CSE 543 - Fall 2018 - Project 1: SSH File Transfer

1 Dates

o Out: September 11, 2018

e Due: October 3, 2018

2 Introduction

In this project, you will develop a client-server system that provides secure file transfer. You will implement
the SSH protocol to construct a secure channel between the client and server over which to perform secure
file transfer. You will use the OpenSSL library to implement the SSH protocol. The SSH protocol produces
a symmetric key shared between the client and server, and you will use the OpenSSL library once again to
use that key to transfer the file.

The system you produce must run on the Westgate Linux lab machines. These machines are named
cse-p204instXX.cse.psu.edu, where XX is a number between 01 and about 40. All these machines
should be identical and already have the OpenSSL library installed.

3 Overview

The secure file transfer system will work as follows.

The server program will be started by the following command line: cse543-pl-server
<private-key-file> <public-key-file>: where (1) the <private-key-file> is the
name of the file that stores the private key for the server and (2) <public-key-file> is the name of
the file that stores the corresponding public key for the server.

Please create the public and private keys using the OpenSSL system using the following commands.
Please create your public key in the RSA format for using the provided RSA functions for OpenSSL.

generate key pair - mykey.pem holds private key

openssl genrsa —-out mykey.pem 2048

extract public key in basic format - pubkey.pem is in PKCS#8 format
openssl rsa —in mykey.pem —-pubout -out pubkey.pem

convert public key to RSA format - rsapub.pem holds public key
openssl rsa —-pubin -in pubkey.pem -RSAPublicKey_out > rsapub.pem

The client program will be started by the following command line: cseb543-pl
<file-to-transfer> <server-ip-address> 1 1: where (1) the
<file-to-transfer> is the file pathname of the file to transfer from the client to the server
and (2) <server—ip—-address> is the IP address of the server host. The last two arguments are fixed -
we’ll likely use them later.

Start the server first, as it will wait for connection requests from clients. When a connection request is
received from a client the sequence of steps will be performed.

Perform the SSH protocol: The client will initiate the SSH protocol to produce a symmetric key to be
shared by the client and server.

Transfer the file: The <file-to-transfer> will be sent encrypted and integrity protected from
the client to the server. The server will store the file in a directory called “shared” under the directory from
which the server is run.

Server awaits next request: The client will terminate and the server will await the next request from
the next client.

4 Project Tasks

The initial version of the program includes two functions test _rsa and test_aes that encrypt a message
from an old cartoon that I barely remember. Really old.

These functions demonstrate how to perform symmetric and public key encryption with OpenSSL li-
brary, which should be a big help in the project.

I suggest you perform the project tasks listed below in the following order.

1. Download project tarball:

From http://www.cse.psu.edu/~trjl/cse543-f18/pl-assign.tgz. The project
includes source code and a Makefile for building the tarball for your project for submission.

2. Write the functions to build encrypted messages for sending and decrypted received messages:
There are two pairs of functions for you to implement: seal/unseal_symmetric_key for public
key crypto and encrypt /decrypt_message. These encryption functions must perform encryp-
tion and produce buffers containing the data necessary for the other party to decrypt. The decryption
functions must extract the necessary information from a sent buffer and perform the decryption.

3. Write the function to generate pseudorandom values: Develop the function
generate_pseudorandom_bytes by using the OpenSSL functions for producing pseudo-
random values.

4. Develop the SSH Protocol: Implement the client and server portions of the SSH protocol,
as described in the paper for 10/16. There are two functions client_authenticate and
server_protocol to be implemented.

5. Tranfer the file securely: Implement the encryption and transfer functionality to send the file from
the client to the server in the function tranfer_file.

4.1 Download Tarball

The tarball consists of 5 C files and associated header files (for all but cse543-p1 . c and a Makefile for
compiling the program code and producing tarballs.

The C file cse543-pl.c is the main file in the project and the file that starts the server and client,
depending on which is being built.

The C file cse543-proto.c implements the SSH protocol and secure file transfer. All of the code
you need to write is in this file.

http://www.cse.psu.edu/~trj1/cse543-f18/p1-assign.tgz

The C file cse543-ssl.c contains the code for leveraging the OpenSSL API. I have downloaded
most of this code from the internet, and included the URLs of the sites, so you can read the associated text
for these operations. There are some questions on using the OpenSSL API below.

The C file cse543-network. c implements network functionality for the client and server.

The C file cse543-util. c provides some utility functions used by the implementation.

4.2 Build and Decrypt Encrypted Messages

Start by making sure that you can generate encrypted messages that you can send and decrypt on the other
end for both public key and symmetric key crypto. test_rsa and test_aes show how to generate
encrypted data and deecrypt that, but you need to be able to send the encrypted data to the other process in
a manner that enables decryption.

4.3 Generate Pseudorandom Values

OpenSSL has a set of functions for generating pseudorandom data. Use these functions to generate pseudo-
random data of requested byte sizes.

4.4 Implement SSH Protocol

The main task in the project is to implement the SSH protocol as described in the paper. Since any user is
authorized to upload a file in this project, you only have to implement Steps 1-4 of the protocol, correspond-
ing to messages 1-4 in the Prot oMessageType enumeration in cse543-proto.h. Use the OpenSSL
functions provided to implement the SSH protocol.

Note that you only have to supply one server public key in Step 2, which simplifies things a bit. Other-
wise, you implementation should achieve the same effect.

Please write the SSH protocol as a series of cryptographic messages in using the course’s crypto notation.

4.5 Transfer Files Securely

Once the SSH symmetric key has been shared, the client may transfer its file (file-to-transfer) to
the server. Only one file will be tranferred per use (i.e., no need to support wildcards, directory copies, etc.).
You need to extend the function transfer_file to collect the next file block, perform encryption of
the file data in the block, generate the message to send, and send the encrypted file block message to the
server. The function receive_file (for the server) is provided, which may help a bit.
See the other messages in ProtoMessageType enumeration in cse543-proto.h for choosing
those for file transfer.

S Testing

I will test your submission on machines in the Linux lab in W204 Westgate. The machines are named
cse-p204instXX.cse.psu.edu, where XX is a number from 01 to at least 40.

You should SSH into those machines to verify that your code works. I developed and tested the project
code on those machines, so should work fine, but it is up to you to make sure.

You will need to speak to the CSE IT folks if you do not have access to those machines.

6 Deliverables

Please submit the following:

1.

A tarball of your password produced with the provided Makefile using make tar.

2. PDF file containing the SSH protocol specified using the course’s crypto notation.

7 Grading

The assignment is worth 100 points total broken down as follows.

1.

I can build and run what you have submitted without incident (10 points).

. Encrypted communication works (10 points).

. Generate pseudorandom data (10 points).

SSH protocol implementation and specification (60 points)

. Transfer file securely (10 points).

	Dates
	Introduction
	Overview
	Project Tasks
	Download Tarball
	Build and Decrypt Encrypted Messages
	Generate Pseudorandom Values
	Implement SSH Protocol
	Transfer Files Securely

	Testing
	Deliverables
	Grading

