
PtrSplit: Supporting General Pointers
in Automatic Program Partitioning

Shen Liu Gang Tan Trent Jaeger
Computer Science and Engineering Department

The Pennsylvania State University
11/02/2017

 2

Motivation for Partitioning

Sensitive data

A monolithic, security-sensitive program

A single bug would defeat the security of the whole application

 3

§ Split the application into multiple partitions

§ Each partition is isolated using some isolation mechanism such as OS processes

Motivation for Partitioning

Sensitive data

Partition into two parts

Trusted
partition

Input-handling
partition

Although some partition of a program has been
hijacked,sensitive data can still be protected

 4

Toy Example

char* cipher;
char* key;  

void encrypt(char *plain, int n){
 cipher =(char*)malloc(n);
 for (i = 0; i < n; i++)
 cipher[i] = plain[i] ^ key[i];
}

void main (){
 char plaintext[1024];
 scanf("%s",plaintext);
 encrypt(plaintext,strlen(plaintext));
 ...
}

Sensitive data

Buffer overflow

 5

Toy Example

char* cipher;
char* key;  

void encrypt(char *plain, int n){
 cipher =(char*)malloc(n);
 for (i = 0; i < n; i++)
 cipher[i] = plain[i] ^ key[i];
}

void main (){
 char plaintext[1024];
 scanf("%s",plaintext);
 encrypt(plaintext,strlen(plaintext));
 ...
}

encrypt()
key

main()
cipher

plaintext

Process B Process A

The sensitive data
is protected!

 6

§ Manual partitioning
– do code review and extract the sensitive components
– The amount of code for analysis may be huge…

§ Automatic partitioning
– Given some security criterions, do partitioning based on static program

analysis
– Reduce manual effort and errors

Solution

 7

§ Static analysis
– Analyzing code without executing it
– Static analysis can be considered as
 automated code review
– e.g. Annotate a sensitive variable key,
 we can find all the statements that key
 can reach to.

Background: static program analysis

char* cipher;
char* key;  

void encrypt(char *plain, int n){
 cipher =(char*)malloc(n);
 for (i = 0; i < n; i++)
 cipher[i] = plain[i] ^ key[i];
}

void main (){
 char plaintext[1024];
 scanf("%s",plaintext);
 encrypt(plaintext,strlen(plaintext));
 ...
}

 8

§ Privtrans automatically incorporate privilege separation into source
code by partitioning it into two programs
–  A monitor program which handles privileged operations
–  A slave program which executes everything else
–  Users need to manually add a few annotations to help
 Privtrans decide how to partition
–  The inter-process communication between monitor and
 slave is implemented by Remote Procedure Call(RPC)

Previous Work: Privtrans(2004)

Privtrans’ principle (copied from the paper)

 9

§ RPC allows a program to call procedures that run in a different address
space
–  Programmers need to tell RPC what functions will be
 called remotely, and define the interfaces(IDL file)
–  RPC can generate code to transmit data between the
 client and servers
–  Data transmission is done through the network

Background: Remote Procedure Call(RPC)

How RPC works(copied from the TI-RPC manual)

 10

§ Systems for automatic program partitioning
–  Privman by Kilpatrick (USENIX ATC 2003)
–  Ptrivtrans by Brumley and Song (USENIX Security 2004)
–  Wedge by Bittau, Marchenko, Handley, and Karp (USENIX NSDI 2008)
–  ProgramCutter by Wu, Sun, Liu, and Dong (ASE 2013)

§ One major limitation: lack automatic support for pointers
– Pointers prevalent in C/C++ applications
– Previous work

•  Lack sound reasoning of pointers for partitioning
•  Require manual intervention when pointers are passed across partition

boundaries

Previous Work

 11

§ What will happen when two pointers refer to the same memory location

§ Alias analysis is undecidable(G. Ramalingam, TOPLAS 1994)

– For large programs, alias analysis will be a disaster(e.g. linux kernel)

Background: Aliases

Example 1:
int x;
p = &x;  
q = p; // <*p,*q>,<x,*p> and <x,*q> are all aliases now  

Example 2:
int i,j, a[100];
i = j; // a[i] and a[j] are aliases now

 12

§ Claim: For sound program partitioning, has to reason about program
dependence with aliasing
– Need global pointer analysis for tracking dependence on programs with pointers
– Global pointer analysis is complex and unscalable

