
Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

Advanced Systems Security:�
Control-Flow Integrity

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Vulnerability

2

•  How do you define computer ‘vulnerability’?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Buffer Overflow

3

•  First and most common way to take control of a
process

•  Attack code

‣  Call the victim with inputs necessary to overflow
buffer

‣  Overwrites the return address on the stack

•  Exploit

‣  Jump to attacker chosen code

‣  Run that code

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Determine what to attack

4

•  Local variable that is a char buffer

‣  Called buf

CSE497b Introduction to Computer (and Network) Security - Spring 2007 - Professor Jaeger Page

Print Stack

• Victim function

– Dumps contents of stack

 ...

 printf("BEFORE picture of stack\n");

 for (i=((unsigned) buf-8); i<((unsigned) ((char *)&ct)+8); i++)

 printf("%p: 0x%x\n", (void *)i, *(unsigned char *) i);

 /* run overflow */

 for (i=1; i<tmp; i++){

 printf("i = %d; tmp= %d; ct = %d; &tmp = %p\n", i, tmp, ct, (void *)&tmp);

 strcpy(p, inputs[i]);

 /* print stack after the fact */

 printf("AFTER iteration %d\n", i);

 for (j=((unsigned) buf-8); j<((unsigned) ((char *)&ct)+8); j++)

 printf("%p: 0x%x\n", (void *)j, *(unsigned char *) j);

 p += strlen(inputs[i]);

 if (i+1 != tmp)

 *p++ = ' ';

 }

 printf("buf = %s\n", buf);

 printf("victim: %p\n", (void *)&victim);

 return 0;

}

BEFORE picture of stack

0xbfa3b854: 0x3

0xbfa3b855: 0x0

0xbfa3b856: 0x0

0xbfa3b857: 0x0

0xbfa3b858: 0x3

0xbfa3b859: 0x0

0xbfa3b85a: 0x0

0xbfa3b85b: 0x0

0xbfa3b85c: 0x0

0xbfa3b85d: 0x0

0xbfa3b85e: 0x0

0xbfa3b85f: 0x0

0xbfa3b860: 0x0

0xbfa3b861: 0x0

0xbfa3b862: 0x0

0xbfa3b863: 0x0

0xbfa3b864: 0x0

0xbfa3b865: 0x0

0xbfa3b866: 0x0

0xbfa3b867: 0x0

0xbfa3b868: 0xa8

0xbfa3b869: 0xb8

0xbfa3b86a: 0xa3

0xbfa3b86b: 0xbf

0xbfa3b86c: 0x71

0xbfa3b86d: 0x84

0xbfa3b86e: 0x4

0xbfa3b86f: 0x8

0xbfa3b870: 0x3

0xbfa3b871: 0x0

0xbfa3b872: 0x0

0xbfa3b873: 0x0

buf

ebp

rtn addr

ctCSE497b Introduction to Computer (and Network) Security - Spring 2007 - Professor Jaeger Page

Print Stack

• Victim function

– Dumps contents of stack

 ...

 printf("BEFORE picture of stack\n");

 for (i=((unsigned) buf-8); i<((unsigned) ((char *)&ct)+8); i++)

 printf("%p: 0x%x\n", (void *)i, *(unsigned char *) i);

 /* run overflow */

 for (i=1; i<tmp; i++){

 printf("i = %d; tmp= %d; ct = %d; &tmp = %p\n", i, tmp, ct, (void *)&tmp);

 strcpy(p, inputs[i]);

 /* print stack after the fact */

 printf("AFTER iteration %d\n", i);

 for (j=((unsigned) buf-8); j<((unsigned) ((char *)&ct)+8); j++)

 printf("%p: 0x%x\n", (void *)j, *(unsigned char *) j);

 p += strlen(inputs[i]);

 if (i+1 != tmp)

 *p++ = ' ';

 }

 printf("buf = %s\n", buf);

 printf("victim: %p\n", (void *)&victim);

 return 0;

}

BEFORE picture of stack

0xbfa3b854: 0x3

0xbfa3b855: 0x0

0xbfa3b856: 0x0

0xbfa3b857: 0x0

0xbfa3b858: 0x3

0xbfa3b859: 0x0

0xbfa3b85a: 0x0

0xbfa3b85b: 0x0

0xbfa3b85c: 0x0

0xbfa3b85d: 0x0

0xbfa3b85e: 0x0

0xbfa3b85f: 0x0

0xbfa3b860: 0x0

0xbfa3b861: 0x0

0xbfa3b862: 0x0

0xbfa3b863: 0x0

0xbfa3b864: 0x0

0xbfa3b865: 0x0

0xbfa3b866: 0x0

0xbfa3b867: 0x0

0xbfa3b868: 0xa8

0xbfa3b869: 0xb8

0xbfa3b86a: 0xa3

0xbfa3b86b: 0xbf

0xbfa3b86c: 0x71

0xbfa3b86d: 0x84

0xbfa3b86e: 0x4

0xbfa3b86f: 0x8

0xbfa3b870: 0x3

0xbfa3b871: 0x0

0xbfa3b872: 0x0

0xbfa3b873: 0x0

buf

ebp

rtn addr

ct

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Configure Attack

5

•  Configure following

‣  Distance to return address from buffer

•  Where to write?

