
A Secure Identity-Based Capability System

Li Gong

University of Cambridge Computer Laboratory
Cambridge CB2 3QG, England

Abstract
We present the design of an Identity-based CAPa-

bility protection system ICAP, which is aimed at a dis-
tributed system in a network environment. The seman-
tics of traditional capabilities are modified to incorporate
subject identities. This enables the monitoring, mediat-
ing, and recording of capability propagations to enforce
security policies. It also supports administrative activ-
ities such as traceability. We have developed an excep-
tion list approach to achieve rapid revocation and the
idea of capability propagation trees for complete revoca-
tion. Compared with existing capability system designs,
ICAP requires much less storage and has the potential
of lower cost and better real-time performance. We pro-
pose to expand Kain and Landwehr’s design taxonomy
of capability-based systems to cover a wider range of de-
signs.

Introduction
Access control is a fundamental mechanism to main-

tain security in computer systems. It is the process that
decides who is authorized to have what access rights on
which objects with respect to some security models and
policies. A security model and a security policy are dif-
ferent concepts although they are closely related. In this
paper however, it will suffice to use them interchange-
ably. Security models are guidelines to direct system
designs and also the standards by which a system’s se-
curity properties can be evaluated. For example, in the
popular Bell-LaPadula model (81, each subject (process
or user) is assigned a clearance level and each object (file,
data segment) is attached a security level like top secret
or classified. A *-property requires that a subject can
only write to an object at a level at least as high as itself
and it can only read from an object at a level at most as
high as itself. This ensures that information only flows
upwards. It is referred to as write-up and read-down.

Many systems use Lampson’s access matrix [7] to rep-
resent and interpret the particular security policy. In the
matrix, the rows represent subjects and columns objects.

The access rights that a subject holds for an object can
be found at the intersection of the row and the column
belonging to the subject and the object. It is complex
to manipulate the matrix directly because the number
of objects can be very large. Also a matrix for a real
system tends to be very sparse, so most systems do not
store the access rights in a matrix form. Rather, they
use either an access control list approach or a capability
approach. In the access control list approach, the ma-
trix is viewed by column. Each object is associated with
an access control list which stores the subjects and their
access rights for the object. The list is checked to see
whether to grant an access. In the capability approach,
the matrix is viewed by row. Each subject is associated
with a capability list which stores its access rights to all
concerned objects. Possessing a capability is the proof of
possessing the corresponding access rights.

In a distributed system in a network environment,
both approaches have their merits. An access control
list approach implements some centralized control and
supports administrative activities better. For example,
it can easily answer questions such as which subjects have
what access to a particular object, which is a commonly
asked question when something goes wrong. The ability
to answer this is called traceability.

On the other hand, checking the validity of a capa-
bility is cheaper because it can be done locally, whereas
in the access control list approach either an expensive
replication or a slow centralized check has to be done.
Another important feature of a capability system is that
it supports better both the least-privilege principle and
protected subsystems. These limit the damage when pro-
tection is partially compromised. Moreover, a capability
can be easily timestamped or forwarded to a sub-server
as an authorization to carry out a task. Also, the fail-
ure behavior may be better. For instance, in a scheme
where capabilities can be precomputed and distributed
as certificates, the protocol works even when the authen-
tication server is not available. However, an unmodified
capability system cannot solve the confinement problem,
the problem of confining unauthorized information flow
161. And it cannot express specific denial of access rights,
which might be useful in some cases.

CH2703-7/89/0000/0056$01.00 0 1989 IEEE
56

Authorized licensed use limited to: Penn State University. Downloaded on March 10,2010 at 13:13:55 EST from IEEE Xplore. Restrictions apply.

It seems clear that merging the two approaches can
yield better systems than using either one in isolation.
Karger and Herbert [4,5] designed and implemented an
augmented capability architecture to support lattice se-
curity and traceability of access. The idea was to use
capability-based protection at the lowest level for imple-
menting confined domains, in support of access control
lists for expressing security policies outside the security
kernel. Their design was for a hardware-supported cen-
tralized system.