§ What happens when pointers are passed across boundaries?
– Passing pointers alone insufficient when caller and callee are in two different

address spaces
– We use deep copying: passing pointers as well as their underlying buffers

•  However, C-style pointers do not carry bounds information
•  Do not know the sizes of the underlying buffers

Difficulty in Supporting Pointers in Automatic Program Partitioning

 13

§ PtrSplit provides automatic support for program partitioning with pointers
– Perform program partitioning based on Program Dependence Graphs (PDG),

which track program dependences
§ Parameter-tree-based PDG

–  Avoid global pointer analysis
–  Modular construction of the dependence graph

§ Automated marshalling/unmarshalling for cross-boundary data, even with
pointers
– Selective pointer bounds tracking: track bounds only for necessary pointers

•  Avoid high overhead
– Type-based marshaling/unmarshalling: use bounds information to perform deep

copying

Our Work: PtrSplit

 14

§ PDG is a graphical representation of the program
– Program statements are represented as “nodes”

– The dependencies among different statements are represented as “edges”

§ In a PDG there exist two kinds of dependence
– Control dependence describes the control relationships caused by conditional

statements(if-else/switch) and circular statements (for/while loops)

– Data dependence describes the relationship caused by assignment statements

Background: Program Dependence Graph(PDG)

 15

void sum{

 int sum = 0;

 int i = 1;

 while (i < 10){

 sum = sum + i;

 i = i + 1;

 }
}

Program Dependence Graph: Example

 ENTRY

 int sum = 0; while (i < 10) int i = 1

sum = sum + i i = i + 1

Statement Control Dependence Data Dependence

 16

A Parameter-tree-based PDG

Once we have such a graph, it’s
easy to apply many graph-based
algorithms…

 17

Basic Workflow

Source
code

Annotations about secret
and declassification

Clang

LLVM IR

PDG
construction

PDG Partitioning

Sensitive/insensitive
raw partitions

Selective pointer
bounds tracking

Type-based
marshalling

Sensitive
Partition

Insensitive
Partition

 18

§ We build a parameter-tree-based PDG
– Represent a program’s data and control dependence in a single graph
– Sound representation of a program’s control/data dependence

– Modular construction through parameter trees

Program Dependence Graph (PDG) Construction

 19

§ Pointers make building dependence graphs hard

§ Inter-procedural dependences require global pointer analysis

§ However, global pointer analysis is complex and unscalable

Motivation of Parameter Trees

char* cipher;
char* key;  

void encrypt(char *plain, int n){
 cipher =(char*)malloc(n);
 for (i = 0; i < n; i++)
 cipher[i] = plain[i] ^ key[i];
}

void main (){
 char plaintext[1024];
 scanf("%s",plaintext);
 encrypt(plaintext,strlen(plaintext));
 ...
}

Memory Write

Memory Read

Read-after-write
dependence

 20

§ Goal: make the PDG construction efficient and sound
–  For each parameter of a function, we build a formal parameter tree according to the

parameter’s type

–  Similarly, at a call site of a function, we build a parameter tree for every argument

–  A caller and its callee can be connected by connecting the corresponding nodes in the
actual and formal parameter trees

§ Our tree representation generalizes the object-tree approach and deals with
circular data structures resulting from pointers
–  Slicing Objects Using System Dependence Graphs. D. Liang and M.J. Harrold

 (ICSM 1998)

–  Prior work did not cover pointers at the language level

Parameter Trees

 21

Parameter Tree: Example

call encypt

encypt

char* cipher;
char* key;  

void encrypt(char *plain, int n){
 cipher =(char*)malloc(n);
 for (i = 0; i < n; i++)
 cipher[i] = plain[i] ^ key[i];
}

void main (){
 char plaintext[1024];
 scanf("%s",plaintext);
 encrypt(plaintext,strlen(plaintext));
 ...
}

plain

*plain

n

strlen(plaintext) plaintext

*plaintext

 22

No parameter trees: O(n*m) edges

Benefits of Parameter Trees

Write 1

Write 2

Write n

Read 1

Read 2

Read m

caller callee

Write 1

Write 2

Write n

Actual
 Tree

Formal
 Tree

Read 1

Read 2

Read m

caller callee

With parameter tree: O(n+m) edges

§ Avoid global pointer analysis

– only intra-procedural pointers analysis is needed

§ Reduce the number of dependence edges: suppose n writes and m reads

 23

§ After the PDG construction, we perform PDG-based partitioning

§ Input: sensitive and declassification nodes

§ Output: two partitions
– each partition is a set of functions and global variables

