CSE 543 - Fall 2017 - Project 1: Password Management

1 Dates

e Out: August 26, 2017

e Due: September 20, 2017

2 Introduction

In this project, you will complete the implementation of a password management system. Password man-
agement systems store domain-password mappings for users to enable users to “remember” complex, per-
domain passwords for logging in to those domains. The idea would be that the password management
system would store domain-password pairs for domains to which users have created passwords, and then
the password management system would replay the password when the domain requests the password for
that user.

There are several security concerns that apply to the construction of a password management system.
First, the password management system should store strong passwords for each domain. If the user creates
a weak password, then an adversary may compromise that user’s access to the domain and the password
management system would be no help. We will apply password guess estimation techniques to test and
strengthen suggested passwords.

Second, the password management system will need to store passwords on the host, e.g., when not
running or to back them up, and we must ensure that adversaries do not learn about the passwords or other
aspects of the passwords, such as their length. Also, domains for which passwords have been produced
should not be revealed to adversaries. We will use the OpenSSL library’s cryptographic functions to protect
domains and passwords. I have gather example OpenSSL library usage from the Internet (cited in cse543-
ssl.c) for performing major cryptographic operations, and you will have to choose when to use the particular
functionality. There will be questions about how this example code works to test your understanding.

Third, the password management system must have a method for generating keys for protecting domains
and passwords that does not involve hardcoding a key into the program, which can easily be discovered by
adversaries (even in binary versions of the program). We will have each user supply a password on the
command line when launching the password management system, which will initiate all the key generation
activities for protecting domains and passwords.

3 Overview

The password management system you will build will work as follows.

Users can enter the following command line: cse543-pl <kvs-file> <master-passwd>
<crack-file> where: (1) the <kvs—-file> is the name of the file that stores the domain-password
key-value store data (may be empty at start); (2) <master-passwd>> is the value of the master password



for the password management system that will be used on each invocation using the same <kvs-file>;
and (3) <crack-file> contains the data from the password cracking analysis used to compute the guess
number for each new password and any passwords strengthened. In this configuration, the user (you) will
enter domain and password pairs via the command. When the user has entered all the pairs, they enter a
EOF (Ctrl-D) to end input and switch to lookup mode. The user then enters domains to retrieve passwords
from those entered in the input phase or in previous runs.

There are two additional optional arguments that may be specified: (4) <input-file>, which con-
tains domain and password values (one per line, alternating) for populating the key-value store without
manual input and (5) <lookup—-£file>, which contains the domain names to use for password retrieval
(one per line). In this configuration, the key-value store and lookups are performed using the two sets of file
inputs, so no manual input is required.

Given this input the program cse543-p1 will run the following sequence of steps.

Populate the key-value store: The password management system reads the <kvs—file> to load the
current key-value pairs for domains and passwords into memory (if any). This operation is provided for you.

Create the cryptographical keys from the master password: The <master-password> is used
to create key values for encrypting passwords and producing message authentication codes (using HMAC)
for the domains. The key values must be produced from digests of the <master-password>.

Collect new domain-password pairs: Next, the password management system will obtain the domain-
password pairs. There are two ways of entering this information, determined by how the program is in-
voked. If the command line is cse543-pl <kvs—-file> <master-passwd> <crack-file>,
then the user enters domain-password pairs prompted by the program. Data entry must be terminated by
the EOF character (Ctrl-D). If the command line is cse543-pl <kvs-file> <master—-passwd>
<crack-file> <input-file> <lookup-file> then domain-password pairs are supplied in
the input-file.

Strengthen passwords where necessary: Each password will be checked by computing its “guess
number” (see below) using the <crack-file> supplied from the command line, and strengthened if the
guess number is below a pre-specified threshold. Strengthening will be repeated until the password passes
the threshold. Note that only character may be changed per pass and no characters may be added.

Create protected key-value pairs for the domain-password pairs: The domain and its strong-enough
password will be entered into a key-value store. Your implementation must protect the secrecy and integrity
of both the domain and the password using cryptographic operations implemented by using the OpenSSL
APIL. An HMAC of the domain will serve as the key and the password must be encrypted in a manner that
protects its secrecy and integrity and length.

