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Abstract 
We present the design of an Identity-based CAPa- 

bility protection system ICAP, which is aimed at a dis- 
tributed system in a network environment. The seman- 
tics of traditional capabilities are modified to incorporate 
subject identities. This enables the monitoring, mediat- 
ing, and recording of capability propagations to enforce 
security policies. It also supports administrative activ- 
ities such as traceability. We have developed an excep- 
tion list approach to achieve rapid revocation and the 
idea of capability propagation trees for complete revoca- 
tion. Compared with existing capability system designs, 
ICAP requires much less storage and has the potential 
of lower cost and better real-time performance. We pro- 
pose to expand Kain and Landwehr’s design taxonomy 
of capability-based systems to  cover a wider range of de- 
signs. 

Introduction 
Access control is a fundamental mechanism to main- 

tain security in computer systems. It is the process that 
decides who is authorized to have what access rights on 
which objects with respect to some security models and 
policies. A security model and a security policy are dif- 
ferent concepts although they are closely related. In this 
paper however, it will suffice to use them interchange- 
ably. Security models are guidelines to  direct system 
designs and also the standards by which a system’s se- 
curity properties can be evaluated. For example, in the 
popular Bell-LaPadula model (81, each subject (process 
or user) is assigned a clearance level and each object (file, 
data segment) is attached a security level like top secret 
or classified. A *-property requires that a subject can 
only write to an object at a level at least as high as itself 
and it can only read from an object at a level at most as 
high as itself. This ensures that information only flows 
upwards. It is referred to  as write-up and read-down. 

Many systems use Lampson’s access matrix [7] to rep- 
resent and interpret the particular security policy. In the 
matrix, the rows represent subjects and columns objects. 

The access rights that a subject holds for an object can 
be found at the intersection of the row and the column 
belonging to the subject and the object. It is complex 
to manipulate the matrix directly because the number 
of objects can be very large. Also a matrix for a real 
system tends to  be very sparse, so most systems do not 
store the access rights in a matrix form. Rather, they 
use either an access control list approach or a capability 
approach. In the access control list approach, the ma- 
trix is viewed by column. Each object is associated with 
an access control list which stores the subjects and their 
access rights for the object. The list is checked to see 
whether to grant an access. In the capability approach, 
the matrix is viewed by row. Each subject is associated 
with a capability list which stores its access rights to all 
concerned objects. Possessing a capability is the proof of 
possessing the corresponding access rights. 

In a distributed system in a network environment, 
both approaches have their merits. An access control 
list approach implements some centralized control and 
supports administrative activities better. For example, 
it can easily answer questions such as which subjects have 
what access to  a particular object, which is a commonly 
asked question when something goes wrong. The ability 
to answer this is called traceability. 

On the other hand, checking the validity of a capa- 
bility is cheaper because it can be done locally, whereas 
in the access control list approach either an expensive 
replication or a slow centralized check has to be done. 
Another important feature of a capability system is that 
it supports better both the least-privilege principle and 
protected subsystems. These limit the damage when pro- 
tection is partially compromised. Moreover, a capability 
can be easily timestamped or forwarded to a sub-server 
as an authorization to carry out a task. Also, the fail- 
ure behavior may be better. For instance, in a scheme 
where capabilities can be precomputed and distributed 
as certificates, the protocol works even when the authen- 
tication server is not available. However, an unmodified 
capability system cannot solve the confinement problem, 
the problem of confining unauthorized information flow 
161. And it cannot express specific denial of access rights, 
which might be useful in some cases. 
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It seems clear that merging the two approaches can 
yield better systems than using either one in isolation. 
Karger and Herbert [4,5] designed and implemented an 
augmented capability architecture to support lattice se- 
curity and traceability of access. The idea was to use 
capability-based protection at the lowest level for imple- 
menting confined domains, in support of access control 
lists for expressing security policies outside the security 
kernel. Their design was for a hardware-supported cen- 
tralized system. 