§ Potential problem: only raw partitions can be generated
–  Inter-module communication overhead may be huge…

– e.g. If we partition a program with 1000 functions into two, we may get a partition
with 600 functions and another partition with 400 functions

PDG-based Partitioning

 24

§ PDG-based partitioning may give us a very awkward result
– e.g. a sort function inside a 3-level loop is called remotely
§ To balance the security and performance, we use declassification to
prevent some sensitive dataflows

§ Example:

Use declassification to adjust the partitioning boundary

bool authenticate(char* s1, char* s2){…}
…  
for(…){

 if(authenticate(password,input) == true){…}
}  

(We can declassify authenticate’s return value since there isn’t too much sensitive
information leakage here – should limit number of calls to authenticate)

1 byte only

 25

PDG-based Partitioning: Example

f1

f2

f4 f5

f3

f6

Sensitive data

Declassification

Partitioning
boundary

 26

§ Why we need to know the buffer size?
–  When pointers are passed across the partition boundary, we deep copy pointers and

their underlying buffers
§ How to calculate the buffer size?

–  Use bounds tracking tools

§ Several tools for enforcing memory safety track bounds at runtime

§ However, enforcing memory safety incurs high performance overhead
–  E.g. SoftBound’s performance overhead on the SPEC and Olden benchmarks is 67%

on average

§ Improvement
–  For marshalling and unmarshalling it is necessary to perform only bounds tracking, but not

bounds checking
–  We care about only the bounds of pointers that can cross the boundary of partitions

Selective Pointer Bounds Tracking

 27

Selective Pointer Bounds Tracking

Insensitive Partition Sensitive Partition

Partitioning boundary

p

q We need to track the
bounds of only the
colored pointers

Step 1
Find pointers
that are sent
across the
boundary

Step 2
Do backward
propagation to
find all BR pointers

 28

§ Since partitions are loaded into separate processes, some function
calls are turned into Remote Procedure Calls (RPCs)
– Straightforward for values of most data types, including integers, arrays of fixed

sizes, and structs
– For pointers, the underlying buffer sizes can be tracked with SPBT

§ When a pointer is passed across the boundary, we perform deep
copying
– After marshalling, arguments of a function call are encoded as a byte array,

which is sent to the receiver via the help of an RPC library

Automatic Support of Marshalling and Unmarshalling

 29

§ We implemented PtrSplit on LLVM 3.5, which supports both DSA alias
analysis and SoftBound
– SoftBound keeps the bound information as metadata for each pointer
– All bounds checking operations removed
– Only BR-pointers are instrumented
– RPC library: TI-RPC
§ Robustness testing

– 8 benchmarks from SPECCPU2006
§ Security testing

– 4 security-sensitive programs

Experiments

 30

§ Sensitive data: authentication file

§ Declassification: the return result (integer) of function auth_check

§ Full pointer bounds tracking overhead : 56.3%
– Selective pointer bounds tracking overhead: 3.6%

§ A total of 5 out of 145 functions are marked sensitive
– Total overhead: 8.8%

Example: thttpd

 31

Result: Security-sensitive Programs

Program Sensitive Data Declassifications Total
Functions

Sensitive
Functions

ssh Private key file 2 1235 12
wget Downloaded file 2 666 8
thttpd Authentication file 1 145 5
telnet Received data from server 3 180 11

Program Total/BR pointers Full PBT
overhead

Selective PBT
overhead

Total overhead

ssh 21020/591 45.0% 2.6% 7.4%
wget 14939/466 52.5% 3.4% 6.5%
thttpd 3068/189 56.3% 3.6% 8.8%
telnet 2068/233 74.1% 5.1% 9.6%

Selective bounds tacking greatly reduced overhead

 32

§ Not suitable for security experiments, only used for correctness testing

§ Use randomly chosen data as the partitioning start

§ Average full pointer bounds tracking overhead : 136.2%
– Average selective pointer bounds tracking overhead: 7.2%

§ Average total overhead: 33.8%

Experiments: SPECCPU 2006 programs

 33

§ Multi-threading support

§ More efficient bounds-tracking
– LowFat Pointer (NDSS 2017).

– Checked C (still in development)

§ Automatic inference of sensitive data and declassifications
– Automating Security Mediation Placement (ESOP 2010).

Future Work

 34

Thank you!

Q&A

