
Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

Advanced Systems Security:�
Capability Systems

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Confused Deputy

•  Is there another approach to preventing

confused deputy attacks?

•  Yes, it is called a capability system

2

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Overview of Solution

•  Server accepts client requests

‣  Which include a reference to the object that the client
wants to operate on

‣  The reference identifies the object and includes the
client’s permissions

•  Server only uses client capabilities to perform
client requests

‣  Server uses its own permissions for its internal
operations

‣  Server must not confuse its own capabilities and its
clients’ capabilities, but that is easier than filtering, etc.

5

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

•  Back to the access matrix

Access Matrix

6

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

•  Access Control Lists: Ordinary systems use
those

Access Matrix

7

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

•  Capability Lists: An alternative
representation of the same thing, but…

Access Matrix

8

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Capability-Based Addressing

•  Goes back to the mid-1960s (Dennis and van

Horn, Plessey system, CTSS)

•  Idea: include accessibility with reference

•  What is a normal reference?

•  What defines accessibility?

10

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Capabilities

•  Analogy

•  Like a house key
‣  Possession grants access

‣  Need to use the right key for the right job

‣  Can make copies and give those to others

‣  Changing the lock invalidates all keys

‣  Losing the key loses access

‣  Can’t easily keep track of where the copied keys go

11

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

What’s a Capability?

•  Consists of a reference

‣  Object ID, memory value, segment number, label, …

•  And rights

‣  Operations specific to that object type (class in SELinux)

•  And an integrity value (optional)

‣  Needed if a capability may be handled by an untrusted
party (like communicating a message securely)

•  Present this to an object server to obtain access to
the reference to use the rights

12

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Capability Requirement

•  Capabilities must be unforgeable

‣  Why would a user forge a capability?

•  Under what conditions should we worry about
forgery?

13

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Capability Requirement

•  Capabilities must be unforgeable

‣  Why would a user forge a capability?

•  Under what conditions should we worry about
forgery?

‣  Users hold their own capabilities

‣  Users convey capabilities across untrusted channels

14

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Capability Requirement

•  Capabilities must be unforgeable

‣  Why would a user forge a capability?

•  Representations of Capabilities

‣  Hardware capabilities

•  Hardware associates permissions with reference

‣  System-controlled capabilities

•  System stores mapping of permissions to reference

‣  Cryptographic capabilities

•  User processes hold and distribute capability objects

15

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Hydra System

•  “Everything is an object” capability system
‣  Where objects and code may be associated with

capabilities to access those

•  Access control

‣  C-List: each process has capabilities to access objects

•  Processes are objects, as are procedures

‣  Protection at procedure granularity

•  Your rights are based on the procedure you are
currently executing

16

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Hydra System

17

Procedure

Caps

Local Name Space

Caps

Local Name Space

Caps

Caps

Caps

All authorized operations of a procedure
are defined by its (inherited) capabilities
and those passed by the caller

Call

Delegate

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Capability Confinement Problem

•  Boebert: “the right to exercise access includes
the right to grant access”
‣  Why is that a problem?

18

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Capability and *-Property

19

10.3. CHALLENGES IN SECURE CAPABILITY SYSTEMS 153

Low Secrecy
Process B

Segment B1

High Secrecy
Process A

B1

Read

B2

Write

Segment B2

B2

Write

Segment A1

Secret

Secret

Figure 10.1: A problem with the enforcing the �-property in capability systems

the low secrecy process. For example, A uses its legal capability B1 read to read
segment B1. Since capabilities are data, the high secrecy process A can read the
capabilities (e.g., B2 write in the low secrecy process’s segment B1. Then, high
secrecy process A has a capability to write its secrets (e.g., data from segment
A1) to a low secrecy segment B2, violating the �-security property.

While it may be unlikely that an error in a high secrecy process may result
in such a leak, remember that secure operating systems must prevent any code
running in a high secrecy process, including malware, such as Trojan horses,
from leaking data. A Trojan horse could be designed that retrieves write capa-
bilities to low secrecy files to enable the leak.

10.3.2 Capabilities and Confinement

Karger states that the violation of the �-property implies that capability systems
fail to enforce process confinement [158]. Lampson defined confinement in terms
of [177]: (1) processes only being able to communicate using authorized channels
and (2) process changes not being observable to unauthorized processes. The
failure above in implementing the �-property does result in an unauthorized
communication channel, but the problem is even broader than this: we must
ensure that no unauthorized communication is present for any security policy.