We aim at a distributed network environment and 
merge the two approaches another way. In the Identity- 
based CAPability system ICAP, access control lists are 
in support of the capability protection mechanism and 
nicely solve the revocation problem. The design can en- 
force security policies and solve the confinement problem. 
It also works for a centralized system. It is expected to 
have satisfactory performance. In the following sections, 
we first examine in detail the weakness of traditional 
capability systems. Then we show how to incorporate 
identities and access control lists to solve the problems 
of confinement and capability revocation. We also dis- 
cuss related issues including performance. After that, we 
recall the taxonomy for capability-based systems [3] and 
examine ICAP in its context. We propose expansion? 
which may allow new designs. 

Capability Systems - -  
For simplicity, it is sufficient to examine the case 

where a capability describes a set of access rights for 
an object. An object is a data segment which may also 
contain security attributes such as access rights or other 
access control information. The abstract model of the 
environment is a distributed system in an open network 
where an object server provides access to data segments 
for clients. Any other servers will be introduced explic- 
itly. 

A classic capability is represented as 

(Object, Rights, Random) 

in which the first item is the name of the object and the 
second is the set of access rights. The third is a random 
number to prevent forgery and is usually the result of a 
one-way function f ,  

Random = f (Object, Rights) 

Here f can be a publicly-known algorithm. It should not 
be based on other secret keys because key distribution 
introduces other difficulties. Its requirements are that it 
is computationally infeasible to inverse f and, given a 
pair of input and matching output it is infeasible to find 
a second input which gets the same output. There have 
been many practical designs for such functions. When 

an access request arrives at the server together with a 
capability, the one-way function f is run to check the 
result against the random number to detect tampering. 
If the capability is valid, the access is granted to the 
client. 

Boebert made clear in [l] that an unmodified or clas- 
sic capability system can not enforce the *-property or 
solve the confinement problem. The main pitfall of a 
classic capability system is that “the right to exercise ac- 
cess carries with it the right to grant access”. Since a ca- 
pability is just a bit string, it can propagate in many ways 
without the detection of the kernel or the server. Thus al- 
though the grant and take capabilities in the Take-Grant 
model [lo] specify the possible capability propagations 
they can not limit propagations because they are capa- 
bilities themselves. Scrambling capabilities as in Amoeba 
[9] prevents forgery but does not limit propagation be- 
cause a principle in capability systems has been that 
whoever holds a capability has the right to use it. In 
other words, capabilities are identity independent. One 
of the difficulties in implementing Clark and Wilson’s 
commercial model [2] is the difficulty of certifying that a 
transformation procedure must not pass its access rights 
for a constrained data item to the other non-certified pro- 
cedures. 

To support security policies, classic systems have to 
be modified to control capability propagations. Some 
kind of check against security policy has to be done some- 
where, if not everywhere, in the lifetime of the capabil- 
ities. This is reflected in a taxonomy for capability sys- 
tems [3]. Karger and Herbert [4,5] took an approach 
where subjects can pass their capabilities freely as usual, 
but when a capability is used to request an access, the 
security kernel must check whether the access should be 
granted according to the security policy. In other words, 
holding a capability is no longer both necessary and suf- 
ficient to access an object as in classic systems. It is now 
only necessary. The policy is represented by an access 
control list at a higher level. 

A different approach is taken in the ICAP design. 
When a capability is to be propagated, the kernel or an 
access control server, which may or may not be the ob- 
ject server, checks to  see whether to  allow the propaga- 
tion, according to  the security policy. The object server 
does not check against the security policy when a capa- 
bility is later used for access. By monitoring capability 
propagations, solving the certification difficulty in [2] is 
trivial. The intuitive motive of this scheme is the ob- 
servation that the number of capability propagations is 
usually much less than the number of their uses so that 
it seems more economic to check the security policy at 
propagation time than at access time; moreover, the real 
time response will be better if the security policy, which 
may be complex and expensive to check, is checked at 
propagation time. In some situations this can be done 
well in advance of access time. 
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Note that in hardware-supported centralized systems, 
very tight control can be implemented to the extent that 
capabilities have to be prepared by hardware, so that 
malicious subjects cannot supply false ones. In a net- 
work capability system however, capabilities are in user 
space. When nodes can be compromised and lines can be 
corrupted, false capabilities can be presented to servers. 
In such a case, a technique such as the unconfined right 
in Hydra, which is meant to disable a capability propa- 
gation, has no real effect. Some soft protection measures 
have to be implemented. 