Retrieve passwords for domains: Users can then retrieve passwords from the key-value store by speci-
fying “lookup” domains. As for inputs, the same two methods may be used to supply domains, but domains
are obtained from the <lookup-£file>. Given a domain name, the password management system will
retrieve the corresponding password, decrypting the password to present to the user (in lieu of sending to
the domain). Please terminate data entry by entering the EOF symbol (Ctrl-D, manually).

Store the key-value pairs in a file: Once the lookups are complete, the password management system
writes the current key-value store to the <kvs—file> specified in the command line. This operation is
provided for you.

4 Project Tasks

This project has three types of tasks: (1) data entry; (2) password checking and strengthening; and (3)
cryptographic protection of domains and passwords. The specific project tasks are listed below and detailed
in the rest of this section.



1. Download project tarball:

From http://www.cse.psu.edu/~trjl/cseb543-£17/pl.tgz. The project includes
source code and a file with information for cracking passwords in rockyou.txt.6.4.a.mcl.

2. Make keys from master password: Given the master password as input, produce separate encryption
and HMAC keys for use to protect domains and passwords.

3. Obtain input domain and password pairs for key-value store: Obtain the domain-password pairs
either from command line or input file, if provided.

4. Check and strengthen passwords: Using the provided <crack-file>, check the strength of
each entered password using the supplied function (get markov_guess_number) and develop a
method to strengthen the password to pass the minimum guess number (MIN_GUESS_NUMBER).

5. Upload password into key-value store: Use the HMAC of the domain as the key to retrieve an
encrypted and integrity protected (authenticated encryption) value of the password and add the key
and value to the key value store using kvs_auth_set. Ensure protection from leaking both the
length and value of the password.

6. Obtain domain names for retrieving passwords: Obtain the domain-password pairs either from
command line or lookup file, if provided.

7. Retrieve password using domain name: Compute the HMAC of the domain name to retrieve the
corresponding password from the key-value store. Decrypt and print the password retrieved.

4.1 Download Tarball

The tarball consists of 5 C files and associated header files (for all but cse543-pwdmgr . c, a Makefile
for compiling the program code and producing tarballs, and a file with information for cracking passwords
rockyou.txt.6.4.a.mcl which you will use as the <crack-file>.

The C file cse543-pwdmgr . c is the main file in the project and the file in which all your programming
tasks must be completed.

The C file cse543-ss1.c contains the code for leveraging the OpenSSL API. I have downloaded
most of this code from the internet, and included the URLs of the sites, so you can read the associated text
for these operations. There are some questions on using the OpenSSL API below.

The C file cse543-kvs.c is a simple key-value store (KVS) for the project. The KVS has a simple
API specified in cse543-kvs.h.

The C file cse543-cracker.c computes the guess number for each password supplied using the
<crack-file>, rockyou.txt.6.4.a.mcl for processing. There is code to call the key cracking
function already in the supplied code.

The C file cse543-util.c provides a file processing utility function used by the key value store.

4.2 Make Keys from Master Password

In Task #1, given the master password as input from the command line, produce separate encryption
and HMAC keys for use to protect domains and passwords. This operation is performed in the function
make_key_from password (NOTE: make both keys in this function). Both keys are 256 bits long
(ENC_KEY _LEN). Note that the size of the master password is limited to 16 characters (bytes) by MAS-
TER_PASSWD_LEN. The encryption and HMAC keys must be different, and both must be dependent on
the master password as the only secret information for constructing key values. Note that the keys should


http://www.cse.psu.edu/~trj1/cse543-f17/p1.tgz

be produced by generating digests (cryptographic hashes) utilizing the master password as input. The cryp-
tographic protocol used to generate both keys must be specified for Question #1.

4.3 Obtain Input Domain and Password Pairs

In Task #2, obtain the input values for the domain and password pairs to be loaded into the key-value store.
Use the supplied file pointer fp for the source of this data. If <input-file> is supplied, then the file pointer
will refer to this file. If not, the file pointer will refer to stdin.

The implementation for obtaining domain-password pairs should be the same either way (i.e., read input
from the file pointer for domain and password). Note that each domain must be of the form www.<name>.com,
whereas input passwords should be 8 characters or more long.