We aim at a distributed network environment and
merge the two approaches another way. In the Identity-
based CAPability system ICAP, access control lists are
in support of the capability protection mechanism and
nicely solve the revocation problem. The design can en-
force security policies and solve the confinement problem.
It also works for a centralized system. It is expected to
have satisfactory performance. In the following sections,
we first examine in detail the weakness of traditional
capability systems. Then we show how to incorporate
identities and access control lists to solve the problems
of confinement and capability revocation. We also dis-
cuss related issues including performance. After that, we
recall the taxonomy for capability-based systems [3] and
examine ICAP in its context. We propose expansion?
which may allow new designs.

Capability Systems - -
For simplicity, it is sufficient to examine the case

where a capability describes a set of access rights for
an object. An object is a data segment which may also
contain security attributes such as access rights or other
access control information. The abstract model of the
environment is a distributed system in an open network
where an object server provides access to data segments
for clients. Any other servers will be introduced explic-
itly.

A classic capability is represented as

(Object, Rights, Random)

in which the first item is the name of the object and the
second is the set of access rights. The third is a random
number to prevent forgery and is usually the result of a
one-way function f ,

Random = f (Object, Rights)

Here f can be a publicly-known algorithm. It should not
be based on other secret keys because key distribution
introduces other difficulties. Its requirements are that it
is computationally infeasible to inverse f and, given a
pair of input and matching output it is infeasible to find
a second input which gets the same output. There have
been many practical designs for such functions. When

an access request arrives at the server together with a
capability, the one-way function f is run to check the
result against the random number to detect tampering.
If the capability is valid, the access is granted to the
client.

Boebert made clear in [l] that an unmodified or clas-
sic capability system can not enforce the *-property or
solve the confinement problem. The main pitfall of a
classic capability system is that “the right to exercise ac-
cess carries with it the right to grant access”. Since a ca-
pability is just a bit string, it can propagate in many ways
without the detection of the kernel or the server. Thus al-
though the grant and take capabilities in the Take-Grant
model [lo] specify the possible capability propagations
they can not limit propagations because they are capa-
bilities themselves. Scrambling capabilities as in Amoeba
[9] prevents forgery but does not limit propagation be-
cause a principle in capability systems has been that
whoever holds a capability has the right to use it. In
other words, capabilities are identity independent. One
of the difficulties in implementing Clark and Wilson’s
commercial model [2] is the difficulty of certifying that a
transformation procedure must not pass its access rights
for a constrained data item to the other non-certified pro-
cedures.

To support security policies, classic systems have to
be modified to control capability propagations. Some
kind of check against security policy has to be done some-
where, if not everywhere, in the lifetime of the capabil-
ities. This is reflected in a taxonomy for capability sys-
tems [3]. Karger and Herbert [4,5] took an approach
where subjects can pass their capabilities freely as usual,
but when a capability is used to request an access, the
security kernel must check whether the access should be
granted according to the security policy. In other words,
holding a capability is no longer both necessary and suf-
ficient to access an object as in classic systems. It is now
only necessary. The policy is represented by an access
control list at a higher level.

A different approach is taken in the ICAP design.
When a capability is to be propagated, the kernel or an
access control server, which may or may not be the ob-
ject server, checks to see whether to allow the propaga-
tion, according to the security policy. The object server
does not check against the security policy when a capa-
bility is later used for access. By monitoring capability
propagations, solving the certification difficulty in [2] is
trivial. The intuitive motive of this scheme is the ob-
servation that the number of capability propagations is
usually much less than the number of their uses so that
it seems more economic to check the security policy at
propagation time than at access time; moreover, the real
time response will be better if the security policy, which
may be complex and expensive to check, is checked at
propagation time. In some situations this can be done
well in advance of access time.

Authorized licensed use limited to: Penn State University. Downloaded on March 10,2010 at 13:13:55 EST from IEEE Xplore. Restrictions apply.