The ICAP Architecture 
We make the assumption that proper authentication 

is done, in the belief that in an open environment identi- 
fying subjects is necessary and the first step in enforcing 
any security measures or any administrative activities. 
We use object server to refer to the manager who medi- 
ates the access to objects. It can be a kernel or a file 
server. 

Basic Structure 

Generally a capability is a bit string and can propa- 
gate in many ways without detection, or in other words, 
the server normally cannot monitor and mediate capa- 
bility propagations. In ICAP, a capability is created in 
a way that it will fail the validity check when used by 
processes of users other than the owner. Only the server 
can propagate a valid capability. An analog is a ticket 
embedded with a photo of its legitimate holder. Peo- 
ple other than the ticket holder cannot use the ticket if 
the photo is attached in an unforgeable way. Only an 
appropriate authority can produce valid tickets. 

There is a fundamental difference between a classic 
system and ICAP in the structure of capabilities. In the 
former case, for each object one capability is created for 
each different set of access rights that is required, and 
the capabilities that are kept by the server and other 
subjects for the same set of rights are the same. For ex- 
ample, if subject S1 possesses a read only right and S2 
possesses a read and write right for an object, the server 
has to have two different capabilities C1 and C2. S1 
holds C1 and S2 holds C2. In ICAP, only one capability 
for each object is stored at the server and different sub- 
jects’ capabilities for the same object are distinct. This 
is achieved by changing the semantics of those items in 
traditional capabilities to incorporate identities, maybe 
the owner-id’s, into the capabilities. 

When the server creates a new object on behalf of 
client C1, an internal capability is created as 

(0 bject , RandomO) 

and stored in the server’s internal table. As usual this 

table is protected against tampering and leakage. C1 is 
sent an ezternal capability 

(Object, Rights, Randoml) 

which looks exactly the same as a classic capability but 

Randoml = f (Cl ,  Object, Rights, RandomO) 

When C1 presents the capability later, the server runs 
the one-way function f to check its validity. Note the 
number Random0 should also possess a kind of freshness 
to counter a playback attack. For example it could have 
a timestamp. We do not further discuss this side issue. 

Because the internal random number is kept secret, 
the external capabilities are protected against forgery. 
Moreover, since proper authentication is done, subjects 
cannot masquerade as others. Another client C2 cannot 
use this capability even if it possesses a copy because 
the identities are different, hence the results of applying 
f will be different. Any valid propagation has to be 
completed by the server rather than by the clients. In 
other words, the server can monitor and mediate any 
capability propagations. 

Propagation 

When C1 wants to pass 

(Object, Rights, Randoml) 

to a process owned by C2, it must explicitly present the 
request to the server. If the request complies with the 
security policy, the server retrieves the secret Random0 
from its internal table, creates 

(Object, Rights, Random2) 

where 

Random2 = f (C2, Object, Rights, RandomO) 

and passes it to C2. It is important to point out that the 
storage at the server is much less than in other schemes. 
The reasons are that only one copy of an internal ca- 
pability is stored for each object rather than for each 
different capability which corresponds to a unique set 
of access rights for that object, and an internal capabil- 
ity is shorter than a normal capability since it does not 
store any information like access rights. Moreover, fewer 
copies of capabilities are stored in user space because in 
ICAP at propagation time a client’s capabilities for an 
object can be easily combined into one. 

An alternative for the propagation mechanism is when 
C1 wants to pass a capability to C2, it signs such a re- 
quest and sends it to C2 instead of the server. When C2 
wants to use the capability for the firat time, it presents 
the request to the server. The server checks the signa- 
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ture and the policy to see whether to grant the access. 
If the answer is positive, it allows the access, creates and 
returns a new capability to C2. This saves at least one 
message in normal situations and invokes the authenti- 
cation mechanism less, but causes a little overhead and 
delay when access is requested the first time. These two 
alternatives can be combined in such a way that an ap- 
propriate one is chosen for each particular propagation. 
Note that signing messages has to be done in a real im- 
plementation anyway unless the links are absolutely se- 
cure. For signature schemes please refer to any standard 
literature. 