‣  Location of start of attacker’s code

•  Where to take control?

‣  What to write on stack

•  How to invoke code (jump-to existing function)?

‣  How to launch the attack

•  How to send the malicious buffer to the victim?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Return Address

6

•  x86 Architecture

‣  Build 32-bit code for Linux environment

•  Remember integers are represented in
“little endian” format

•  Take address 0x8048471

‣  See trace at right

CSE497b Introduction to Computer (and Network) Security - Spring 2007 - Professor Jaeger Page

Print Stack

• Victim function

– Dumps contents of stack

 ...

 printf("BEFORE picture of stack\n");

 for (i=((unsigned) buf-8); i<((unsigned) ((char *)&ct)+8); i++)

 printf("%p: 0x%x\n", (void *)i, *(unsigned char *) i);

 /* run overflow */

 for (i=1; i<tmp; i++){

 printf("i = %d; tmp= %d; ct = %d; &tmp = %p\n", i, tmp, ct, (void *)&tmp);

 strcpy(p, inputs[i]);

 /* print stack after the fact */

 printf("AFTER iteration %d\n", i);

 for (j=((unsigned) buf-8); j<((unsigned) ((char *)&ct)+8); j++)

 printf("%p: 0x%x\n", (void *)j, *(unsigned char *) j);

 p += strlen(inputs[i]);

 if (i+1 != tmp)

 *p++ = ' ';

 }

 printf("buf = %s\n", buf);

 printf("victim: %p\n", (void *)&victim);

 return 0;

}

BEFORE picture of stack

0xbfa3b854: 0x3

0xbfa3b855: 0x0

0xbfa3b856: 0x0

0xbfa3b857: 0x0

0xbfa3b858: 0x3

0xbfa3b859: 0x0

0xbfa3b85a: 0x0

0xbfa3b85b: 0x0

0xbfa3b85c: 0x0

0xbfa3b85d: 0x0

0xbfa3b85e: 0x0

0xbfa3b85f: 0x0

0xbfa3b860: 0x0

0xbfa3b861: 0x0

0xbfa3b862: 0x0

0xbfa3b863: 0x0

0xbfa3b864: 0x0

0xbfa3b865: 0x0

0xbfa3b866: 0x0

0xbfa3b867: 0x0

0xbfa3b868: 0xa8

0xbfa3b869: 0xb8

0xbfa3b86a: 0xa3

0xbfa3b86b: 0xbf

0xbfa3b86c: 0x71

0xbfa3b86d: 0x84

0xbfa3b86e: 0x4

0xbfa3b86f: 0x8

0xbfa3b870: 0x3

0xbfa3b871: 0x0

0xbfa3b872: 0x0

0xbfa3b873: 0x0

buf

ebp

rtn addr

ct

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Anatomy of Control Flow Attacks

9

•  Two steps

•  First, the attacker changes the control
flow of the program

‣  In buffer overflow, overwrite the return
address on the stack

‣  What are the ways that this can be done?

•  Second, the attacker uses this change to
run code of their choice

‣  In buffer overflow, inject code on stack

‣  What are the ways that this can be done?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Return-oriented Programming