Note that in hardware-supported centralized systems,
very tight control can be implemented to the extent that
capabilities have to be prepared by hardware, so that
malicious subjects cannot supply false ones. In a net-
work capability system however, capabilities are in user
space. When nodes can be compromised and lines can be
corrupted, false capabilities can be presented to servers.
In such a case, a technique such as the unconfined right
in Hydra, which is meant to disable a capability propa-
gation, has no real effect. Some soft protection measures
have to be implemented.

The ICAP Architecture
We make the assumption that proper authentication

is done, in the belief that in an open environment identi-
fying subjects is necessary and the first step in enforcing
any security measures or any administrative activities.
We use object server to refer to the manager who medi-
ates the access to objects. It can be a kernel or a file
server.

Basic Structure

Generally a capability is a bit string and can propa-
gate in many ways without detection, or in other words,
the server normally cannot monitor and mediate capa-
bility propagations. In ICAP, a capability is created in
a way that it will fail the validity check when used by
processes of users other than the owner. Only the server
can propagate a valid capability. An analog is a ticket
embedded with a photo of its legitimate holder. Peo-
ple other than the ticket holder cannot use the ticket if
the photo is attached in an unforgeable way. Only an
appropriate authority can produce valid tickets.

There is a fundamental difference between a classic
system and ICAP in the structure of capabilities. In the
former case, for each object one capability is created for
each different set of access rights that is required, and
the capabilities that are kept by the server and other
subjects for the same set of rights are the same. For ex-
ample, if subject S1 possesses a read only right and S2
possesses a read and write right for an object, the server
has to have two different capabilities C1 and C2. S1
holds C1 and S2 holds C2. In ICAP, only one capability
for each object is stored at the server and different sub-
jects’ capabilities for the same object are distinct. This
is achieved by changing the semantics of those items in
traditional capabilities to incorporate identities, maybe
the owner-id’s, into the capabilities.

When the server creates a new object on behalf of
client C1, an internal capability is created as

(0 bject , RandomO)

and stored in the server’s internal table. As usual this

table is protected against tampering and leakage. C1 is
sent an ezternal capability

(Object, Rights, Randoml)

which looks exactly the same as a classic capability but

Randoml = f (Cl , Object, Rights, RandomO)

When C1 presents the capability later, the server runs
the one-way function f to check its validity. Note the
number Random0 should also possess a kind of freshness
to counter a playback attack. For example it could have
a timestamp. We do not further discuss this side issue.

Because the internal random number is kept secret,
the external capabilities are protected against forgery.
Moreover, since proper authentication is done, subjects
cannot masquerade as others. Another client C2 cannot
use this capability even if it possesses a copy because
the identities are different, hence the results of applying
f will be different. Any valid propagation has to be
completed by the server rather than by the clients. In
other words, the server can monitor and mediate any
capability propagations.

Propagation

When C1 wants to pass

(Object, Rights, Randoml)

to a process owned by C2, it must explicitly present the
request to the server. If the request complies with the
security policy, the server retrieves the secret Random0
from its internal table, creates

(Object, Rights, Random2)

where

Random2 = f (C2, Object, Rights, RandomO)

and passes it to C2. It is important to point out that the
storage at the server is much less than in other schemes.
The reasons are that only one copy of an internal ca-
pability is stored for each object rather than for each
different capability which corresponds to a unique set
of access rights for that object, and an internal capabil-
ity is shorter than a normal capability since it does not
store any information like access rights. Moreover, fewer
copies of capabilities are stored in user space because in
ICAP at propagation time a client’s capabilities for an
object can be easily combined into one.