The cascaded authentication [ll] using a mechanism 
called “passport” can be an underlying technique to sup- 
port our propagation mechanism. However, we suggest 
that what can be done to  the passport at each tran- 
sit point be in accordance with some policy rather than 
simply further restricted. Please see ICAP’ answer to 
the taxonomy question 4 in the next section for more 
discussion on this issue. 

The following diagram is an illustration of the differ- 
ent actions taken by the discussed systems at the prop- 
agation times and access times. S is the server, C1 and 
C2 are clients, msgl to msg3 are messages. 

0 
\ \  

-g k2 
@ msgl * @  

A classic capability system. 

msgl : C1 propagates a capability capl to C2. 
msg2 : C2 requests the access by presenting capl 

msg3 : S checks the validity of capl and grants 
to s. 

access. 

Karger’s SCAP. 

msgl : C1 propagates capl to C2. 
msg2 : C2 requests the access by presenting capl 

to s. 
msg3 : S checks both capl’s validity and whether 

the access complies with the security policy. 
If so it grants the access. 

Our ICAP. 

msgl : C1 passes to C2 a signed message which 
requests the server to pass to C2 a set of access 
rights for an object. 

msg2 : When C2 wants to access the object for the 
first time it requests the access by presenting 
msgl to s. 

msg3 : S checks the signature and the security 
policy. If the access is granted, S allows the 
access, creates and returns a new capability 
cap2 to C2. 

later access: C2 only needs to present cap2 to S 
(msg2) and its validity is checked (msg3). 

Revocation 

One major problem with capability systems is revoca- 
tion, i.e., withdrawing capabilities granted earlier. When 
an access right is revoked, in an access control list scheme 
the only job is to update the corresponding entries in the 
lists. However in a classic capability system, revocation 
is difficult because capabilities can be copied and stored 
freely and there is no way to record these activities and 
it is impractical to search the entire system and inval- 
idate all those copies. Existing revocation schemes in- 
clude the back pointers in Multics, Redell’s indirection, 
and Karger’s chaining method and eventcounts [5]. 

ICAP uses an exception list and propagation tree 
scheme. An internal capability has an associated excep- 
tion list which specifies the current policy decision like 
“client C’s capability for this object has been revoked.” 
When C1 wants to revoke a capability it gave C2 earlier, 
it presents the request to the server. The server then up- 
dates the corresponding list. When an access is required, 
both the exception list and the capability’s validity are 
checked. These can be done in parallel. 

To make sure that only the ancestors, maybe plus a 
few specially assigned security officers, can revoke, other 

identities can be embedded in an external capability to 
record from where it is inherited. This mechanism can 
be nested with a depth which is implementation specific. 
In this case, a capability passed from C1 to C2 and then 
to C3 would look like 

(Object, Rights, C1, C2, C3, Random3) 

where 

Random3 = f (Cl ,  C2,C3,Object, Rights, RandomO) 

This is a tree structure which records the path of capa- 
bility propagations. We call it a propagation tree. When 
something goes wrong, it is straightforward to know from 
the access control lists who have what access to an ob- 
ject. In addition, it is easy to know from the propagation 
trees how the access rights were propagated. Note other 
information like access rights are not stored in the tree. 
And, if only parents can revoke, the depth will be a fixed 
length of 2 and computations are still simple. 

In normal situations, fixed length capabilities are more 
convenient. An alternative scheme is to store the tree at 
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a server instead. This is in fact a better approach be- 
cause it saves storage on the whole. Now each branch 
of the tree is stored only once, instead of once in every 
descendent external capability. It also speeds up the va- 
lidity checking procedure since the computation of the 
one-way function f will be simpler. It is interesting to 
point out that if access rights are also stored in the tree, it 
is in theory unnecessary to physically pass around copies 
of capabilities because the server can check the tree ev- 
ery time an access is required. This consumes a little 
more storage at the server, slows down the service a lit- 
tle only if the tree is large, but saves the transmission of 
the capabilities and the storage in client space. It is not 
surprising that this particular version is a modified ac- 
cess control list scheme which also records access rights 
inheritance. Combining the above ideas, our final scheme 
is as follows. 

