\ Systems and Internet
‘ Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

Advanced Systems Security:
Control-Flow Integrity

Trent Jaeger
Systems and Internet Infrastructure Security (S11S) Lab
Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory



PENNSTATE

Vulnerabllity =

e How do you define computer ‘vulnerability ?

Systems and Internet Infrastructure Security (SIIS) Laboratory



PENNSTATE

Buffer Overflow S

e First and most common way to take control of a
process

e Attack code

» Call the victim with inputs necessary to overflow
buffer

» Overwrites the return address on the stack
e Exploit
» Jump to attacker chosen code

» Run that code

Systems and Internet Infrastructure Security (SIIS) Laboratory



Determine what to attack

e Local variable that is a char buffer

Called buf

}

printf("BEFORE picture of stack\n");
for ( i=(CCunsigned) buf-8); i<((unsigned) ((char *)&ct)+8); i++ )
printf("%p: Ox%x\n", (void *)i, *(unsigned char *) i);

/* run overflow */

for ( i=1; i<tmp; i++ ){
printf("i = %d; tmp= %d; ct = %d; &tmp = %p\n", i, tmp, ct, (void *D&tmp);
strcpy(p, inputs[i]);

/* print stack after the fact */

printf("AFTER iteration %d\n", 1i);

for ( j=(CCunsigned) buf-8); j<(Cunsigned) ((char *)&ct)+8); j++ )
printf("%p: 0x%x\n", (void *)j, *(unsigned char *) j);

p += strlen(inputs[i]);
if C i+1 !'= tmp )
*p++ = "'
}
printf("buf = %s\n", buf);

printf("victim: %p\n", (void *)&victim);

return 0;

BEFORE picture of stack
Oxbfa3b854:
@xbfa3b855:
0xbfa3b856:
Oxbfa3b857:
Oxbfa3b858:
@xbfa3b859:
@xbfa3b85a:
@xbfa3b85b:
Oxbfa3b85c:
@xbfa3b85d:
@xbfa3b85e:
@xbfa3b85f:
@xbfa3b860:
@xbfa3b861:
@xbfa3b862:
@xbfa3b863:
@xbfa3b864:
@xbfa3b865:
0xbfa3b866:
@xbfa3b867:
Oxbfa3b868:
Oxbfa3b869:
Oxbfa3b86a:
@xbfa3b86b:
Oxbfa3b86c:
@xbfa3b86d:
@xbfa3b86e:
@xbfa3b86f:
@xbfa3b870:
Oxbfa3b871:
@xbfa3b872:
@xbfa3b873:

0x3
0x0
0x0
0x0
0x3
ox0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
ox0
0x0
0x0
0x0
0x0

PENNSTATE

|_Zhve)

buf

0xa8
Oxb8
0xa3
Oxbf

ebp

ox71
0x84
0x4
0x8

rtn addr

0x3
0x0
0x0
0x0

ct

Systems and Internet Infrastructure Security (SIIS) Laboratory



PENNSTATE

Configure Attack S

e Configure following
» Distance to return address from buffer
e Where to write!
» Location of start of attacker’s code

e Where to take control?

»  What to write on stack

e How to invoke code (jump-to existing function)?

» How to launch the attack

e How to send the malicious buffer to the victim?

Systems and Internet Infrastructure Security (SIIS) Laboratory



PENNSTATE

Return Address 5

BEFORE picture of stack
. @xbfa3b854: @x3
® X86 ArChlteCtU re Oxbfa3bss5: 0x0
@xbfa3b856: 0Ox0@
Oxbfa3b857: 0x0

» Build 32-bit code for Linux environment  oofabsss: o3 pyf

Oxbfa3b859: 0x0

Oxbfa3b85a: 0x0

. o @xbfa3b85b: 0x0

e Remember integers are represented in owfomssc: oc
“, . Oxbfasbsae. 0x0
I|tt|e endlan fOI’mat Oxbfa3bs5f: Ox0
Oxbfa3b860: 0Ox0