An alternative for the propagation mechanism is when
C1 wants to pass a capability to C2, it signs such a re-
quest and sends it to C2 instead of the server. When C2
wants to use the capability for the firat time, it presents
the request to the server. The server checks the signa-

58

Authorized licensed use limited to: Penn State University. Downloaded on March 10,2010 at 13:13:55 EST from IEEE Xplore. Restrictions apply.

ture and the policy to see whether to grant the access.
If the answer is positive, it allows the access, creates and
returns a new capability to C2. This saves at least one
message in normal situations and invokes the authenti-
cation mechanism less, but causes a little overhead and
delay when access is requested the first time. These two
alternatives can be combined in such a way that an ap-
propriate one is chosen for each particular propagation.
Note that signing messages has to be done in a real im-
plementation anyway unless the links are absolutely se-
cure. For signature schemes please refer to any standard
literature.

The cascaded authentication [ll] using a mechanism
called “passport” can be an underlying technique to sup-
port our propagation mechanism. However, we suggest
that what can be done to the passport at each tran-
sit point be in accordance with some policy rather than
simply further restricted. Please see ICAP’ answer to
the taxonomy question 4 in the next section for more
discussion on this issue.

The following diagram is an illustration of the differ-
ent actions taken by the discussed systems at the prop-
agation times and access times. S is the server, C1 and
C2 are clients, msgl to msg3 are messages.

0
\ \

-g k2
@ msgl * @

A classic capability system.

msgl : C1 propagates a capability capl to C2.
msg2 : C2 requests the access by presenting capl

msg3 : S checks the validity of capl and grants
to s.

access.

Karger’s SCAP.

msgl : C1 propagates capl to C2.
msg2 : C2 requests the access by presenting capl

to s.
msg3 : S checks both capl’s validity and whether

the access complies with the security policy.
If so it grants the access.

Our ICAP.

msgl : C1 passes to C2 a signed message which
requests the server to pass to C2 a set of access
rights for an object.

msg2 : When C2 wants to access the object for the
first time it requests the access by presenting
msgl to s.

msg3 : S checks the signature and the security
policy. If the access is granted, S allows the
access, creates and returns a new capability
cap2 to C2.

later access: C2 only needs to present cap2 to S
(msg2) and its validity is checked (msg3).

Revocation

One major problem with capability systems is revoca-
tion, i.e., withdrawing capabilities granted earlier. When
an access right is revoked, in an access control list scheme
the only job is to update the corresponding entries in the
lists. However in a classic capability system, revocation
is difficult because capabilities can be copied and stored
freely and there is no way to record these activities and
it is impractical to search the entire system and inval-
idate all those copies. Existing revocation schemes in-
clude the back pointers in Multics, Redell’s indirection,
and Karger’s chaining method and eventcounts [5].

ICAP uses an exception list and propagation tree
scheme. An internal capability has an associated excep-
tion list which specifies the current policy decision like
“client C’s capability for this object has been revoked.”
When C1 wants to revoke a capability it gave C2 earlier,
it presents the request to the server. The server then up-
dates the corresponding list. When an access is required,
both the exception list and the capability’s validity are
checked. These can be done in parallel.

To make sure that only the ancestors, maybe plus a
few specially assigned security officers, can revoke, other

identities can be embedded in an external capability to
record from where it is inherited. This mechanism can
be nested with a depth which is implementation specific.
In this case, a capability passed from C1 to C2 and then
to C3 would look like

(Object, Rights, C1, C2, C3, Random3)

where

Random3 = f (Cl , C2,C3,Object, Rights, RandomO)

This is a tree structure which records the path of capa-
bility propagations. We call it a propagation tree. When
something goes wrong, it is straightforward to know from
the access control lists who have what access to an ob-
ject. In addition, it is easy to know from the propagation
trees how the access rights were propagated. Note other
information like access rights are not stored in the tree.
And, if only parents can revoke, the depth will be a fixed
length of 2 and computations are still simple.