Summary of ICAP 

In ICAP, we have a server called the access control 
server ACS, which may or may not be the same as the ob- 
ject server OS. In the ICAP design, one ACS is supposed 
to support more than one OS. This also makes possible 
to distribute and replicate OS while maintaining ACS 
centralized. This makes it easier to provide adequate 
physical protection. However, it is sufficient to consider 
only one OS. OS stores the internal capabilities and their 
associated exception lists. ACS stores a complete access 
control list to represent and interpret the security policy. 
It also stores the propagation trees. 

When a new object is created, OS creates a new in- 
ternal capability and reports this to ACS. ACS then cre- 
ates a new entry in the access control list. It can create 
a root for the propagation tree as well, although this can 
be done later at the first propagation time. 

When a capability propagation is requested, includ- 
ing the case when a client requires more rights for itself, 
OS asks ACS whether the propagation is in accordance 
with the policy. If so, ACS records this in the corre- 
sponding propagation tree. If OS gets a positive reply, 
it grants access and creates a new capability. OS can do 
the creation while waiting for the reply if it would be idle 
otherwise. Note that if the concerned client has already 
got a capability for that object, it can choose to request 
a new capability with all the access rights granted both 
earlier and at  this time. Note that the client does not 
have to search its capability list and supply the servers 
with the access rights it already has. ACS knows about 
them. 

When a revocation is requested, OS adds it onto the 
exception list and marks it as temporary, pending the 
concerned access. It then consults ACS as to whether 
the revocation is legal. ACS checks the corresponding 
propagation tree and replies. If it is illegal, OS simply 
resolves the pending access. If legal, OS marks it perma- 

nent and at  the same time ACS can choose to do the full 
revocation in background as described below in detail. 
When all the capabilities are revoked or recomputed, OS 
replaces the old internal capability by the new one and 
deletes the entry from the exception list. Revocation 
requests are logged and the log will be continuously re- 
viewed by security officers. 

Since it stores the propagation trees, ACS has enough 
information to take any revocation measures. For ex- 
ample, suppose a capability is associated with a count 
which stores the number of current valid capabilities for 
the same object. When revoking, if the count is small, 
ACS can advise OS to create a new capability which ef- 
fectively means that all capabilities for the same object 
have to be recomputed. It then goes to all subjects that 
hold capabilities for the object and replaces the old ones. 
When the count is large and the exception list is short, it 
can choose to just add an entry to the list for the mean- 
time and postpone the full revocation. The relationships 
between the two servers are illustrated in the diagram 
below. 

Creation 1. C requests to create a new object (msgl). 

2. 

3. 

Access 

OS creates the object together with a new 
internal capability and reports this to ACS 
(msg2). It also creates and returns an exter- 
nal capability to C. 
ACS updates the access control list. It can 
create a root for the propagation tree of this 
object. 

1. C presents the external capability (msgl). 
OS retrieves the corresponding internal capa- 
bility and runs the one-way function to do a 
validity check and decide whether to grant ac- 
cess. 

Propagat ion  1. C requests a propagation (msgl). 

2. OS asks ACS whether the request is allowed 
by the policy (msg2). 

3. ACS checks the policy and replies accordingly 
(msg3). If it is allowed, ACS records the prop- 
agation in the corresponding tree. 

4. Upon getting a positive reply OS creates and 
returns a new external capability. 
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Revocation 1. C requests a revocation (msgl). 

2. OS updates the exception list pending the ac- 
cess temporarily. Then it consults ACS as to 
whether the revocation is legal (msg2). 

3. ACS checks the propagation tree and replies 
(msg3). If it is legal, ACS decides whether to 
arrange for a full revocation. 

4. Upon receiving msg3, if the revocation is le- 
gal, OS marks it permanent and notifies C if 
necessary; otherwise, it resolves the pending 
access. 

5 .  When a full revocation is done, ACS notifies 
OS. OS replaces the old capability in its in- 
ternal table and deletes the entry from the 
exception list. 

Our scheme has several advantages. First, security pol- 
icy checking is done at propagation time. When an ac- 
cess is requested, only the validity of the capability is 
checked. This check only runs a one-way function which 
can be very fast even when done in software. This is 
more economic than checking the policy at access time 
because the number of access requests normally will be 
much greater than that of propagation requests. It is 
obvious from the notes of the above diagram that the 
most common request, access, needs the least number of 
messages. 