Consider a second example from Karger [157]. An attacker may control a
program P . When an unsuspecting victim provides a capability C to P , the
malicious program can store the capability. This enables the attacker to use

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Capability Confinement Problem

•  Boebert: “the right to exercise access includes
the right to grant access”

•  If I can talk to you, I can give you permissions

‣  Low process can give high process a capability to leak
secret data (*-property violated)

‣  And leak other capabilities to objects the low process
can be read to further exploit access (no confinement)

‣  And no mechanism to get these capabilities back (need
revocation)

20

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

•  Capability-Based Addressing: Does not include
identity for authorization system to check

Difference from Access Matrix

21

Anyone can use –
regardless of the
access matrix

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Protection vs. Security

•  Consider a benign process

‣  If it has a fault, will it leak a capability?

‣  Will it receive another’s capability to leak information?

‣  Will it forge a capability?

•  Consider a malicious process

‣  It will try to leak a capability

‣  It will try to leak information

‣  It will try to forge a capability

•  Capability systems aim for protection, not security

22

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

What to do?

23

10.4. BUILDING SECURE CAPABILITY SYSTEMS 155

Security Issue SCAP Solution EROS Solution
�-Property Convert to read-only Define weak capabilities

capabilities by MLS policy that transitively fetch
only read-only capabilities

Confinement Use Access Control List to Define safe environments for
define confinement confined processes or test via

authorize capabilities
Revocation Revocation by eventcounts Indirect capabilities that

(single page entry) or permit later revocation
revocation by chaining of all descendants
(multiple page entries) (similar to Redell [251])

Table 10.1: Summary of SCAP and EROS solutions to the major security issues
in capability systems.

10.4.1 Enforcing the �-Property

The SCAP design to ensure that the �-property is not violated in capability
systems leverages two key insights [157]: (1) capabilities must be loaded into a
capability cache prior to use and (2) we simply need to remove unauthorized
access from any capability loaded into the cache to prevent leakage. SCAP
requires that a process must load a capability into its capability cache (i.e.,
its capability list or C-list) prior to using it. This load operation provides the
operating system with a point of complete mediation to inspect the capabilities
being loaded. This mediation can be used to determine whether the capability
provides write access to an object with a lower access class than the process (i.e.,
where write permission would violate the Bell-LaPadula policy). Enforcement
of such an approach requires the SCAP kernel to include labels with capabilities,
labels with processes, and an MLS access policy, so that the kernel can assess
whether the capability may be loaded legally.

Other capability systems, the Secure Ada Target (SAT) [34] and the Monash
capability system [12] implement similar enforcement semantics, albeit with
markedly di�erent approaches. SAT implements semantically similar checks as
SCAP to ensure that any capability being loaded adheres to an MLS policy, but
the enforcement is done entirely in hardware. Monash’s solution is also seman-
tically similar, but Monash is a password capability system which limits access
to write capabilities by keeping the encryption keys used for these capabilities
secret. Only authorized processes can obtain the key from the system.

Rather than just providing a point of mediation to decide whether to reduce
capability permissions, the EROS system defines a capability that automatically
generates the correct permissions [286]. EROS defines the notion of a weak
attribute for a capability, the combination of which we will call a weak capability.
If a weak capability is used to fetch some other capabilities, all the retrieved
capabilities are automatically reduced to read-only and weak capabilities. Like
SCAP, the reduction is performed when the capabilities are loaded into the

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

SCAP and EROS

24

10.3. CHALLENGES IN SECURE CAPABILITY SYSTEMS 153

Low Secrecy
Process B

Segment B1

High Secrecy
Process A

B1

Read

B2

Write

Segment B2

B2

Write

Segment A1

Secret

Secret

Figure 10.1: A problem with the enforcing the �-property in capability systems

the low secrecy process. For example, A uses its legal capability B1 read to read
segment B1. Since capabilities are data, the high secrecy process A can read the
capabilities (e.g., B2 write in the low secrecy process’s segment B1. Then, high
secrecy process A has a capability to write its secrets (e.g., data from segment
A1) to a low secrecy segment B2, violating the �-security property.

While it may be unlikely that an error in a high secrecy process may result
in such a leak, remember that secure operating systems must prevent any code
running in a high secrecy process, including malware, such as Trojan horses,
from leaking data. A Trojan horse could be designed that retrieves write capa-
bilities to low secrecy files to enable the leak.