In normal situations, fixed length capabilities are more
convenient. An alternative scheme is to store the tree at

59

Authorized licensed use limited to: Penn State University. Downloaded on March 10,2010 at 13:13:55 EST from IEEE Xplore. Restrictions apply.

a server instead. This is in fact a better approach be-
cause it saves storage on the whole. Now each branch
of the tree is stored only once, instead of once in every
descendent external capability. It also speeds up the va-
lidity checking procedure since the computation of the
one-way function f will be simpler. It is interesting to
point out that if access rights are also stored in the tree, it
is in theory unnecessary to physically pass around copies
of capabilities because the server can check the tree ev-
ery time an access is required. This consumes a little
more storage at the server, slows down the service a lit-
tle only if the tree is large, but saves the transmission of
the capabilities and the storage in client space. It is not
surprising that this particular version is a modified ac-
cess control list scheme which also records access rights
inheritance. Combining the above ideas, our final scheme
is as follows.

Summary of ICAP

In ICAP, we have a server called the access control
server ACS, which may or may not be the same as the ob-
ject server OS. In the ICAP design, one ACS is supposed
to support more than one OS. This also makes possible
to distribute and replicate OS while maintaining ACS
centralized. This makes it easier to provide adequate
physical protection. However, it is sufficient to consider
only one OS. OS stores the internal capabilities and their
associated exception lists. ACS stores a complete access
control list to represent and interpret the security policy.
It also stores the propagation trees.

When a new object is created, OS creates a new in-
ternal capability and reports this to ACS. ACS then cre-
ates a new entry in the access control list. It can create
a root for the propagation tree as well, although this can
be done later at the first propagation time.

When a capability propagation is requested, includ-
ing the case when a client requires more rights for itself,
OS asks ACS whether the propagation is in accordance
with the policy. If so, ACS records this in the corre-
sponding propagation tree. If OS gets a positive reply,
it grants access and creates a new capability. OS can do
the creation while waiting for the reply if it would be idle
otherwise. Note that if the concerned client has already
got a capability for that object, it can choose to request
a new capability with all the access rights granted both
earlier and at this time. Note that the client does not
have to search its capability list and supply the servers
with the access rights it already has. ACS knows about
them.

When a revocation is requested, OS adds it onto the
exception list and marks it as temporary, pending the
concerned access. It then consults ACS as to whether
the revocation is legal. ACS checks the corresponding
propagation tree and replies. If it is illegal, OS simply
resolves the pending access. If legal, OS marks it perma-

nent and at the same time ACS can choose to do the full
revocation in background as described below in detail.
When all the capabilities are revoked or recomputed, OS
replaces the old internal capability by the new one and
deletes the entry from the exception list. Revocation
requests are logged and the log will be continuously re-
viewed by security officers.

Since it stores the propagation trees, ACS has enough
information to take any revocation measures. For ex-
ample, suppose a capability is associated with a count
which stores the number of current valid capabilities for
the same object. When revoking, if the count is small,
ACS can advise OS to create a new capability which ef-
fectively means that all capabilities for the same object
have to be recomputed. It then goes to all subjects that
hold capabilities for the object and replaces the old ones.
When the count is large and the exception list is short, it
can choose to just add an entry to the list for the mean-
time and postpone the full revocation. The relationships
between the two servers are illustrated in the diagram
below.

Creation 1. C requests to create a new object (msgl).

2.

3.

Access

OS creates the object together with a new
internal capability and reports this to ACS
(msg2). It also creates and returns an exter-
nal capability to C.
ACS updates the access control list. It can
create a root for the propagation tree of this
object.

1. C presents the external capability (msgl).
OS retrieves the corresponding internal capa-
bility and runs the one-way function to do a
validity check and decide whether to grant ac-
cess.

Propagat ion 1. C requests a propagation (msgl).

2. OS asks ACS whether the request is allowed
by the policy (msg2).

3. ACS checks the policy and replies accordingly
(msg3). If it is allowed, ACS records the prop-
agation in the corresponding tree.

4. Upon getting a positive reply OS creates and
returns a new external capability.

60

Authorized licensed use limited to: Penn State University. Downloaded on March 10,2010 at 13:13:55 EST from IEEE Xplore. Restrictions apply.

