

Advanced Systems Security: Attacks on SGX

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab
Computer Science and Engineering Department
Pennsylvania State University

Intel SGX

- Hardware support that eliminates need to trust the operating system
 - Aim to prevent "cold boot" attacks
 - Does it prevent all OS attacks?
- Some types of attacks become more significant when you do not trust the operating system
 - lago attacks
 - Side channels
 - Runtime attacks (ROP)

Cold Boot Attacks

- An attacker with physical access to a computer is able to retrieve encryption keys from a running operating system after using a cold reboot to restart the machine
- Problem: Transient memory may retain values across reboots
 for hours by cooling them with a refrigerant
- Assume you have a system that has been booted securely, so it runs only secure software
 - And you want to extract secret keys used by such a machine
- Attack
 - Memory modules are removed from victim system
 - Place in a compatible machine under the attacker's control, which is then booted to access the memory

SGX Blocks Cold Boot Attacks

How does SGX prevent the Cold Boot attack?

Threats to SGX Processes

- However, threats remain for SGX processes
 - What do you think are the sources of threats?

Threats to SGX Processes

- However, threats remain for SGX processes
 - What do you think are the sources of threats?
 - All the untrusted software especially the operating system

Operating System Is Threat

- Since the operating system was built to be trusted, it performs actions that may be exploited against SGX
 - That have not typically been exploited
 - At least not to this extent
- Types of attacks
 - lago attacks
 - Attacks through system call responses
 - Side channel attacks
 - Attacks through shared storage and/or operation timing

- What is one major thing we depend on from the OS?
 - System call responses
- While it is hard to prove that an operating system should be trusted (e.g., verification in the reference monitor concept), we typically assume the OS is benign
- But, what if it is not
 - lago attacks paper Checkoway and Shacham [ASPLOS 2013]
 - Definition: Attacks in which a malicious kernel induces a protected process to act against its interests by manipulating system call return values

- Example
 - Kernel becomes an active network adversary for a trusted application that needs to communicate remotely
 - Why is this an issue?

- Example
 - Kernel becomes an active network adversary for a trusted application that needs to communicate remotely
 - Why is this an issue?
- Trusted inputs obtained from kernel to perform crypto operations
 - Kernel can manipulate /dev/random
 - VMM could prevent such an action
 - But attack is more subtle

- Example
 - Kernel becomes an active network adversary for a trusted application that needs to communicate remotely
- Application depends on kernel for inputs to crypto
 - Kernel could replay the client connection's messages from one client for a fake client
 - Kernel could return same values for getpid and time as prior connection to reduce entropy
 - Even getpid is an issue used as a non-repeating nonce for Apache child process, but malicious OS can repeat PIDs

Example

- Kernel becomes an active network adversary for a trusted application that needs to communicate remotely
- Application depends on kernel for inputs to crypto
 - Kernel could replay the client connection's messages from one client for a fake client
 - Kernel could return same values for getpid and time as prior connection to reduce entropy
 - Even if trusted entity (VMM or SGX) is used for time source, the kernel can replay with limit (same second)

Side Channels

- Another challenge is created by side channels available in computing systems
 - Side channels are channels created as side effects of an implementation
 - Rather than channels designed into a system
- An adversary may learn unauthorized information via side channels, as they are not monitored
 - Typically, a victim with access to secret data produces a signal on one or more side channels
 - An adversary can also take actions to increase the bandwidth and reliability of the side channel

Side Channels

- Classic side channel attacks measure the time for the victim to perform an operation using secret data
- Timing channels
 - Can attack a cryptosystem if an operation takes a different amount of time based on the inputs provided, such as the key value
 - Does your program have an algorithm whose execution time is dependent on the value of secret inputs?
 - Square-and-multiply and modular exponentation algorithms used in cryptography have different execution times depending on the number of 'l' bits in the input

SGX Side Channels

- The SGX approach results in a variety of side channels because we do not trust any other software
 - Page faults
 - Noise-free, but coarse-grained (page granularity)
 - Measure cache hit/miss timing
 - Fine-grained (cache line granularity), but can be noisy
 - Branch prediction
 - Other paper
 - Can manage execution in a fine-grained way using small time slices

Cache Channels

- The SGX approach results in a variety of side channels because we do not trust any other software
 - One popular kind of side channel is a cache side channel
 - In a cache side channel, the adversary primes (fills) or flushes (invalidates) cache entries shared with the victim to detect victim accesses
- One attack PRIME and PROBE
 - Fill a cache line shared with a victim subsequent access by adversary will show a slowdown if victim accessed entry
- If cache line use depends on input value detect value

Cache Channels

- The SGX approach results in a variety of side channels because we do not trust any other software
 - One popular kind of side channel is a cache side channel
 - In a cache side channel, the adversary primes (fills) or flushes (invalidates) cache entries shared with the victim to detect victim accesses
- One attack FLUSH and RELOAD
 - Flush cache line with clflush and reload after victim runs to detect performance
- Advantage: Flushes LLC which applies to all cores

Runtime Attacks

- SGX may have side channels, but at least it runs programs in a manner that is encrypted to adversary
- Should make some runtime attacks harder
 - Such as return-oriented attacks
- But does it?

Take Away

- Problem: Do not want to trust systems software
 - However, we have not considered the OS as an adversary deeply yet
- Attacks
 - ▶ lago attacks OS as an active man-in-middle
 - Side channel attacks even more side channels and more effective attacks when controlled by the OS
 - Runtime attacks still possible against encrypted processes
- Lots of future work to close these holes