10.3.2 Capabilities and Confinement

Karger states that the violation of the �-property implies that capability systems
fail to enforce process confinement [158]. Lampson defined confinement in terms
of [177]: (1) processes only being able to communicate using authorized channels
and (2) process changes not being observable to unauthorized processes. The
failure above in implementing the �-property does result in an unauthorized
communication channel, but the problem is even broader than this: we must
ensure that no unauthorized communication is present for any security policy.

Consider a second example from Karger [157]. An attacker may control a
program P . When an unsuspecting victim provides a capability C to P , the
malicious program can store the capability. This enables the attacker to use

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

EROS *-Property

•  Confinement limits access, so that a high secrecy

subject cannot use a write-capability to a low
secrecy object

‣  Validate for yourself

•  EROS – use a weak capability

‣  Give a high secrecy process a weak capability to read
from a low secrecy object

‣  Any capabilities obtained via this capability are made
read-only and weak

‣  Couldn’t a Trojan horse still read memory and then
provide that as a capability later?

25

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

ture and the policy to see whether to grant the access.

If the answer is positive, it allows the access, creates and

returns a new capability to C2. This saves at least one

message in normal situations and invokes the authenti-

cation mechanism less, but causes a little overhead and

delay when access is requested the first time. These two

alternatives can be combined in such a way that an ap-

propriate one is chosen for each particular propagation.

Note that signing messages has to be done in a real im-

plementation anyway unless the links are absolutely se-

cure. For signature schemes please refer to any standard

literature.

The cascaded authentication [ll] using a mechanism

called “passport” can be an underlying technique to sup-

port our propagation mechanism. However, we suggest

that what can be done to the passport at each tran-

sit point be in accordance with some policy rather than

simply further restricted. Please see ICAP’ answer to

the taxonomy question 4 in the next section for more

discussion on this issue.

The following diagram is an illustration of the differ-

ent actions taken by the discussed systems at the prop-

agation times and access times. S is the server, C1 and

C2 are clients, msgl to msg3 are messages.

0
\ \

-g k2
@ msgl * @

A classic capability system.

msgl : C1 propagates a capability capl to C2.

msg2 : C2 requests the access by presenting capl

msg3 : S checks the validity of capl and grants

to s.

access.

Karger’s SCAP.

msgl : C1 propagates capl to C2.

msg2 : C2 requests the access by presenting capl

to s.
msg3 : S checks both capl’s validity and whether

the access complies with the security policy.

If so it grants the access.

Our ICAP.

msgl : C1 passes to C2 a signed message which

requests the server to pass to C2 a set of access

rights for an object.

msg2 : When C2 wants to access the object for the

first time it requests the access by presenting

msgl to s.
msg3 : S checks the signature and the security

policy. If the access is granted, S allows the

access, creates and returns a new capability

cap2 to C2.

later access: C2 only needs to present cap2 to S

(msg2) and its validity is checked (msg3).

Revocation

One major problem with capability systems is revoca-

tion, i.e., withdrawing capabilities granted earlier. When

an access right is revoked, in an access control list scheme

the only job is to update the corresponding entries in the

lists. However in a classic capability system, revocation

is difficult because capabilities can be copied and stored

freely and there is no way to record these activities and

it is impractical to search the entire system and inval-

idate all those copies. Existing revocation schemes in-

clude the back pointers in Multics, Redell’s indirection,

and Karger’s chaining method and eventcounts [5].

ICAP uses an exception list and propagation tree

scheme. An internal capability has an associated excep-

tion list which specifies the current policy decision like

“client C’s capability for this object has been revoked.”

When C1 wants to revoke a capability it gave C2 earlier,

it presents the request to the server. The server then up-

dates the corresponding list. When an access is required,

both the exception list and the capability’s validity are

checked. These can be done in parallel.

To make sure that only the ancestors, maybe plus a

few specially assigned security officers, can revoke, other

identities can be embedded in an external capability to

record from where it is inherited. This mechanism can

be nested with a depth which is implementation specific.

In this case, a capability passed from C1 to C2 and then

to C3 would look like

(Object, Rights, C1, C2, C3, Random3)

where

Random3 = f (Cl , C2,C3,Object, Rights, RandomO)

This is a tree structure which records the path of capa-

bility propagations. We call it a propagation tree. When

something goes wrong, it is straightforward to know from

the access control lists who have what access to an ob-

ject. In addition, it is easy to know from the propagation

trees how the access rights were propagated. Note other

information like access rights are not stored in the tree.

And, if only parents can revoke, the depth will be a fixed

length of 2 and computations are still simple.

