But, adversaries can redirect victims to resources of their choosing

2

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

A Webserver’s Story …

•  Consider a university department webserver …
GET /~student1/index.html HTTP/1.1

Apache
Webserver

student2/
public_html

student1/
public_html

faculty1/
public_html

/etc/
passwd

Link

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Attack Video

4

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page
Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

What Just Happened?

Webserver

Password
File

Web Pages

Authenticate

Passwd
File

Web PagesAuthenticate

OK Not
OK

Passwd
File

Web PagesServe
Webpage

OK
Not
OK

•  Program acts as a confused deputy

‣  when expecting

‣  when expecting

Serve
Webpage

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Name Resolution

•  Processes often use names to obtain access to

system resources

•  A nameserver (e.g.,OS) performs name resolution using
namespace bindings (e.g., directory) to convert a name
(e.g., filename) into a system resource (e.g., file)

‣  Filesystem, System V IPC, …

6

/ var mail rootP open(“/var/
mail/root”)

Name
(filename) Bindings (directories)

Resource
(file)

Namespace (filesystem)

/ var mail root

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

mailvar

Link Traversal Attack

•  Adversary controls bindings to direct a victim to a
resource not normally accessible to the adversary

•  Victim expects adversary-accessible resource, gets a
protected resource instead

‣  May take advantage of race conditions (TOCTTOU attacks)

7

open(“/var/
mail/root”) / rootvar mailvar mail/

etc passwdpasswd

rootrootVroot

Amail

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

TOCTTOU Attacks

•  Time-of-check-to-time-of-use Attack

•  Check System Call

‣  Does the requesting party have access to the file? (stat,
access)

‣  Is the file accessed via a symbolic link? (lstat)

•  Use System Call

‣  Convert the file name to a file descriptor (open)

‣  Modify the file metadata (chown, chmod)

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

File Squatting Attack

•  Adversary controls final resource enabling the
adversary to control input that the victim may
depend on

•  Victim expects protected resource, gets an
adversary-controlled resource instead

9

mailvaropen(“/var/
mail/root”) / rootvar mailvar mail/ root

owner root owner mail

root

Amail

Vroot

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Talk Outline

•  Problem: Processes need resources from system

‣  Adversaries can redirect victims to resources chosen by adversary

‣  Adversaries may control names, namespaces, and resources

•  Goal: Protect program during resource retrieval

‣  Enforce rules to prevent retrieval of obviously exploitable resources

‣  Deduce adversary control automatically to guide enforcement

•  Status:

‣  Enforce: Process Firewall kernel mechanism [EuroSys 2013]

‣  Deduce: Enforce relative to program control of “name flows” [submitted]

‣  Background work: [ASIACCS 2012], [USENIX Security 2012], [SACMAT 2014]

10
Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Vulnerability Classes
• Our focus is on a group of vulnerabilities that

happen when programs access resources

• Programs require a variety of resources to function

‣ Regular files: store input and output

‣ Interprocess communication channels

‣ Signals: notifications from OS

• How hard can fetching resources securely be?

‣ Just a simple open(filename), right?

‣ Wrong!

3
Wednesday, April 23, 14

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• Adversary controls the name to direct victim to an
adversary inaccessible (high integrity) resource

GET
1.html

Directory Traversal

9

V: Apache
Webserver

A

passwd

1.html

Wednesday, April 23, 14

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Talk Outline

•  Problem: Processes need resources from system

‣  Adversaries can redirect victims to resources chosen by adversary

‣  Adversaries may control names, namespaces, and resources

•  Goal: Protect program during resource retrieval

‣  Enforce rules to prevent retrieval of obviously exploitable resources

‣  Deduce adversary control automatically to guide enforcement

•  Status:

‣  Enforce: Process Firewall kernel mechanism [EuroSys 2013]

‣  Deduce: Enforce relative to program control of “name flows” [submitted]

‣  Background work: [ASIACCS 2012], [USENIX Security 2012], [SACMAT 2014]

11
Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Vulnerability Classes
• Our focus is on a group of vulnerabilities that

happen when programs access resources

• Programs require a variety of resources to function

‣ Regular files: store input and output

‣ Interprocess communication channels

‣ Signals: notifications from OS

• How hard can fetching resources securely be?