10

•  General approach to control flow attacks

•  Demonstrates how general the two steps of
a control flow attack can be

•  First, change program control flow

‣  In any way

•  Then, run any code of attackers’ choosing -
code in the existing program

‣  From starting address (gadget) to ret

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

ROP

•  Use ESP as program counter
‣  E.g., Store 5 at address 0x8048000

•  without introducing new code

%eax =

%ebx =

0x8048000 =
Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop %eax
ret

pop %ebx
ret

movl %eax, (%ebx)
 ret

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

ROP

•  Use ESP as program counter
‣  E.g., Store 5 at address 0x8048000

•  without introducing new code

%eax =

%ebx =

0x8048000 =
Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

G!: pop %eax
ret

G2: pop %ebx
ret

G3: movl %eax, (%ebx)
ret

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

ROP

•  Use ESP as program counter
‣  E.g., Store 5 at address 0x8048000

•  without introducing new code

%eax =

%ebx =

0x8048000 =
Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

G!: pop %eax
ret

G2: pop %ebx
ret

G3: movl %eax, (%ebx)
ret

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

ROP

•  Use ESP as program counter
‣  E.g., Store 5 at address 0x8048000

•  without introducing new code

%eax = 5

%ebx =

0x8048000 =
Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

G!: pop %eax
ret

G2: pop %ebx
ret

G3: movl %eax, (%ebx)
ret

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

ROP

•  Use ESP as program counter
‣  E.g., Store 5 at address 0x8048000

•  without introducing new code

%eax = 5

%ebx =

0x8048000 =
Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

G!: pop %eax
ret

G2: pop %ebx
ret

G3: movl %eax, (%ebx)
ret

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

ROP

•  Use ESP as program counter
‣  E.g., Store 5 at address 0x8048000

•  without introducing new code

%eax = 5

%ebx = 0x8048000

0x8048000 =
Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

G!: pop %eax
ret

G2: pop %ebx
ret

G3: movl %eax, (%ebx)
ret

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

ROP

•  Use ESP as program counter
‣  E.g., Store 5 at address 0x8048000

•  without introducing new code

%eax = 5

%ebx = 0x8048000

0x8048000 =
Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

G!: pop %eax
ret

G2: pop %ebx
ret

G3: movl %eax, (%ebx)
ret

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

ROP

•  Use ESP as program counter
‣  E.g., Store 5 at address 0x8048000

•  without introducing new code

%eax = 5

%ebx = 0x8048000

0x8048000 = 5
Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

G!: pop %eax
ret

G2: pop %ebx
ret

G3: movl %eax, (%ebx)
ret

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 19

Prevent ROP Attacks

•  How would you prevent a program from executing

gadgets rather than the expected code?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 20

Prevent ROP Attacks

•  How would you prevent a program from executing

gadgets rather than the expected code?

‣  Control-flow integrity

•  Force the program to execute according to an expected CFG

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 21

Control-Flow Integrity

8

Our Mechanism

FA FB

return
call fp

Acall

Acall+1

B1

Bret

CFG excerpt

nop IMM1

if(*fp != nop IMM1) halt

nop IMM2

if(**esp != nop IMM2) halt

NB: Need to ensure bit patterns for nops
appear nowhere else in code memory

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 22

Control-Flow Integrity

9

More Complex CFGs

Maybe statically all we know is that
FA can call any int int function

FA

FB

call fp

Acall
B1

CFG excerpt

C1

FC

nop IMM1

if(*fp != nop IMM1) halt

nop IMM1

Construction: All targets of a computed jump must have

the same destination id (IMM) in their nop instruction

succ(Acall) = {B1, C1}

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 23

Control-Flow Integrity

10

Imprecise Return Information

Q: What if FB can return

 to many functions ?

Bret

Acall+1

CFG excerpt

Dcall+1

FB

FA

return

call FB

FD

call FB

nop IMM2

if(**esp != nop IMM2) halt

nop IMM2

succ(Bret) = {Acall+1, Dcall+1}

CFG Integrity:

Changes to the
PC are only to
valid successor
PCs, per succ().

A: Imprecise CFG

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 24

Destination Equivalence

•  Eliminate impossible return targets

‣  Two destinations are said to be equivalent if connect to a
common source in the CFG.

ret

func_j:

ret

func_i:

R2:

call func_j
R3:

R1:
call %eax

call func_i

Figure 4. Destination equivalence effect on ret instructions (a dashed line
represents an indirect call while a solid line stands for a direct call)

effect on the ret instructions. In this figure, there are one
indirect call instruction and two direct call instructions.
The indirect call may invoke both functions func i and
func j while the two direct calls execute func i and
func j, respectively. R1, R2 and R3 are the corresponding
three return addresses. From the figure, the function func i
can return to R1 and R2, and the function func j can
return to R1 and R3. Because of the destination equivalence
effect, R1, R2 and R3 are all equivalent in this example.
More specifically, since R2 is equivalent to R1 and R1 is
equivalent to R3, based on the transitivity of the equivalence
relation, R2 is equivalent to R3. The destination equivalence
effect also indicates that a return address has the same index
in each target table that contains it. This is obvious since
only one index can be assigned to a specific destination.
In our example, R1, R2 and R3 forms one equivalent
group, and two ret instructions in func i and func j can
return to them. If one table per function is used to enforce
the control-flow integrity, we can use a table “R1, R2,
error” for the ret instruction in func i, and another table
“R1, error, R3” for the ret instruction in func j, where
error denotes a special destination to trap an impossible
control transfer. Therefore, our one-table-per-function-based
control-flow integrity enforcement policy is more precise
than the one originally proposed in [1], where R1, R2 and
R3 will bear the same label ID and both ret instructions
can legitimately transfer control to all of them. In particular,
in [1], the function func i can legally return to R3 and
func j can legally return to R2. In comparison, our scheme
can flexibly handle the destination equivalence effect and
make these two paths simply impossible in HyperSafe.