In normal situations, fixed length capabilities are more

convenient. An alternative scheme is to store the tree at

59

Authorized licensed use limited to: Penn State University. Downloaded on March 10,2010 at 13:13:55 EST from IEEE Xplore. Restrictions apply.

Confinement

•  Restrict permissions to satisfy a policy

for the presenting subject

‣  Rather than simply permitting access via
possession

•  SCAP

‣  Need cap and policy to authorize

•  EROS

‣  Test capability set in advance

‣  Or authorize via policy

26

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

ICAP

•  Add the identity of the holder into the capability

‣  (client ID, obj ID, rights, integrity)

•  Authorize transfer of capabilities

‣  C1 constructs a signed message to grant a capability to
C2 – C1 must be the identity in the capability

‣  C2 presents capability and signed grant on first use

‣  Server authorizes based on security policy and creates
a capability for C2 to use

27

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Revocation Problem

•  How do I get the house key I copied for you?

‣  Without changing my locks…

•  It is not practical to scan through memory to find
capabilities

28

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Revocation – Redell’s Solution

29

10.5. SUMMARY 159

Object
Revoker

Cap

by

Owner

Process 3

Process 1

Revoker

Cap

by

Process 1

Process 2

Cap

CapCap

Figure 10.2: Redell’s revoker capability approach: When the revoker capability
is revoked all the capabilities that were based on it are also revoked.

capabilities. An indirect (revoker) capability may be obtained that enables
later revocation, as described above [287]. The memory usage problems cited
by SCAP as a reason for seeking alternative revocation schemes had become
less of an issue by the late 1990s.

10.5 Summary

In the chapter, we examine the construction of secure operating systems from
capability systems. Capability systems have conceptual advantages in enforcing
security because they can be used to define protection domains specific to a
particular execution of a program easily and they enable permissions to be dis-
tributed with program invocation preventing the confused deputy problem [129]
by limiting the user of others’ permissions. However, capability systems also
have sme inherent security problems brought about by the discretionary nature
of capability management.

The SCAP and EROS capability systems address these limitations by adding
mandatory restrictions on the use of capabilities to ensure safe system behavior.
They each define mechanisms to limit the capabilities that a process can receive

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Revocation – Others

30

•  Other solutions are a bit convoluted

•  SCAP

‣  Event counts: compare page table entry count to
capability

•  Revalidate if different

•  ICAP

‣  Revocation list with Redell’s propagation tree

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Overall: ICAP

31

a server instead. This is in fact a better approach be-

cause it saves storage on the whole. Now each branch

of the tree is stored only once, instead of once in every

descendent external capability. It also speeds up the va-

lidity checking procedure since the computation of the

one-way function f will be simpler. It is interesting to

point out that if access rights are also stored in the tree, it

is in theory unnecessary to physically pass around copies

of capabilities because the server can check the tree ev-

ery time an access is required. This consumes a little

more storage at the server, slows down the service a lit-

tle only if the tree is large, but saves the transmission of

the capabilities and the storage in client space. It is not

surprising that this particular version is a modified ac-

cess control list scheme which also records access rights

inheritance. Combining the above ideas, our final scheme

is as follows.

Summary of ICAP

In ICAP, we have a server called the access control

server ACS, which may or may not be the same as the ob-

ject server OS. In the ICAP design, one ACS is supposed

to support more than one OS. This also makes possible

to distribute and replicate OS while maintaining ACS

centralized. This makes it easier to provide adequate

physical protection. However, it is sufficient to consider

only one OS. OS stores the internal capabilities and their

associated exception lists. ACS stores a complete access

control list to represent and interpret the security policy.

It also stores the propagation trees.

When a new object is created, OS creates a new in-

ternal capability and reports this to ACS. ACS then cre-

ates a new entry in the access control list. It can create

a root for the propagation tree as well, although this can

be done later at the first propagation time.

When a capability propagation is requested, includ-

ing the case when a client requires more rights for itself,

OS asks ACS whether the propagation is in accordance

with the policy. If so, ACS records this in the corre-

sponding propagation tree. If OS gets a positive reply,

it grants access and creates a new capability. OS can do

the creation while waiting for the reply if it would be idle

otherwise. Note that if the concerned client has already

got a capability for that object, it can choose to request

a new capability with all the access rights granted both

earlier and at this time. Note that the client does not

have to search its capability list and supply the servers

with the access rights it already has. ACS knows about

them.