Second, the exception list supports rapid revocation 
which has been difficult in classic capability systems. 
The exception lists are expected to be short. ‘ lhe ex- 
ception lists can also support specific denial of access, 
which is impossible in a classic capability system. 

Third, the access control server can easily answer ad- 
ministrative questions like who have what access to an 
object and how the access was propagated. It also com- 
pletes the revocation job nicely in the background. 

Finally, when a revocation is marked in the exception 
list, this revocation can be withdrawn. This is definitely 
an advantage because a false alarm or an error can be 
resolved without invoking the expensive full revocation 
mechanism. 

Discussion 

Performance Performance is always a major concern 
with capability-based systems. Two of the major tasks 
are checking and revoking. In a secure capability system, 
these two kinds of checks are essential. One is to check 
the validity of the capabilities against forgery and the 
other is to check whether the use of the capabilities com- 
plies with the security policy. The validity check must 
be done every time a capability is used. However, the 
policy check can be done either at the access time as in 
Karger’s SCAP, or at the propagation time as in ICAP; 

the capability designs have to be different of course. We 
believe that checking the security policy at each propa- 
gation time is more economic than checking it at every 
access time because one single propagation is likely to 
correspond to more than one access. Since the policy 
can be complex and thus expensive to check, our scheme 
saves a lot. It has to be pointed out that SCAP uses a 
cache to reduce policy checks. Our scheme can be fast 
without a cache. Moreover, it is only when capabilities 
propagate across security domains that the security pol- 
icy is checked. This further reduces the number of policy 
checks. 

The exception lists support rapid revocation. It is 
convenient and can be very fast. With little extra cost of 
storing the short lists, it ensures security while full revo- 
cation is taking place in the background. Only a one-way 
function is employed rather than an reversible encryption 
algorithm thus a software implementation would be tol- 
erable. Finally, a shorter internal capability table and 
shorter external tables mean smaller storage and faster 
searching and sorting. All these reduce the cost consid- 
erably and give a potential for better real-time response. 

Subject Representations Simple uid’s as identities may 
not be sufficient if users are allowed to work at different 
security levels. In this case, domain id’s rather than 
uid’s are incorporated in the capabilities. A domain is 
the Cartesian product of the set of user id’s, and that 
of the working security clearance levels. The clearance 
levels are mainly for non-discretionary control purposes 
and the uid’s are mainly for discretionary control pul- 
poses. A domain id is similar to a role. A subject can 
act as different roles when working at different clearance 
levels. Group-id can also be included for some widely 
used objects. For example, to use the news facility, an 
‘any” uid can be set up even for future users. 

Discretionary Control Some discretionary control is 
needed even in a military environment. For example, 
a colonel may choose to report to a particular general 
in a special4tuation. In ICAP, discretionary control is 
built on top of the non-discretional control mechanisms 
and is interpreted by the propagation constraints in the 
security policy. 

Protected Subsystems A type-id can be employed to 
enforce security in abstract data types and object-oriented 
programming. In such cases, there is a manager for each 
type or software package which is given a unique type- 
id. Once the type-id is embedded into a capability, the 
capability is sealed. Only the appropriate type manager 
can unseal the capability and get access to the object. 
A similar kind of enter capability can be used to enforce 
protected subsystems. A software package can be en- 
tered only with its enter capability. This can implement 
such requirements as that some operations can only be 
done through a certified secure package. 
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Capability Expansions As said above, a capability can 
be stamped to specify its lifetime. A capability can also 
be passed to allow another party to carry out a task on 
behalf of the capability owner. This particular capabil- 
ity may have a lifetime as “only once”. Some hints or 
addresses can also be associated with capabilities for lo- 
cating purpose when objects can migrate. To do this, 
the capability format has to be expanded and signature 
schemes are involved. These techniques are not discussed 
here. 

Network Parti t ions In the presence of network parti- 
tions, apart from other availability problems, a serious 
threat is that a revocation request may fail to reach the 
object server. A centralized access control list approach 
has this problem too. However, the damage in ICAP 
is limited to what the local object server can do. Some 
administrative measures can be taken when serious par- 
titions happen. It will help if the access control server 
stores back-up copies of the internal tables and excep- 
tion lists thus is able to reboot the object servers when- 
ever necessary. In case the access control server is not 
available to an object server, the object server may take 
actions following some guidelines. 