Oxbfa3b861: 0Ox0

e [ake address 0x804847 | O abats. 00

Oxbfa3b864: 0x0
Oxbfa3b865: 0x0
i Oxbfa3b866: 0x0

» See trace at right oubfasesse: 010
Oxbfa3b868: @xa8
Oxbfa3b869: Oxbs
oxbfaibsea: oxa3  EOP
Oxbfa3b86b: Oxbf
Oxbfa3b86c: Ox71
Oxbfa3b86d: 0x84
oxbfosbsce: o 11N addr
Oxbfa3b86F: 0x8
Oxbfa3b870: 0x3
Oxbfa3b871: 0x0 t
Oxbfa3bs72: oxo C
Oxbfa3b873: 0x0

Systems and Internet Infrastructure Security (SIIS) Laboratory



PENNSTATE

Anatomy of Control Flow Attacks g

e Two steps

e First, the attacker changes the control
flow of the program w8

......
ssssss
SSSSSSS

» In buffer overflow, overwrite the return =t
address on the stack ol SN

Pelvic Girdle
SSSSS
cccccc

chchch

»  What are the ways that this can be done! e

uuuuu

e Second, the attacker uses this change to
run code of their choice

o Fibula

» In buffer overflow, inject code on stack

»  What are the ways that this can be done!?

Systems and Internet Infrastructure Security (SIIS) Laboratory



PENNSTATE

Return-oriented Programming S

e General approach to control flow attacks

e Demonstrates how general the two steps of
a control flow attack can be

e First, change program control flow
» In any way

e Then, run any code of attackers’ choosing -
code in the existing program

» From starting address (gadget) to ret

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 10



PENNSTATE

|_Zhve)

e Use ESP as program counter
» E.g., Store 5 at address 0x8048000

e without introducing new code

Code Stack
pop 7eax G1 Return Address
ret
5
pop 7%ebx Go
ret buf
0x8048000
movl %eax, (%ebx)
ret G3
Registers Memory
J%eax = 0x8048000 =
Joebx =

Systems and Internet Infrastructure Security (SIIS) Laboratory




PENNSTATE

|_Zhve)

e Use ESP as program counter
» E.g., Store 5 at address 0x8048000

e without introducing new code

Code Stack
G!: pop %eax G1 Return Address
ret

5
G2: pop %ebx G2
ret buf
0x8048000
G3: movl %eax, (%ebx) X
ret G3
Registers Memory
J%eax = 0x8048000 =

%ebx =

Systems and Internet Infrastructure Security (SIIS) Laboratory




PENNSTATE

|_Zhve)

e Use ESP as program counter
» E.g., Store 5 at address 0x8048000

e without introducing new code

Code Stack
G!: pop %eax G1 Return Address
ret

5
G2: pop %ebx G2
ret buf
0x8048000
G3: movl %eax, (%ebx) X
ret G3
Registers Memory
J%eax = 0x8048000 =

%ebx =

Systems and Internet Infrastructure Security (SIIS) Laboratory




PENNSTATE

|_Zhve)

e Use ESP as program counter
» E.g., Store 5 at address 0x8048000

e without introducing new code

Code Stack
G!: pop %eax G1 Return Address
ret
5
G2: pop %eb dl
: pop %ebx G2
ret buf
0x8048000
G3: movl %eax, (%ebx) X
ret G3
Registers Memory
%eax = 5 0x8048000 =

%ebx =

Systems and Internet Infrastructure Security (SIIS) Laboratory




PENNSTATE

|_Zhve)

e Use ESP as program counter
» E.g., Store 5 at address 0x8048000

e without introducing new code

Code Stack
G!: pop %eax G1 Return Address
ret
5
G2: pop %eb dl
: pop %ebx G2
ret buf
0x8048000
G3: movl %eax, (%ebx) X
ret G3
Registers Memory
%eax = 5 0x8048000 =