III. IMPLEMENTATION
We have implemented a prototype of HyperSafe and

applied it to protect two open-source Type-I hypervisors,
i.e., BitVisor [46] (with ∼190K SLOC) 4 and Xen [5] (with
∼230K SLOC). In particular, the first technique – non-
bypassable memory lockdown – is implemented by directly
extending their memory management modules. For the sec-
ond technique – restricted pointer indexing, we choose to
extend the open-source LLVM compiler so that we can

4In our prototype, we disabled the VPN support in BitVisor as it is not
relevant.

enable it by simply re-compiling the hypervisor code with
the modified compiler. Our development environment is a
standard 64 bit Ubuntu 9.10 desktop. As mentioned earlier,
the BitVisor port is a full implementation, while the Xen port
only contains the non-bypassable memory lockdown feature,
which nevertheless guarantees the nontrivial code integrity
of Xen. Meanwhile, our current prototype integrates the
trusted booting software, i.e., tboot [49], to protect the load-
time integrity. After the hypervisor is successfully loaded,
HyperSafe will then ensure its runtime integrity. In the
following, we focus on the BitVisor port as an example to
present our implementation details.

A. Non-Bypassable Memory Lockdown
The key novelty of our system is the non-bypassable

memory lockdown technique for hypervisor integrity protec-
tion, achieved purely based on commodity hardware support.
Specifically, HyperSafe write-protects the hypervisor’s page
tables and turns on the WP bit in CR0 to initiate the memory
lockdown. Our system requires only minimal modifications
to the supported hypervisors, therefore satisfying the sec-
ond design goal (Section II). Specifically, in our BitVisor
prototype, we only added or changed 521 lines of C code
and 9 lines of assembly code. To avoid potential pitfalls in
W⊕X enforcement (Section II), we adjust the link script to
align related sections to avoid mixed pages and at runtime
disallow double mappings.
In our prototype, we reserved the top 128MB physical

memory for BitVisor. This memory is mapped 1 : 1 to
the virtual address 0x40200000. A 32MB memory range,
starting at the virtual address 0x40800000, is reserved as the
shared page table pool from which all the hypervisor’s page
tables are allocated. After secure booting from tboot, the
hypervisor properly initializes the page table data structure,
turns on the WP protection in the CR0 register, and then
enables the paging mode. After entering the paging mode,
every virtual memory access will be automatically translated
through page tables. Because of that, all the page tables
have to be accessible and mapped in the hypervisor’s virtual
address space. In BitVisor, since all the page tables are
allocated from and mapped in the page table pool, we simply
set the whole page table pool as read-only to lock the
page tables. To accommodate benign updates, our system
first traverses through the page table hierarchy to locate the
affected page table entries, and then escorts their updates to
guarantee that existing hypervisor code will not be modified
and no external code will be introduced for execution.
After the page tables have been write-protected, any

write attempts to modify them at runtime (e.g., either by
legitimate hypervisor code or malicious code injected due
to a successful exploitation) will be trapped. Inside the page
fault handler, we will enforce an unlocking logic that simply
preserves the W⊕X property. In the meantime, there also
exist a number of legitimate reasons for the hypervisor to

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 25

Destination Equivalence

•  Eliminate impossible return targets

‣  Can R2 be a return target of function_j?

ret

func_j:

ret

func_i:

R2:

call func_j
R3:

R1:
call %eax

call func_i

Figure 4. Destination equivalence effect on ret instructions (a dashed line
represents an indirect call while a solid line stands for a direct call)

effect on the ret instructions. In this figure, there are one
indirect call instruction and two direct call instructions.
The indirect call may invoke both functions func i and
func j while the two direct calls execute func i and
func j, respectively. R1, R2 and R3 are the corresponding
three return addresses. From the figure, the function func i
can return to R1 and R2, and the function func j can
return to R1 and R3. Because of the destination equivalence
effect, R1, R2 and R3 are all equivalent in this example.
More specifically, since R2 is equivalent to R1 and R1 is
equivalent to R3, based on the transitivity of the equivalence
relation, R2 is equivalent to R3. The destination equivalence
effect also indicates that a return address has the same index
in each target table that contains it. This is obvious since
only one index can be assigned to a specific destination.
In our example, R1, R2 and R3 forms one equivalent
group, and two ret instructions in func i and func j can
return to them. If one table per function is used to enforce
the control-flow integrity, we can use a table “R1, R2,
error” for the ret instruction in func i, and another table
“R1, error, R3” for the ret instruction in func j, where
error denotes a special destination to trap an impossible
control transfer. Therefore, our one-table-per-function-based
control-flow integrity enforcement policy is more precise
than the one originally proposed in [1], where R1, R2 and
R3 will bear the same label ID and both ret instructions
can legitimately transfer control to all of them. In particular,
in [1], the function func i can legally return to R3 and
func j can legally return to R2. In comparison, our scheme
can flexibly handle the destination equivalence effect and
make these two paths simply impossible in HyperSafe.