The Taxonomy and ICAP 
Kain and Landwehr (3) developed a design taxonomy 

for capability systems. It is based on selections from the 
following questions and answers list. The answers for a 
particular system reflect how well or poorly the system 
can solve the confinement problem. 

1. What happens when a capability is created ? 

a. No access rights inserted. 
b. Access rights inserted. 

2. What happens to the prepared-for-access capabili- 
ties describing a segment if the security attributes 
of that segment are modified ? 

a. Access rights not changed upon attribute change. 
b. Capability flagged for future change upon at- 

c. Access rights updated upon attribute change. 

3. What happens to the located-in-segment capabili- 
ties describing a segment if the security attributes 
of that segment are modified ? 

a. Access rights not changed upon attribute change. 

b. Capability flagged for future change upon at- 

c. Access rights updated upon attribute change, 

tribute change. 

tribute change. 

4. What happens when a capability is copied ? 

a. Access rights not changed. 
b. Access rights further restricted by context rules. 
c. Access rights set to the maximum consistent 

d. Access guaranteed to be updated properly by 
with the access rules set by the policy. 

software. 

What happens when a capability is prepared for 
access ? 

a. Access rights not changed. 
b. Access rights restricted by the access rights pol- 

c. Access rights set to the maximum consistent 
icy. 

with the security policy in force. 

What happens when the processor attempts to ac- 
cess an object ? 

a. No checks made. 

b. The access checked against the available access 
rights. 

c. The maximum possible rights computed and the 
attempted access checked against these com- 
puted rights. 

The Honeywell Secure Ada Target SAT is aaaacb. An 
unmodified capability machine, the Plessey System 250, 
is ha(a or b)ab. The SCAP architecture is abbabb [5 ] .  
Examining ICAP in their context, we find our answers 
to question 1 to 3 fail to match the given choices. It 
seems clear that ICAP is able to enforce security policies 
including the *-property in the Bell-LaPadula model. We 
thus propose to expand the taxonomy to include new 
possible answers as given by ICAP in order to cover a 
wider range of designs. 

Answer t o  1. c. No access rights are needed when an 
internal capability is created. Access rights are in- 
serted for external capabilities. 

Answer to 2. d. Access pending. Wait for new s e  
curity policy interpretation to decide whether old 
capabilities are to be revoked. 

Answer to 3. d. Same as the answer to question 2. 

Answer to 4. d. Only when a capability is to prop- 
agate across a security domain, are access rights 
set to the intersection of the required transferred 
rights and the maximum consistent with the secu- 
rity policy. 

This answer to 4 seems to be a special case of the given 
choice d. We would like to point out that it is inconve- 
nient and unnecessary that only further restricted rights 
can be transferred as in choice b. For instance, it is per- 
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fectly legal that a lower security level user writes to an 
object that it has only a write capability and then trans- 
fers a read capability to a chosen user at a higher level 
to complete the information up-flow. An analogy is that 
when an employee wants to complain about his direct 
boss, he needs to be able to specify and complete the 
capability transfer to a chosen superior. 

Answer to 5. a. Access rights not changed. 

Answer to 6. b. Access checked against the available 
access rights. 

Conclusion 

A new design of an Identity-based CAPability pro- 
tection system ICAP has been laid out. It incorporates 
subject identities in the capabilities by simply modify- 
ing the semantics of the items in a classic capability. 
This enables the kernel or server to monitor, mediate, 
and record capability propagations thus to enforce the 
*-property in the Bell-LaPadula model or other security 
policies. This design requires a very simple and short 
internal capability table. For each object only one ca- 
pability is stored at the server. The security policy is 
only checked once at each propagation time. The excep- 
tion list makes rapid revocation convenient. This list and 
the propagation trees allow full revocation to be done ir 
background. The trees and the full access list can sup- 
port administration activities such as traceability. This 
practical design potentially offers reduced cost and bet- 
ter real-time response. The system remains to be imple- 
mented to see how well it turns out in the real world. The 
ICAP’s answers to the taxonomy questions fall out of the 
range supplied by Kain and Landwehr. We propose to 
expand their design taxonomy for capability-based sys- 
tems to make new secure system designs possible. 
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