When a revocation is requested, OS adds it onto the

exception list and marks it as temporary, pending the

concerned access. It then consults ACS as to whether

the revocation is legal. ACS checks the corresponding

propagation tree and replies. If it is illegal, OS simply

resolves the pending access. If legal, OS marks it perma-

nent and at the same time ACS can choose to do the full

revocation in background as described below in detail.

When all the capabilities are revoked or recomputed, OS

replaces the old internal capability by the new one and

deletes the entry from the exception list. Revocation

requests are logged and the log will be continuously re-

viewed by security officers.

Since it stores the propagation trees, ACS has enough

information to take any revocation measures. For ex-

ample, suppose a capability is associated with a count

which stores the number of current valid capabilities for

the same object. When revoking, if the count is small,

ACS can advise OS to create a new capability which ef-

fectively means that all capabilities for the same object

have to be recomputed. It then goes to all subjects that

hold capabilities for the object and replaces the old ones.

When the count is large and the exception list is short, it

can choose to just add an entry to the list for the mean-

time and postpone the full revocation. The relationships

between the two servers are illustrated in the diagram

below.

Creation 1. C requests to create a new object (msgl).

2.

3.

Access

OS creates the object together with a new

internal capability and reports this to ACS

(msg2). It also creates and returns an exter-

nal capability to C.

ACS updates the access control list. It can

create a root for the propagation tree of this

object.

1. C presents the external capability (msgl).

OS retrieves the corresponding internal capa-

bility and runs the one-way function to do a

validity check and decide whether to grant ac-

cess.

Propagat ion 1. C requests a propagation (msgl).

2. OS asks ACS whether the request is allowed

by the policy (msg2).

3. ACS checks the policy and replies accordingly

(msg3). If it is allowed, ACS records the prop-

agation in the corresponding tree.

4. Upon getting a positive reply OS creates and

returns a new external capability.

60

Authorized licensed use limited to: Penn State University. Downloaded on March 10,2010 at 13:13:55 EST from IEEE Xplore. Restrictions apply.

Revocation 1. C requests a revocation (msgl).

2. OS updates the exception list pending the ac-

cess temporarily. Then it consults ACS as to

whether the revocation is legal (msg2).

3. ACS checks the propagation tree and replies

(msg3). If it is legal, ACS decides whether to

arrange for a full revocation.

4. Upon receiving msg3, if the revocation is le-

gal, OS marks it permanent and notifies C if

necessary; otherwise, it resolves the pending

access.

5 . When a full revocation is done, ACS notifies

OS. OS replaces the old capability in its in-

ternal table and deletes the entry from the

exception list.

Our scheme has several advantages. First, security pol-

icy checking is done at propagation time. When an ac-

cess is requested, only the validity of the capability is

checked. This check only runs a one-way function which

can be very fast even when done in software. This is

more economic than checking the policy at access time

because the number of access requests normally will be

much greater than that of propagation requests. It is

obvious from the notes of the above diagram that the

most common request, access, needs the least number of

messages.

Second, the exception list supports rapid revocation

which has been difficult in classic capability systems.

The exception lists are expected to be short. ‘ lhe ex-

ception lists can also support specific denial of access,

which is impossible in a classic capability system.

Third, the access control server can easily answer ad-

ministrative questions like who have what access to an

object and how the access was propagated. It also com-

pletes the revocation job nicely in the background.

Finally, when a revocation is marked in the exception

list, this revocation can be withdrawn. This is definitely

an advantage because a false alarm or an error can be

resolved without invoking the expensive full revocation

mechanism.

Discussion

Performance Performance is always a major concern

with capability-based systems. Two of the major tasks

are checking and revoking. In a secure capability system,

these two kinds of checks are essential. One is to check

the validity of the capabilities against forgery and the

other is to check whether the use of the capabilities com-

plies with the security policy. The validity check must

be done every time a capability is used. However, the

policy check can be done either at the access time as in

Karger’s SCAP, or at the propagation time as in ICAP;

the capability designs have to be different of course. We

believe that checking the security policy at each propa-

gation time is more economic than checking it at every

access time because one single propagation is likely to

correspond to more than one access. Since the policy

can be complex and thus expensive to check, our scheme

saves a lot. It has to be pointed out that SCAP uses a

cache to reduce policy checks. Our scheme can be fast

without a cache. Moreover, it is only when capabilities

propagate across security domains that the security pol-

icy is checked. This further reduces the number of policy

checks.