III. IMPLEMENTATION
We have implemented a prototype of HyperSafe and

applied it to protect two open-source Type-I hypervisors,
i.e., BitVisor [46] (with ∼190K SLOC) 4 and Xen [5] (with
∼230K SLOC). In particular, the first technique – non-
bypassable memory lockdown – is implemented by directly
extending their memory management modules. For the sec-
ond technique – restricted pointer indexing, we choose to
extend the open-source LLVM compiler so that we can

4In our prototype, we disabled the VPN support in BitVisor as it is not
relevant.

enable it by simply re-compiling the hypervisor code with
the modified compiler. Our development environment is a
standard 64 bit Ubuntu 9.10 desktop. As mentioned earlier,
the BitVisor port is a full implementation, while the Xen port
only contains the non-bypassable memory lockdown feature,
which nevertheless guarantees the nontrivial code integrity
of Xen. Meanwhile, our current prototype integrates the
trusted booting software, i.e., tboot [49], to protect the load-
time integrity. After the hypervisor is successfully loaded,
HyperSafe will then ensure its runtime integrity. In the
following, we focus on the BitVisor port as an example to
present our implementation details.

A. Non-Bypassable Memory Lockdown
The key novelty of our system is the non-bypassable

memory lockdown technique for hypervisor integrity protec-
tion, achieved purely based on commodity hardware support.
Specifically, HyperSafe write-protects the hypervisor’s page
tables and turns on the WP bit in CR0 to initiate the memory
lockdown. Our system requires only minimal modifications
to the supported hypervisors, therefore satisfying the sec-
ond design goal (Section II). Specifically, in our BitVisor
prototype, we only added or changed 521 lines of C code
and 9 lines of assembly code. To avoid potential pitfalls in
W⊕X enforcement (Section II), we adjust the link script to
align related sections to avoid mixed pages and at runtime
disallow double mappings.
In our prototype, we reserved the top 128MB physical

memory for BitVisor. This memory is mapped 1 : 1 to
the virtual address 0x40200000. A 32MB memory range,
starting at the virtual address 0x40800000, is reserved as the
shared page table pool from which all the hypervisor’s page
tables are allocated. After secure booting from tboot, the
hypervisor properly initializes the page table data structure,
turns on the WP protection in the CR0 register, and then
enables the paging mode. After entering the paging mode,
every virtual memory access will be automatically translated
through page tables. Because of that, all the page tables
have to be accessible and mapped in the hypervisor’s virtual
address space. In BitVisor, since all the page tables are
allocated from and mapped in the page table pool, we simply
set the whole page table pool as read-only to lock the
page tables. To accommodate benign updates, our system
first traverses through the page table hierarchy to locate the
affected page table entries, and then escorts their updates to
guarantee that existing hypervisor code will not be modified
and no external code will be introduced for execution.
After the page tables have been write-protected, any

write attempts to modify them at runtime (e.g., either by
legitimate hypervisor code or malicious code injected due
to a successful exploitation) will be trapped. Inside the page
fault handler, we will enforce an unlocking logic that simply
preserves the W⊕X property. In the meantime, there also
exist a number of legitimate reasons for the hypervisor to

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 26

Control-Flow Integrity

11

No “Zig-Zag” Imprecision

Acall
B1

CFG excerpt

C1

Ecall

Solution I: Allow the imprecision Solution II: Duplicate code
to remove zig-zags

Acall
B1

CFG excerpt

C1A

Ecall C1E

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 27

Restricted Pointer Indexing

•  One table for call and return for each function

•  Why can’t function_j return to R2 with this approach?

func_j

Ri

call *%eax
Ri:

func_j:

ret

[esp]

eax

Call Site i Callee j

(a) Traditional indirection call

Ri:
call *%eax

 Ri

func_j

ret

func_j:

Target Table i

eax

[esp]
Target Table j

Call Site i Callee j

(b) New indirection call

Figure 3. Traditional indirect call vs. new indirect call in HyperSafe (Note Ri is the return address of the indirect call)

instrumented to convert the index back to the destination
address (e.g., by looking up the index in the table). For that,
we need to take the following two steps:
First, the instructions that introduce the control data into

the hypervisor program must be converted to use the indexes
instead. For simplicity, we call these instructions source
instructions. The source instruction for a return address is
the related call that pushes the return address onto the stack.
As a result, the call instruction will be instrumented into
two instructions: one pushes the index onto the stack and
another jmps to the function entry point. For an indirect
call, its source instruction is an earlier instruction that loads
the function address to the register or memory. Unlike the
return address case, the function pointer can possibly appear
in the data section (e.g., as a member of an initialized global
object or variable). As a result, we can leverage the compiler
to identify and convert them.
Second, the instructions that consume the control data

from the hypervisor program must be converted to translate
the indexes back to their destination addresses. Similarly,
we call these instructions sink instructions. Return addresses
will be used by the ret instructions while function pointers
will be consumed by indirect call/jmp instructions. During
instrumentation, a ret will be converted to a sequence of
instructions to pop the index off the stack, convert it into the
return address, and then return to it. An indirect call/jmp will
be converted to use the index to locate the function entry
point and then continue execution there.
Based on the above instrumentation, an indirect call acts

