
Toward
Automated Info-Flow
Integrity Verification
(or, Fixing your security policy)

Umesh Shankar (UC Berkeley)
Trent Jaeger (Penn State / IBM)

Reiner Sailer (IBM)

The goal, with an example

Untrusted
user process

setuid-root
cron job

Trusted
OpenSSH daemon

write write

read

sshd_config

Integrity property: Trusted processes don’t depend on untrusted ones

X

File permissions don’t reveal the problem

Legal vs. illegal flows

Privileged
OpenSSH

User process

Root shell

Filter

Bad case:

Existing models either:

a)  don’t correctly classify

b)  require extra work

Unprivileged OpenSSH

Network

Our new integrity model: CW-Lite

  Motivation: previous models aren’t practical

  Preserve info-flow rules of Clark-Wilson
  Filter untrusted inputs to trusted processes

  But relax two constraints:
  Don’t require all interfaces to perform filtering
  Check existence of filters, not correctness

Contributions

  Useful middle ground (C-W vs. nothing)
  Usable with today’s apps and OS
  Amenable to automated verification
  Tools to detect and fix integrity violations
  Found several problems with OpenSSH

policy in Fedora Linux

Verifying CW-Lite (overview)

1.  Build information-flow graph
2.  Find potentially illegal flows

  Use Gokyo policy analysis tool
3.  If needed, fix security policy and repeat

The OS View: Process info-flow

Privileged OpenSSH

User shell

Network

Root shell

Unprivileged OpenSSH

Bad case:

Filter is
 invisible

to OS

Terminology

  Subject = process
  Object = file, pipe, shared memory, etc.
  Subject Type = process security label
  Object Type = a label on each object
  Permissions =

(subject type, operation, object type)

  Example: (sshd, read, sshd_config_file)

Information flow from policy

  SELinux implements complete mediation
  So all information flows are exposed
Inferring information flows:
(Subject S can write to object O ∧

 Subject T can read from O)
 ⇔ Information flow from S to T

  We use the Gokyo tool (Jaeger+ ’03) to do
this step statically

Exposing filtering interfaces

  MAC system can’t see filtering interfaces
  Permissions are per-process, not per-interface

  Solution: Send hint from inside the process
  Programmer adds annotation to filtered interface

  Use two subject types for each process
  Default subject type allows inputs only from TCB
  Filtering interfaces use filtering subject type

which enables additional permissions

Subject type info flow graph

Privileged OpenSSH
(filtering)

Privileged OpenSSH

User shell

Network

Root shell

Unprivileged OpenSSH

Bad case:

Enabling filtering subject types

  SELinux kernel mod enables two subject
types (default & filtering) for each process

  User library extension adds
  Ability to switch between both subject types
  DO_FILTER convenience macro

DO_FILTER(f()) :=
Enable filtering subject type
Call f()
Disable filtering subject type

Who has to do what

Identify filtering interfaces

Add DO_FILTER annotation

Split permissions among
two subject types

Choose a TCB
one time for all apps

Run Gokyo on security policy

Fix Errors:
(1) Remove offending apps

(2) Remove perms
(3) Add to TCB

Done Errors?

Developer System Administrator

No

Yes

Finding filtering interfaces

  Developer analyzes default policy
  Untrusted input permission found

  Where is it used in the program?
  Is it really necessary? If so, it should be filtered

  New tracing function to help diagnosis
  SELinux kernel modification
  Traps into debugger when that permission used

Filtering Interface Example

Source Code

conn = accept()
// accept() fails
get_request_sanitized(conn)

Security Policy (default DENY)

Apache: ALLOW read httpd.conf
// Problem: network not in TCB
Apache: ALLOW accept

Source Code

DO_FILTER(conn = accept())
// accept() succeeds
get_request_sanitized(conn)

Security Policy (default DENY)

Apache: ALLOW read httpd.conf
// Apache-filter: non-TCB OK
Apache-filter: ALLOW accept

BEFORE AFTER

Example: OpenSSH — Approach

  Security-critical, privilege-separated
  Handwritten security policy
  4 processes: listen, priv, net, user

Check untrusted flows to priv, listen
1.  Define TCB: kernel, init, etc.
2.  Run Gokyo
3.  If conflicts exist: classify, resolve, repeat

Example: OpenSSH — Results

  Analyzed default SELinux policy in Fedora
  Gokyo yielded 20 conflicts
  Three kinds of solutions

a)  Remove offending applications (e.g. rlogind)
b)  Disable optional components
c)  Remove unnecessary permissions

Conclusion

  CW-Lite provides a useful information flow
guarantee for existing systems

  Trades small developer effort for
automated verification by sysadmins

  Helps expose trust relationships
  Using our tools, we found configuration

errors in OpenSSH in a real distribution

Thanks!

Related Work

  Integrity Models
  Biba ’75, Clark-Wilson ’87, LOMAC ’00,

Caernarvon ’00

  Information Flow
  Denning ’76 (Info flow rules as lattice constraints)
  Li & Zdancewic ’05 (Type checking for info-flow)
  Chow et al. ’04 (Whole-system information flow)

Related Directions

  The dual problem: secrecy
  Paper at ICC ’06 (Shankar and Wagner)

  Attestation of the CW-Lite property
  Useful for distributed systems, corporate LANs
  Allows checking integrity of relevant processes

on a machine being brought in
  Paper in submission (Jaeger, Sailer, Shankar)