Revocation 1. C requests a revocation (msgl).

2. OS updates the exception list pending the ac-
cess temporarily. Then it consults ACS as to
whether the revocation is legal (msg2).

3. ACS checks the propagation tree and replies
(msg3). If it is legal, ACS decides whether to
arrange for a full revocation.

4. Upon receiving msg3, if the revocation is le-
gal, OS marks it permanent and notifies C if
necessary; otherwise, it resolves the pending
access.

5 . When a full revocation is done, ACS notifies
OS. OS replaces the old capability in its in-
ternal table and deletes the entry from the
exception list.

Our scheme has several advantages. First, security pol-
icy checking is done at propagation time. When an ac-
cess is requested, only the validity of the capability is
checked. This check only runs a one-way function which
can be very fast even when done in software. This is
more economic than checking the policy at access time
because the number of access requests normally will be
much greater than that of propagation requests. It is
obvious from the notes of the above diagram that the
most common request, access, needs the least number of
messages.

Second, the exception list supports rapid revocation
which has been difficult in classic capability systems.
The exception lists are expected to be short. ‘ lhe ex-
ception lists can also support specific denial of access,
which is impossible in a classic capability system.

Third, the access control server can easily answer ad-
ministrative questions like who have what access to an
object and how the access was propagated. It also com-
pletes the revocation job nicely in the background.

Finally, when a revocation is marked in the exception
list, this revocation can be withdrawn. This is definitely
an advantage because a false alarm or an error can be
resolved without invoking the expensive full revocation
mechanism.

Discussion

Performance Performance is always a major concern
with capability-based systems. Two of the major tasks
are checking and revoking. In a secure capability system,
these two kinds of checks are essential. One is to check
the validity of the capabilities against forgery and the
other is to check whether the use of the capabilities com-
plies with the security policy. The validity check must
be done every time a capability is used. However, the
policy check can be done either at the access time as in
Karger’s SCAP, or at the propagation time as in ICAP;

the capability designs have to be different of course. We
believe that checking the security policy at each propa-
gation time is more economic than checking it at every
access time because one single propagation is likely to
correspond to more than one access. Since the policy
can be complex and thus expensive to check, our scheme
saves a lot. It has to be pointed out that SCAP uses a
cache to reduce policy checks. Our scheme can be fast
without a cache. Moreover, it is only when capabilities
propagate across security domains that the security pol-
icy is checked. This further reduces the number of policy
checks.

The exception lists support rapid revocation. It is
convenient and can be very fast. With little extra cost of
storing the short lists, it ensures security while full revo-
cation is taking place in the background. Only a one-way
function is employed rather than an reversible encryption
algorithm thus a software implementation would be tol-
erable. Finally, a shorter internal capability table and
shorter external tables mean smaller storage and faster
searching and sorting. All these reduce the cost consid-
erably and give a potential for better real-time response.

Subject Representations Simple uid’s as identities may
not be sufficient if users are allowed to work at different
security levels. In this case, domain id’s rather than
uid’s are incorporated in the capabilities. A domain is
the Cartesian product of the set of user id’s, and that
of the working security clearance levels. The clearance
levels are mainly for non-discretionary control purposes
and the uid’s are mainly for discretionary control pul-
poses. A domain id is similar to a role. A subject can
act as different roles when working at different clearance
levels. Group-id can also be included for some widely
used objects. For example, to use the news facility, an
‘any” uid can be set up even for future users.

Discretionary Control Some discretionary control is
needed even in a military environment. For example,
a colonel may choose to report to a particular general
in a special4tuation. In ICAP, discretionary control is
built on top of the non-discretional control mechanisms
and is interpreted by the propagation constraints in the
security policy.