%ebx =

Systems and Internet Infrastructure Security (SIIS) Laboratory




PENNSTATE

|_Zhve)

e Use ESP as program counter
» E.g., Store 5 at address 0x8048000

e without introducing new code

Code Stack
G!: pop %eax G1 Return Address
ret

5
G2: pop %ebx G2
ret buf
0x8048000
G3: movl %eax, (%ebx) N X
ret G3
Registers Memory
%eax = 5 0x8048000 =

7%ebx = 0x8048000

Systems and Internet Infrastructure Security (SIIS) Laboratory




PENNSTATE

|_Zhve)

e Use ESP as program counter
» E.g., Store 5 at address 0x8048000

e without introducing new code

Code Stack
G!: pop %eax G1 Return Address
ret

5
G2: pop %ebx G2
ret buf
0x8048000
G3: movl %eax, (%ebx) N X
ret G3
Registers Memory
%eax = 5 0x8048000 =

7%ebx = 0x8048000

Systems and Internet Infrastructure Security (SIIS) Laboratory




PENNSTATE

|_Zhve)

e Use ESP as program counter
» E.g., Store 5 at address 0x8048000

e without introducing new code

7%ebx = 0x8048000

Systems and Internet Infrastructure Security (SIIS) Laboratory

Code Stack
G!: pop %eax G1
ret

5
G2: pop %ebx G2
ret
0x8048000
G3: movl %eax, (%ebx) X
ret G3
Registers Memory
%eax = 5 0x8048000 = 5

Return Address

buf




Prevent ROP Attacks PENNS%TE

e How would you prevent a program from executing
gadgets rather than the expected code!

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 19




Prevent ROP Attacks PENNS%TE

e How would you prevent a program from executing
gadgets rather than the expected code!

» Control-flow integrity

e Force the program to execute according to an expected CFG

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 20



PENNSTATE

Control-Flow Integrity o

Our Mechanism

if(**esp != nop IMM,) halt
return

CFG excerpt

A > B,

call

NB: Need to ensure b?t patterns for nops A4 B
appear nowhere else in code memory

Systems and Internet Infrastructure Security (SIIS) Laboratory




PENNSTATE

Control-Flow Integrity o

More Complex CFGs

Maybe statically all we know is that CFG excerpt
F, can call any int— int function A » B,

FA call \

é Fo SUCC(Aca) =
nop IMM,

if(*fp != nop IMM ) halt
call fp

|:
% nop IMM,

Construction: All targets of a computed jump must have
the same destination id (IMM) in their nop instruction

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 22




PENNSTATE

Control-Flow Integrity o

Imprecise Return Information

Q: What if Fg can return
to many functions ?

- A
A: Imprecise CFG call+1
P V\ 3

CFG excerpt

D & “ret

call+1

Fg

%

if(**esp != nop IMM,) halt

SlJCC(Bret) = {Acall+1v DcaII+1}

CFG Integrity:
Changes to the
return PC are only to
valid successor
PCs, per succ().

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 23




PENNSTATE

Destination Equivalence 5

e Eliminate impossible return targets

» Two destinations are said to be equivalent if connect to a
common source in the CFG.

func_1:
call %%eax |- St
R1: ..

I R ret
call func_i I . ‘.
RO: func_j:
R3: ret

Figure 4. Destination equivalence effect on ret instructions (a dashed line
represents an indirect call while a solid line stands for a direct call)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 24



PENNSTATE

Destination Equivalence 5

e Eliminate impossible return targets

» Can R2 be a return target of function_j?

func_1:
call %eax |~ St
R1: ..

AN ret
call func_i R ‘.
RO: func_j:
R3: ret

Figure 4. Destination equivalence effect on ret instructions (a dashed line
represents an indirect call while a solid line stands for a direct call)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 25



PENNSTATE

Control-Flow Integrity o

No “Zig-Zag” Imprecision

Solution I: Allow the imprecision Solution |I: Duplicate code
to remove zig-zags

CFG excerpt CFG excerpt

> B,

Acall \

Cia
Ecor  — o

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 26




PENNSTATE

Restricted Pointer Indexing =

e One table for call and return for each function

Call Site i Target Table 1 Callee )
eax
® »| func_j |—> func_j:
Céll *Jocax Target Table j
Ri: ... \ [esp]
Ri | JI ) S

e Why can’t function_j return to R2 with this approach?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 27



PENNSTATE

Control-Flow Graph S

e CFl enforces an expected CFG
»  Each call-site transfers to expected instruction

»  Each return transfers back to expected call-site
e Direct calls

»  Call instructions targeted for specific instruction — no problem
e Indirect calls