The exception lists support rapid revocation. It is

convenient and can be very fast. With little extra cost of

storing the short lists, it ensures security while full revo-

cation is taking place in the background. Only a one-way

function is employed rather than an reversible encryption

algorithm thus a software implementation would be tol-

erable. Finally, a shorter internal capability table and

shorter external tables mean smaller storage and faster

searching and sorting. All these reduce the cost consid-

erably and give a potential for better real-time response.

Subject Representations Simple uid’s as identities may

not be sufficient if users are allowed to work at different

security levels. In this case, domain id’s rather than

uid’s are incorporated in the capabilities. A domain is

the Cartesian product of the set of user id’s, and that

of the working security clearance levels. The clearance

levels are mainly for non-discretionary control purposes

and the uid’s are mainly for discretionary control pul-

poses. A domain id is similar to a role. A subject can

act as different roles when working at different clearance

levels. Group-id can also be included for some widely

used objects. For example, to use the news facility, an

‘any” uid can be set up even for future users.

Discretionary Control Some discretionary control is

needed even in a military environment. For example,

a colonel may choose to report to a particular general

in a special4tuation. In ICAP, discretionary control is

built on top of the non-discretional control mechanisms

and is interpreted by the propagation constraints in the

security policy.

Protected Subsystems A type-id can be employed to

enforce security in abstract data types and object-oriented

programming. In such cases, there is a manager for each

type or software package which is given a unique type-

id. Once the type-id is embedded into a capability, the

capability is sealed. Only the appropriate type manager

can unseal the capability and get access to the object.

A similar kind of enter capability can be used to enforce

protected subsystems. A software package can be en-

tered only with its enter capability. This can implement

such requirements as that some operations can only be

done through a certified secure package.

61

Authorized licensed use limited to: Penn State University. Downloaded on March 10,2010 at 13:13:55 EST from IEEE Xplore. Restrictions apply.

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

CHERI

32

•  Capability system to make capability use seamless
and efficient

•  To sandbox code within a process

‣  Untrusted code to run in your address space

‣  Without allowing unauthorized access to modify and/or
read other, sensitive process data

•  Challenges

‣  Make capabilities unforgeable

‣  Without appealing to the kernel

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

CHERI Overview

33

•  Capability system to make capability use seamless
and efficient

‣  Hybrid capability model for intra-address space

•  Key features

‣  Capability coprocessor that provides capability
registers, similar to segment descriptors (see Multics)

‣  Tagged memory to distinguish in-memory capabilities
from regular memory (common approach from past)

•  Use capabilities to check bounds, control access,
and protect pointer integrity within address space

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

CHERI Requirements

34

•  Requirements for intra-address space protection

•  Access control – for memory regions

•  Unforgeability – no privilege escalation

•  Fine-grained – support small and dense regions

•  Unprivileged use – no system call required

•  Overhead – scale with number of memory regions,
number of domains, and intercommunications

•  Legacy – work with recompilation

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

CHERI Memory Model

35

•  Memory capability model

‣  A memory capability is an unforgeable pointer that
grants access to a linear range of the address space

‣  All memory accesses must occur through memory
capabilities

•  What about legacy code and its pointers?

•  Protection domain of a process

‣  Is the transitive closure of the capabilities reachable
from its own capabilities

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

CHERI Capabilities

36

•  Capabilities are 256-bit “fat” pointers

‣  Base memory address and length (memory segment)

‣  Permissions (access control in 31 bits)

•  Protected by tagged memory

‣  User-mode instructions can load/store caps and reduce
privileges

‣  Process starts with capability to full address space and
creates more restricted capabilities for other domains

•  Enables legacy code to launch capability-aware
code and vice versa

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

CHERI Use Cases

37

•  Memory bounds enforcement

‣  As “fat” pointers

•  Base and length

•  Natural for the heap

•  Can also be applied to the stack – bit more ad hoc

•  Sandboxing

‣  Create “micro” address spaces by constraining code
and data capabilities

•  Limit - Need to modify and recompile source code

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

CHERI Domains

38

•  Protection domain of a process

‣  Is the transitive closure of the capabilities reachable
from its own capabilities

•  An issue for Boebert’s claim?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 42

Take Away

•  Problem: Control Access and Confused Deputy

‣  Using a “key” is a natural way to control access

•  No centralized service required

‣  Prevent need for a server to manage all its clients
permissions

•  Unfortunately, neither of these problems can be
completely solved by capabilities

‣  Confinement: Need identity to control access – end up
with a centralized access server (holds or verifies perms)

‣  Revocation: Need to track delegation somewhat