Protected Subsystems A type-id can be employed to
enforce security in abstract data types and object-oriented
programming. In such cases, there is a manager for each
type or software package which is given a unique type-
id. Once the type-id is embedded into a capability, the
capability is sealed. Only the appropriate type manager
can unseal the capability and get access to the object.
A similar kind of enter capability can be used to enforce
protected subsystems. A software package can be en-
tered only with its enter capability. This can implement
such requirements as that some operations can only be
done through a certified secure package.

61

Authorized licensed use limited to: Penn State University. Downloaded on March 10,2010 at 13:13:55 EST from IEEE Xplore. Restrictions apply.

Capability Expansions As said above, a capability can
be stamped to specify its lifetime. A capability can also
be passed to allow another party to carry out a task on
behalf of the capability owner. This particular capabil-
ity may have a lifetime as “only once”. Some hints or
addresses can also be associated with capabilities for lo-
cating purpose when objects can migrate. To do this,
the capability format has to be expanded and signature
schemes are involved. These techniques are not discussed
here.

Network Parti t ions In the presence of network parti-
tions, apart from other availability problems, a serious
threat is that a revocation request may fail to reach the
object server. A centralized access control list approach
has this problem too. However, the damage in ICAP
is limited to what the local object server can do. Some
administrative measures can be taken when serious par-
titions happen. It will help if the access control server
stores back-up copies of the internal tables and excep-
tion lists thus is able to reboot the object servers when-
ever necessary. In case the access control server is not
available to an object server, the object server may take
actions following some guidelines.

The Taxonomy and ICAP
Kain and Landwehr (3) developed a design taxonomy

for capability systems. It is based on selections from the
following questions and answers list. The answers for a
particular system reflect how well or poorly the system
can solve the confinement problem.

1. What happens when a capability is created ?

a. No access rights inserted.
b. Access rights inserted.

2. What happens to the prepared-for-access capabili-
ties describing a segment if the security attributes
of that segment are modified ?

a. Access rights not changed upon attribute change.
b. Capability flagged for future change upon at-

c. Access rights updated upon attribute change.

3. What happens to the located-in-segment capabili-
ties describing a segment if the security attributes
of that segment are modified ?

a. Access rights not changed upon attribute change.

b. Capability flagged for future change upon at-

c. Access rights updated upon attribute change,

tribute change.

tribute change.

4. What happens when a capability is copied ?

a. Access rights not changed.
b. Access rights further restricted by context rules.
c. Access rights set to the maximum consistent

d. Access guaranteed to be updated properly by
with the access rules set by the policy.

software.

What happens when a capability is prepared for
access ?

a. Access rights not changed.
b. Access rights restricted by the access rights pol-

c. Access rights set to the maximum consistent
icy.

with the security policy in force.

What happens when the processor attempts to ac-
cess an object ?

a. No checks made.

b. The access checked against the available access
rights.

c. The maximum possible rights computed and the
attempted access checked against these com-
puted rights.

The Honeywell Secure Ada Target SAT is aaaacb. An
unmodified capability machine, the Plessey System 250,
is ha(a or b)ab. The SCAP architecture is abbabb [5] .
Examining ICAP in their context, we find our answers
to question 1 to 3 fail to match the given choices. It
seems clear that ICAP is able to enforce security policies
including the *-property in the Bell-LaPadula model. We
thus propose to expand the taxonomy to include new
possible answers as given by ICAP in order to cover a
wider range of designs.

Answer t o 1. c. No access rights are needed when an
internal capability is created. Access rights are in-
serted for external capabilities.

Answer to 2. d. Access pending. Wait for new s e
curity policy interpretation to decide whether old
capabilities are to be revoked.

Answer to 3. d. Same as the answer to question 2.

Answer to 4. d. Only when a capability is to prop-
agate across a security domain, are access rights
set to the intersection of the required transferred
rights and the maximum consistent with the secu-
rity policy.