‣ Just a simple open(filename), right?

‣ Wrong!

3
Wednesday, April 23, 14

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• Adversary controls the name to direct victim to an
adversary inaccessible (high integrity) resource

• Victim expects adversary accessible (low integrity)
resource

Directory Traversal

9

V: Apache
Webserver

A

passwd

1.html

GET
../../

etc/passwd

Malicious
Name

Wednesday, April 23, 14

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Confused Deputy Attacks

12

Untrusted Search
Path

CWE-426

Untrusted Library
Load

CWE-426

File / IPC
squatting
CWE-283

Directory Traversal
CWE-22

PHP File Inclusion
CWE-98

Link Following
CWE-59

TOCTTOU Races
CWE-362

Signal Races
CWE-479

Confused
Deputy
Attacks

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Prevalence

13

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Talk Outline

•  Problem: Processes need resources from system

14
CSE543 - Introduction to Computer and Network Security Page

Integrity (and Secrecy) Threat
• Confused Deputy
‣ Process is tricked into performing an operation on

an adversary’s behalf that the adversary could not
perform on their own
• Write to (read from) a privileged file

�X

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Attacks Easily Overlooked

•  Manual checks can
easily overlook
vulnerabilities

•  Misses file squat at
line 03!

15

01 /* filename = /var/mail/root */
02 /* First, check if file already exists */
03 fd = open (filename, flg);
04 if (fd == -1) {
05 /* Create the file */
06 fd = open(filename, O_CREAT|O_EXCL);
07 if (fd < 0) {
08 return errno;
09 }
10 }
11 /* We now have a file. Make sure
12 we did not open a symlink. */
13 struct stat fdbuf, filebuf;
14 if (fstat (fd, &fdbuf) == -1)
15 return errno;
16 if (lstat (filename, &filebuf) == -1)
17 return errno;
18 /* Now check if file and fd reference the same file,
19 file only has one link, file is plain file. */
20 if ((fdbuf.st_dev != filebuf.st_dev
21 || fdbuf.st_ino != filebuf.st_ino
22 || fdbuf.st_nlink != 1
23 || filebuf.st_nlink != 1
24 || (fdbuf.st_mode & S_IFMT) != S_IFREG)) {
25 error (_("%s must be a plain file
26 with one link"), filename);
27 close (fd);
28 return EINVAL;
29 }
30 /* If we get here, all checks passed.
31 Start using the file */
32 read(fd, ...)

Squat during
create (resource)

Symbolic link

Hard link,
race conditions

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Mandatory Access Control

•  Does MAC solve this problem?

‣  What does SELinux say?

16

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Prior Work - Defenses

•  TOCTTOU Attack known since 1973 at least

•  Proven impractical to produce system-only defenses

•  Track file metadata

‣  Leverage extended POSIX API (fstat, lstat) to track name resolution

•  Cowan, Dean-Hu, Tsafrir, …

•  Track system calls

‣  Maintain a table of past system calls to detect when an unexpected
resource is retrieved

•  Tsyrklevich-Yee, Calvin Ko, …

•  All were shown to be flawed

17

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Prior Work - Defenses

•  Cai et al 2009 demonstrated that system-only

defenses

‣  “all kernel-based dynamic race detectors must have a model
of the programs they protect or provide imperfect
protection.”

•  Consider the “atom race” defenses
‣  Calls lstat(2), access(2), open(2), fstat(2) for k rounds

‣  Can be circumvented by ‒ sLaAsOF (LaAsOFC)k

•  Where a represents the attacker’s action of switching the atom to
point to an accessible file, and s represents the act of switching atom
to point to the secret file

18

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Runtime Analysis

•  Run program and detect system call

sequences that may be vulnerable

•  Still, many false positives
‣  Program code might defend itself

‣  And may be inaccessible to adversaries

•  In our study, “only” 13% of adversary-
accessible name resolutions are vulnerable