as a sink instruction for the consumed function pointer
and a source instruction for the dynamically-pushed return
address. Therefore, it will be instrumented twice. There may
also exist other instructions that access the control data but
are not the source and sink instructions. Among them, some
instructions can be left intact if the contents of the control
data are not explicitly examined by them. One example
is the mov instruction that copies the index to and from
registers or memory. Instructions that compare two function
addresses do not need instrumentation either if we assign the
pointer indexes in the order of their addresses. On the other
hand, instructions that examine the contents of control data
must be expanded to convert indexes into original control
data. A general solution is to discover and convert all such
instructions, ideally by the compiler. Fortunately, very few

instructions will touch return addresses on the stack. If they
do, most likely they are implemented in assembly and thus
we can instrument them manually. For function pointers,
most accessing instructions are mov or cmp. In this case,
the contents of the function pointers are not examined and
we can safely keep these instructions as is.
In Figure 3, we show the control flow for an instrumented

call/ret pair in HyperSafe when compared to the original
pair. In the figure, the original call has been instrumented
to fetch the index from eax, convert it to a function entry
point by indexing into its target table, and then jump
to the function. By substituting indexes for control data,
HyperSafe limits the destination of a runtime control transfer
to only those explicitly specified in the target table. In
other words, indirect instructions can only transfer control
to the targets allowed by the CFG. Moreover, because all
the destination addresses are known beforehand from the
hypervisor program binary, these target tables can be pre-
computed offline. At runtime, they are protected by directly
applying the memory lockdown technique.
Furthermore, with the help of the target tables, HyperSafe

can flexibly control the precision of control-flow integrity.
In one extreme case, we can simply use two big tables:
one is for all the ret instructions (with all valid return
addresses) and the other one is for all the indirect call
instructions (with all possible indirectly-called functions’
entry points). This scheme provides the least precision,
resulting in coarse protection: namely a ret can return to
any valid return address in the hypervisor program; and an
indirect call can call any indirectly-called function. On the
other extreme, each indirect call has its own target table,
and all ret instructions inside the same function share one
target table. In other words, each function has a dedicated
table for all of its returns. By doing so, we can provide
the finest control over what targets indirect instructions can
transfer control to. Note that there is no need to use one
target table per return instruction since all the ret instructions
in a function always have the same set of return addresses.
As pointed out in [1], the major factor that impairs the

precision of control-flow integrity is the so called destination
equivalence effect. That is, two destinations are considered
to be equivalent if they connect to a common source in
the CFG. Further, the equivalence relation is transitive. In
Figure 4, we show an example of the destination equivalence

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 28

Control-Flow Graph

•  CFI enforces an expected CFG

‣  Each call-site transfers to expected instruction

‣  Each return transfers back to expected call-site

•  Direct calls

‣  Call instructions targeted for specific instruction – no problem

•  Indirect calls

‣  Function pointers – what are the possible targets?

•  Returns

‣  Determine return target dynamically – can be overwritten

•  Can we compute an accurate CFG?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 29

Enforce CFG

•  Challenge in computing an enforceable CFG

‣  Targets computed dynamically, so how can we

•  predict in advance and without generating any false positives

•  Coarse-grained CFG

‣  Any function is a legal indirect call target (ICT)

‣  Any call-site is a legal return target

•  Signature-based

‣  Function with same signature as call-site is a valid ICT

•  Taint-based

‣  Track function symbols that can reach a ICT

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 30

Taint-based CFG

•  If function pointers are used in a restricted way, we can

predict the indirect call targets using taint analysis

‣  Assumption 1: The only allowed operations on a function pointer
variable are assignment and dereferencing (for call)

‣  Assumption 2: There exist no data pointer to a function pointer

•  FreeBSD and MINIX largely follow these assumptions

compliant with the CFI enforcement at runtime. These issues
have been investigated in the past in the HyperSafe [40] and
KCoFI [17] projects. However, HyperSafe does not address
attacks on kernel exit nor how kernel code must be modified
to ensure comprehensive enforcement. KCoFI, on the other
hand, describes comprehensive method for controlling event
processing, but at significant expense. In Section VI, we
specify invariants that must be enforced to ensure that the
kernel code is always invoked from legitimate entries and
returns safely. Our aim is for comprehensive CFI enforcement
given system event handling at low cost, which we achieve by
removing all means for the kernel to modify event handling
configurations, lightweight checking of exception handling,
and non-preemptive kernel configurations2.

In addition, given a fine-grained CFG computed according
to the methods above, we develop a method to instrument
the software to enforce the CFG at runtime as discussed in
Section VII. While we use a standard form of instrumentation,
called restricted pointer indexing [40] (see Section VII-A), as
the default, we identify two opportunities for optimization. We
find that kernel software often uses function pointers to express
flexibility, so in many cases only kernel software only uses one
target for indirect control transfers. As a result, once we know
that an indirect control transfer has only one target, we convert
it to a direct control transfer, which requires no additional
instrumentation. In addition, based on the type of addressing
mode used, we find that we can reuse code already produced
by the compiler or by manual assembly, again enabling the
removal of unnecessary instrumentation.