This answer to 4 seems to be a special case of the given
choice d. We would like to point out that it is inconve-
nient and unnecessary that only further restricted rights
can be transferred as in choice b. For instance, it is per-

62

Authorized licensed use limited to: Penn State University. Downloaded on March 10,2010 at 13:13:55 EST from IEEE Xplore. Restrictions apply.

fectly legal that a lower security level user writes to an
object that it has only a write capability and then trans-
fers a read capability to a chosen user at a higher level
to complete the information up-flow. An analogy is that
when an employee wants to complain about his direct
boss, he needs to be able to specify and complete the
capability transfer to a chosen superior.

Answer to 5. a. Access rights not changed.

Answer to 6. b. Access checked against the available
access rights.

Conclusion

A new design of an Identity-based CAPability pro-
tection system ICAP has been laid out. It incorporates
subject identities in the capabilities by simply modify-
ing the semantics of the items in a classic capability.
This enables the kernel or server to monitor, mediate,
and record capability propagations thus to enforce the
*-property in the Bell-LaPadula model or other security
policies. This design requires a very simple and short
internal capability table. For each object only one ca-
pability is stored at the server. The security policy is
only checked once at each propagation time. The excep-
tion list makes rapid revocation convenient. This list and
the propagation trees allow full revocation to be done ir
background. The trees and the full access list can sup-
port administration activities such as traceability. This
practical design potentially offers reduced cost and bet-
ter real-time response. The system remains to be imple-
mented to see how well it turns out in the real world. The
ICAP’s answers to the taxonomy questions fall out of the
range supplied by Kain and Landwehr. We propose to
expand their design taxonomy for capability-based sys-
tems to make new secure system designs possible.

Acknowledgement

We would like to thank Jean Bacon, Mike Burrows,
Paul Karger, Mark Lomas, and David Wheeler for help-
ful comments on the technical contents and presentation.

References
W.E. Boebert, “On the Inability of An Unmodi-
fied Capability Machine to Enforce the *-Property”,
Proceedings of the 7th DoD/NBS Computer Secu-
rity Conference, September, 1984.

D.D. Clark and D.R. Wilson, “A Comparison of
Commercial and Military Computer Security Poli-
cies”, Proceedings of the 1987 IEEE Symposium on
Security and Privacy, April, 1987.

[3] R.Y. Kain and C.E. Landwehr, “On Access Check-
ing in Capability-Based Systems”, IEEE Transac-
tions on Software Engineering, Vol. SE13, No.2,
February, 1987.

P.A. Karger and A.J. Herbert, “An Augmented Ca-
pability Architecture to Support Lattice Security
and Traceability of Access”, Proceedings of the 1984
IEEE Symposium on Security and Privacy, April,
1984.

P.A. Karger, “Improving Security and Performance
for Capability Systems”, Ph.D. thesis, also avail-
able as Technical Report No.149, University of Cam-
bridge Computer Laboratory, October, 1988.

B.W. Lampson, “A Note on the Confinement Prob-
lem”, CACM on Operating Systems, vo1.16, No.10,
October, 1973.

B.W. Lampson, “Protection”, Proceedings of the
5th Princeton Symposium on Information Sciences
and Systems, Princeton University, March, 1971,
reprinted in Operating Systems Review, Vol.8, No.1,
January, 1974.

18) C.E. Landwehr, “Formal Models for Computer Se-
curity”, ACM Computing Surveys, Vo1.13, No.3,
September, 198 1.

[9] S.J. Mullender, AS. Tanenbaum, and R. van Re-
nesse, “Using Sparse Capabilities in Distributed Op-
erating System”, Proceedings of the 6th Interna-
tional Conference on Distributed Computing Sys-
tems, May, 1986.

[lo] L. Snyder, “Formal Models of Capability-Based Pro-
tection Systems”, IEEE Transactions on Comput-
ers, Vol. C3, No.3, March, 1981.

111) K.R. Sollins, “Cascaded Authentication”, Proceed-
ings of the 1988 IEEE Symposium on Security and
Privacy, April, 1988.

63

Authorized licensed use limited to: Penn State University. Downloaded on March 10,2010 at 13:13:55 EST from IEEE Xplore. Restrictions apply.