•  False negatives
‣  Attacks require special conditions

•  Current working directory, links, …

19

01 /* filename = /var/mail/root */
02 /* First, check if file already exists */
03 fd = open (filename, flg);
04 if (fd == -1) {
05 /* Create the file */
06 fd = open(filename, O_CREAT|O_EXCL);
07 if (fd < 0) {
08 return errno;
09 }
10 }
11 /* We now have a file. Make sure
12 we did not open a symlink. */
13 struct stat fdbuf, filebuf;
14 if (fstat (fd, &fdbuf) == -1)
15 return errno;
16 if (lstat (filename, &filebuf) == -1)
17 return errno;
18 /* Now check if file and fd reference the same file,
19 file only has one link, file is plain file. */
20 if ((fdbuf.st_dev != filebuf.st_dev
21 || fdbuf.st_ino != filebuf.st_ino
22 || fdbuf.st_nlink != 1
23 || filebuf.st_nlink != 1
24 || (fdbuf.st_mode & S_IFMT) != S_IFREG)) {
25 error (_("%s must be a plain file
26 with one link"), filename);
27 close (fd);
28 return EINVAL;
29 }
30 /* If we get here, all checks passed.
31 Start using the file */
32 read(fd, ...)

???

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

STING [USENIX 2012]

•  We actively change the namespace whenever an

adversary can write to a binding used in resolution

‣  Fundamental problem: adversaries may be able to write
directories used in name resolution

•  Use adversary model to identify program
adversaries and vulnerable directories [ASIACCS 2012]

21

V
Detect

Adversary
Access

Detect
Exploit
Success

open(name, …)
fd to /etc/passwd

read(fd, …)
Using malicious fd

Vulnerable!

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

root

STING Launch Phase

22

Adversary
(group mail)

fd = open(“/var/mail/root”, O_APPEND)

/

var

root
(symbolic link)

etc

passwd

mail

Victim
(user root)

User-space

Kernel

4.	Con'nue	system	call	

delete(“/var/mail/root”);
symlink(“/etc/passwd”,

“/var/mail/root”)

1.	Find	bindings	
2.	Find	adversary	access	
3.	Launch	a=ack		
(modify	namespace)	

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

root

STING Detect Phase

23

write(fd)

/

var

root
(symbolic link)

passwd

etc

passwd

mail

Victim
(user root)

User-space

Kernel

1.	Vic'm	accepts	resource	
2.	Record	vulnerability	
3.	Rollback	namespace	
4.	Restart	system	call	

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

STING Detects TOCTTOU Races

•  STING can deterministically create races, as it is
in the OS

27

AdversaryVictim

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Results - Vulnerabilities

28

Both old
and new
programs
Special

users to
root

Known
but

unfixed!

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Program Defense

•  Check for symbolic link

(lstat)

•  Check for lstat-open race

•  Check for inode recycling

•  Do checks for each path
component (safe_open)

‣  /, var, mail, …

•  Cai et al found that races
can be won > 50% of time

‣  E.g., long sequence of symlinks
41

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Safe Open - Inefficient

•  Checking retrieved resources is expensive
‣  Single open() requires 4 * path length additional syscalls

‣  Programmers omit checks to improve performance

•  Example: Apache documentation recommends switching off
resource access checks

42

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Deployment

Cause - Multiple Parties

46

ProgrammerAdministrator OS distributor

CodeConfiguration Access Control
Policy

??? ???

open(config_file)
open(html_file)
open(tmp_file) mismatch

mismatch

Expectations mismatch, blame each other

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Solution Overview

•  Match programmer expectation onto system

‣  Irrespective of OS access control or admin
configuration

‣  If programmer expects to access only , then
they should not access

•  Unexpected attack surface

‣  If programmer expects , then they should
not access

•  Classic confused deputy

47

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Solution Overview

•  {P} - System calls where programmer expects adversary control

•  {S} - System calls in deployment that adversaries actually control

•  {R} - System calls in deployment that retrieve adversary-
accessible resources

•  When programmer expects no adversary control, block
adversary-controlled system calls

‣  Prevent unexpected adversary control:

•  When adversary control happens, limit adversary to accessible
resources:

‣  Prevent confused deputy: for all x, if x in S à x in R

48

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

To Find Mismatches

•  Need a model that describes

‣  How a program performs resource access.