V. COMPUTING CONTROL-FLOW GRAPHS

In the first phase, we develop methods that compute a pre-
cise CFG from kernel source code. We propose an algorithm
for computing control transfer targets for indirect calls in
Section V-A, and discuss and solve the challenges in mapping
calls to returns to compute the return targets in Section V-B.
We note that the use of indirect jumps in source code is limited
to switch statements, whose targets are found trivially.

A. Computing Indirect Call Targets

We compute indirect call targets for kernel source code
under constraints on the use of function pointer variables in
the program code. Given these constraints, we design a static
taint analysis to collect the functions that can reach each
indirect call target that accounts for storing function pointers in
complex data structures, such as arrays, structures, and unions.
Based on our experience examining kernel source code, these
constraints are followed broadly, enabling automated detection
of targets. We evaluate the applicability of this method to
kernel source code in Section IX.

In kernel source code, operations on function pointers are
normally limited to assignment and use (calls). Thus, we pro-
pose two assumptions about operations on function pointers:

2See Section X for discussion of the practicality of non-preemptive kernels
and some trade-offs between preemptive and non-preemptive kernels.

• (A1) The only allowed operation on a function pointer is
assignment3.

• (A2) There exists no data pointer to a function pointer.

There are a few important implications resulting from these
assumptions. A1 limits the operations on function pointers,
preventing them from being modified once assigned. In par-
ticular, this assumption precludes pointer arithmetic on func-
tion pointers. We believe arbitrary computations on function
pointers are unlikely due to considerations such as readability,
maintainability, and portability. A2 assumes the absence of
data pointers to function pointers as illustrated in Figure 2.
Note that A2 does not prohibit the presence of pointers to
a structure that has function pointer fields. In fact, this is
common in practice. For an array of function pointers, A2
only allows the array elements to be accessed by index from
the array variable. Creating a pointer to the array or any
of its elements will violate A2. We describe how we detect
violations of these assumptions at the end of this section.

int foo(void)
{
 ...
 return x;
}

int (*fp)()

int (*fp1)()

struct X

int field0

void *ptr

int bar(void)
{
 ...
 return y;
}

int (*fp2)()

[0]

[1]

[2]

int (*ar[])()

Fig. 2. Assumption A2

We use the following terminology to describe our algorithm.
We define a memory object as a contiguous range of memory,
such as a global/local variable, a function argument, or a
dynamically allocated array. We refer a function pointer as
a memory object whose content is an address of a function.
We say a function f is a valid target for a function pointer p
if and only if the content of the memory object indicated by
p may be the address of f at runtime.

Our approach takes a function f as input and returns a set of
function pointers for which f is a valid target as the output. To
begin with, the approach taints all function pointers that are
initialized with f. Note that a function pointer can be initialized
either dynamically (e.g., assignment) or statically (e.g., global
variables). Then we keep tainting function pointers to which
a tainted function pointer is assigned. Because of assumption
A1, we will not miss any function pointers tainted by function
f by only tracking propagation via assignments.

Function pointers may either be referenced as a variable,
an array element, or a structure field, and how we propagate

3Other than dereferencing for calls, of course.

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 31

Shadow Stack

•  Method for maintaining return targets for each

function call reliably

•  On call

‣  Push return address on the regular stack

‣  Also, push the return address on the shadow stack

•  On return

‣  Validate the return address on the regular stack with the
return address on the shadow stack

•  Why might this work? Normal program code cannot
modify the shadow stack memory directly

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 32

Other Problems with CFI

•  CFI enforcement can be expensive

•  Idea: only check CFI lazily

‣  kBouncer inspects the last 16 indirect branches taken each
time the program invokes a system call

•  Why 16? Uses Intel’s Last Branch Record (LBR), which can store
16 records

‣  ROPecker also checks forward for future gadget
sequences (short sequences ending in indirection)

•  These hacks do not work – See papers in USENIX
Security 2014 for attacks against

•  Bottom line – no shortcuts

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 33

Control-Flow Bending

•  Do we need a shadow stack?

‣  After applying coarse-grained CFG

•  Still lots of choices and gadgets

#include <stdio.h>
#include <string.h>
#define STDIN 0

void memLeak () {
char buf [64];
int nr, i;
unsigned int *value;
value = (unsigned int*)buf;
scanf("%d", &nr);
for (i = 0; i < nr; i++)

printf("0x%08x ", value[i]);
}

void vulnFunc () {
char buf [1024];
read(STDIN , buf , 2048);

}

int main(int argc , char* argv []) {
setbuf(stdout , NULL);
printf("echo > ");
memLeak ();
printf("\nread > ");
vulnFunc ();
printf("\ndone .\n");
return 0;

}

Figure 1: Our minimal vulnerable program that allows
hijacking a return instruction target.