»  Function pointers — what are the possible targets?
e Returns

» Determine return target dynamically — can be overwritten

e Can we compute an accurate CFG!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 28



S
Enforce CFG PENN%TE

e Challenge in computing an enforceable CFG

»  Targets computed dynamically, so how can we

e predict in advance and without generating any false positives

e Coarse-grained CFG

»  Any function is a legal indirect call target (ICT)

»  Any call-site is a legal return target
e Signature-based
»  Function with same signature as call-site is a valid ICT

e Taint-based

»  Track function symbols that can reach a ICT

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 29



Taint-based CFG PENNS@%TE

e If function pointers are used in a restricted way, we can
predict the indirect call targets using taint analysis

»  Assumption |: The only allowed operations on a function pointer
variable are assignment and dereferencing (for call)

»  Assumption 2: There exist no data pointer to a function pointer

int (*£fp) ()

) EEE—

struct X int foo(void)

int fieldO {

. return Xx;

int (*£fpl)()

int (*fp2)() \

int (*ar[])()  EE—
[0] / J{.nt bar (void)
(1]

[2] }

F

e FreeBSD and MINIX largely follow these assumptions

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 30



Shadow Stack PENNS%TE

e Method for maintaining return targets for each
function call reliably

e On call

»  Push return address on the regular stack
» Also, push the return address on the shadow stack
e On return

» Validate the return address on the regular stack with the
return address on the shadow stack

e Why might this work! Normal program code cannot
modify the shadow stack memory directly

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 31




Other Problems with CFI g

e CFl enforcement can be expensive

e ldea: only check CFl lazily

» kBouncer inspects the last |6 indirect branches taken each
time the program invokes a system call

e Why 16? Uses Intel’s Last Branch Record (LBR), which can store
|6 records

» ROPecker also checks forward for future gadget
sequences (short sequences ending in indirection)

e These hacks do not work — See papers in USENIX
Security 2014 for attacks against

e Bottom line — no shortcuts

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 32



PENNSTATE

Control-Flow Bending o

e Do we need a shadow stack!?

»  After applying coarse-grained CFG

AIR  Gadget red. Targets  Gadgets

No CFI 0% 0% 1850580 128929
CFI 99.06% 98.86% 19611 1462

Table 1: Basic metrics for the minimal vulnerable pro-
gram under no CFI and our coarse-grained CFI policy.

o Still lots of choices and gadgets

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 33



PENNSTATE

Control-Flow Bending o

e Do we need a shadow stack!?

»  After applying precise CFG

e Problem: Dispatcher functions

» A function that can overwrite its return address when
given adversary controlled input argument values

» Even with buffer overflow protection (stackguard)

» E.g., consider memcpy

e How would you use a dispatcher function to control
execution while evading CFI?

Systems and Internet Infrastructure Security (SIIS) Laboratory

Page 34



PENNSTATE

Control-Flow Bending o

e Do we need a shadow stack!?

»  After applying precise CFG

e Problem: Dispatcher functions

» A function that can overwrite its return address when
given adversary controlled input argument values

» Even with buffer overflow protection (stackguard)

» E.g., consider memcpy

e How would you block a dispatcher function from
launching an ROP?

Systems and Internet Infrastructure Security (SIIS) Laboratory

Page 35



PENNSTATE

Control-Flow Bending o

e If we have a fine-grained CFG and a shadow stack are
we safe from control-flow bending?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 36



PENNSTATE

Control-Flow Bending o

e If we have a fine-grained CFG and a shadow stack are
we safe from control-flow bending?

e Unfortunately, no.

» Turing-complete functions
e A function that has a memory read and memory write
e A conditional jumps and loops

» Examples of these functions
e printf

e fputs

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 37



PENNSTATE

Take Away =

e Memory errors are the classic vulnerabilities in C
programs (buffer overflow)

» Despite years of exploration into defenses, a Turing-
complete approach to exploitation remains given an
appropriate memory error (return-oriented programming)

e Control-flow integrity has been suggested as the way
to block ROP attacks

» Not as easy as it sounds

» CFl enforcement requires a fine-grained CFG and shadow
stack (or equivalent)

e Yet, still some ROP attacks are possible (bending)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 38