•  How do programs build names, bindings?

‣  What are programmer expectations for resource access?

•  If they expect adversary access to names, bindings: protect

•  If not: do nothing J

50

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Programmer Expectations

•  Can we determine where a programmer expects adversarial

control of resource access?

•  Strawman solution

‣  Ask programmers to add annotations in code

•  Insight: There are already annotations (sort of) --

‣  Filters (defensive code)!

51

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

•  Write
defensive
checks (filters)
to protect
resource
accesses
‣  Name filters

‣  Binding filters

Resource Access Filters

52

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Filters as Annotations

•  Heuristic: If programmer expects adversarial control of

resource access, she will add name/binding filters

‣  Corollary: No filter access only

53

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Determine P from filters

•  No filter not in expected attack surface P

•  If no binding filter

•  If no name filter on an outgoing name flow

•  If a resource access not in P is reachable

•  Any remaining resource accesses are in P

56

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Runtime Mismatches

58

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Develop a system defense that blocks processes
from using permissions that lead to exploit

Design Goals

•  Should not require programmer code changes

•  Should be capable of protecting processes with
resource access vulnerabilities

•  Should be efficient (faster than in program)

•  Should be possible to configure policies
automatically with no false positives

60

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

No Program Change

How do we block attacks without changing program?

61

File

Dir

IPC

Access
Control

Signal

OPERATING SYSTEM USERSPACE

Passwd

✔Students

Check
Passwd

�
Serve
HTML

File.edu
webserver

/home/
student/
home.html

Process
Firewall

✗

??? ???

System defense that blocks unsafe resources

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Identify System Call

How do we distinguish different system calls?

62

File

Dir

IPC

Access
Control

Signal

OPERATING SYSTEM USERSPACE

Passwd

✔Students

Check
Passwd

�
Serve
HTML

File.edu
webserver

/home/
student/
home.html

Process
Firewall

✗

Introspect

Process Context: Entrypoint, Call Stack, etc.

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Process Introspection

•  Why can we introspect into the process?

‣  What about mimicry attacks (on IDS)?

•  The Process Firewall protects victim processes instead of
confining adversary processes

•  Mimicry only invalidates process’s own protection

•  Depend on access control for confinement

63

Access
Control

Process
Firewall

Confine Protect

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Gathering Context

71

Dir

IPC

Access
Control

Signal

OPERATING SYSTEM USERSPACE

Check
Passwd

�
Serve
HTML

File.edu
webserver

Process
Firewall

Rule
DB

File

 Context modules gather process context and
resource properties required to evaluate rules

Extensibly Gather Context?

Context
Modules

Stack

Syscall Trace

Adversary
Accessibility

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Performance Overhead

•  Macrobenchmarks showed under 2-4% overhead

(with 500 rules)

80

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Faster Than Program?

•  We measured performance of safe_open() in
program against equivalent Process Firewall rules

‣  103% in program vs 2.3% as Process Firewall rules

86

Should resource access checks be in program code?

Process Firewall rules much more efficient!

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Evaluation - Expectation

•  In 4/5 programs, programmers implicitly expect > 55% of
resource accesses to never be adversary controlled in
any deployment

‣  OpenSSH most secure

•  We found 2 missing checks that corresponded to 2
previously-unknown vulnerabilities and 1 default
misconfiguration in the Apache webserver

95

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

.htpasswd Vulnerability

•  Apache allows users to specify a password file to protect

their pages in .htaccess

•  Neither name flow nor binding is filtered

‣  User can specify any password file, even of other users, or the
system-wide /etc/passwd (if in proper format)

•  Can be used to brute-force passwords

‣  No rate limit on HTTP auth (unlike terminal logins)

•  Vulnerability hidden all these years, showing importance of
automated and principled reasoning of resource access

96

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Vulnerability

•  Typical example of resource access vulnerability

‣  Who is to blame?

•  Admin for not recognizing adversaries and improper
configuration?

•  OS distributor for default insecure configuration?

•  Programmer for providing the configuration option?

•  Difficult to tell, but the name flow enforcement can block
vulnerability without requiring code or access control policy
change

97