AIR Gadget red. Targets Gadgets

No CFI 0% 0% 1850580 128929
CFI 99.06% 98.86% 19611 1462

Table 1: Basic metrics for the minimal vulnerable pro-
gram under no CFI and our coarse-grained CFI policy.

We first identified all gadgets that can be reached with-
out violating the given CFI policy. We found five gadgets
that allow us to implement all attacker goals as defined
in Section 3. All five gadgets were within libc and be-
gan immediately following a call instruction. Two gad-
gets can be used to load a set of general purpose registers
from the attacker-controlled stack and then return. One
gadget implements an arbitrary memory write (“write-
what-where”) and then returns. Another gadget imple-
ments an arbitrary memory read and then returns. Fi-
nally, we found a fifth gadget — a “call gadget” — that
ends with an indirect call through one of the attacker-
controlled registers, and thus can be used to perform ar-
bitrary calls. The five gadgets are shown in Figure 2. By
routing control-flow through the first four gadgets and
then to the call gadget, the attacker can call any function.

The attacker can use these gadgets to execute arbitrary
system calls by calling kernel vsyscall. In Linux
systems (x86 32-bit), system calls are routed through
a virtual dynamic shared object (linux-gate.so)
mapped into user space by the kernel at a random ad-
dress. The address is passed to the user space pro-

G1 # arbitrary load (1/2)
f38ff: pop %edx
f3900: pop %ecx
f3901: pop %eax
f3902: ret

G2 # arbitrary load (2/2)
412d2: add $0x20,%esp
412d5: xor %eax,%eax
412d7: pop %ebx
412d8: pop %esi
412d9: pop %edi
412da: ret

G3 # arbitrary read
2ee25: add $0x1771cf,%ecx
2ee2b: mov 0x54(%ecx),%eax
2ee31: ret

G4 # arbitrary write
3fb11: pop %ecx
3fb12: add $0xa,%ecx
3fb18: mov %ecx,(%edx)
3fb1a: ret

G5 # arbitrary call
1b008: mov %esi,(%esp)
1b00b: call *%edi

Figure 2: Our call-site gadgets within libc.

000 b8d60 <execve >:
...

b8d72: call ...
b8d77: add $0xed27d ,%ebx
b8d7d: mov 0xc(%esp),%edi
b8d81: xchg %ebx ,%edi
b8d83: mov $0xb ,%eax
b8d88: call *%gs:0x10

Figure 3: Disassembly of libc’s execve() function.
There is an instruction (0xb8d77) that can be returned
to by any return gadget under coarse-grained CFI.

cess. If the address is leaked, the attacker can execute
arbitrary system calls by calling kernel vsyscall

using a call gadget. Calls to kernel vsyscall

are within the allowed call targets as libc itself calls
kernel vsyscall.
Alternatively, the attacker could call libc’s wrappers

for each specific system call. For example, the attacker
could call execve() within libc to execute the execve
system call. Interestingly, if the wrapper functions con-
tain calls, we can directly return to an instruction after
such a call and before the system call is issued. For an
example, see Figure 3: returning to 0xb8d77 allows us to
directly issue the system call without using the call gad-
get (we simply direct one of the other gadgets to return
there). There are some side effects on register ebx and
edi but it is straightforward to take them into account.

Arbitrary code execution is also possible. In the ab-
sence of CFI, an attacker might write new code some-
where into memory, call mprotect() to make that mem-
ory region executable, and then jump to that location

6

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 34

Control-Flow Bending

•  Do we need a shadow stack?

‣  After applying precise CFG

•  Problem: Dispatcher functions

‣  A function that can overwrite its return address when
given adversary controlled input argument values

‣  Even with buffer overflow protection (stackguard)

‣  E.g., consider memcpy

•  How would you use a dispatcher function to control
execution while evading CFI?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 35

Control-Flow Bending

•  Do we need a shadow stack?

‣  After applying precise CFG

•  Problem: Dispatcher functions

‣  A function that can overwrite its return address when
given adversary controlled input argument values

‣  Even with buffer overflow protection (stackguard)

‣  E.g., consider memcpy

•  How would you block a dispatcher function from
launching an ROP?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 36

Control-Flow Bending

•  If we have a fine-grained CFG and a shadow stack are

we safe from control-flow bending?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 37

Control-Flow Bending

•  If we have a fine-grained CFG and a shadow stack are

we safe from control-flow bending?

•  Unfortunately, no.

‣  Turing-complete functions

•  A function that has a memory read and memory write

•  A conditional jumps and loops

‣  Examples of these functions

•  printf

•  fputs

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 38

Take Away

•  Memory errors are the classic vulnerabilities in C

programs (buffer overflow)

‣  Despite years of exploration into defenses, a Turing-
complete approach to exploitation remains given an
appropriate memory error (return-oriented programming)

•  Control-flow integrity has been suggested as the way
to block ROP attacks

‣  Not as easy as it sounds

‣  CFI enforcement requires a fine-grained CFG and shadow
stack (or equivalent)

•  Yet, still some ROP attacks are possible (bending)