4.4 Check and Strengthen Passwords

In Task #3, passwords are checked to determine whether they are strong enough based on their guess number
estimate, and if they fail to meet a prescribed threshold, they must be strengthened to satisfy that threshold.
Note that each strengthening operation must be limited to only character, and that no new characters
may be added to the password.

The “Guess Again” paper [2] (from class) describes how Markov and PCFG methods may be used to
estimate the “guess number” for a password, approximating the strength of the password. See the paper for
details.

Researchers have suggested that modifying a few characters in a user-supplied password such that the
guess number exceeds a threshold. For example, Houshmand and Aggarwal [1] suggest that changes to only
one or two characters in a user-defined password (either by replacement or insertion) may be sufficient to
strength the password such that its guess number exceeds a threshold.

The aim in this task is to devise a method using the password and data available in the supplied
<crack-file> to use the minimum number of iterations to produce a strengthened password
whose guess number surpasses the MIN_GUESS_NUMBER requirement. A project bonus will be
awarded to the students to produce minimal number of iterations (approximately 10%).

4.5 Upload Domain-Password Pairs

In Task #4, you must upload the domain-password pairs into the key-value store in a manner that protects
their secrecy and integrity.

The domain is the key in the key-value pair. To protect its secrecy and integrity, you must generate an
HMAC value from the domain for the key using the HMAC key computed earlier. An HMAC function is a
form of a keyed-hash function that takes the value (domain) and a secrect key (HMAC key) as input. See
the course notes on HMAC.

The password is the value in the key-value pair. To protect its secrecy and integrity, you must perform an
authenticated encryption on the password. An authentication encryption function takes a symmetric encryp-
tion key and a value (password) as input and produces an encrypted value of the password and a message
authentication code (MAC), which is called a tag in OpenSSL. You must store the encrypted password and
tag as the value. See cse543-kvs.c and cse543-kvs.h as to how this is done already for you when you call
kvs_auth_set.

An important and non-trivial requirement of this project is to protect the secrecy of the length of
the password. Use the entire value (128 bytes) to encrypt the password, crafting your method for encoding
the password value for encryption to prevent an adversary from deducing the length of the password from
the encrypted value.



4.6 Obtain Domain for Password Retrieval

In Task #5, you must obtain the domain input to retrieve (lookup) its corresponding password. Use the
supplied file pointer fp for the source of this data. As for Task #2, the file pointer will either reference a
specified file (<1ookup—£file>) or stdin. The code you write will be the same either way. Note that each
domain must be of the form www.<name>.com.

4.7 Lookup Password for Domain

In Task #6, you must retrieve the password from the key-value store using the domain. To do this, you must
once again compute the HMAC of the domain to produce the key of the key-value pair, and then use this key
value to retrieve the encrypted password and MAC tag. You must decrypt the password value and extract the
original value from whatever encoding you chose to protect its length, so the plaintext password (matching
the input password generated for that domain) can be printed by the provided code.

5 Project Questions

1. Using cryptographic notation, specify the cryptographic protocol used to generate the encryption and
HMAC keys from the master password.

2. Using cryptographic notation, specify the cryptographic operations used to produce an encrypted
password that prevents leakage of both the length and value of the password when written to disk.

3. Specify your password strengthening approach.

4. Given the findings of attacks by Schmidt and Jaeger [3] against methods to strengthen passwords,
suggest how you would improve your password strengthening approach to avoid such attacks?

5. Specify how the tag is computed during the authenticated encryption using the OpenSSL APL

6 Testing

I will test your submission on machines in the Linux lab in W204 Westgate. The machines are named
cse-p204instXX.cse.psu.edu, where XX is a number from 01 to at least 40.

You should SSH into those machines to verify that your code works. I developed and tested the project
code on those machines, so should work fine, but it is up to you to make sure.

You will need to speak to the CSE IT folks if you do not have access to those machines.

7 Deliverables
Please submit the following:

1. A tarball of your password produced with the provided Makefile using make tar.

2. Answers to the questions in the Questions section above.



8 Grading
The assignment is worth 100 points total broken down as follows.

1. I can build and run what you have submitted without incident (10 points).
2. Program executes as expected on my test input and lookup files (70 points).

3. Answers to questions (20 points).

In addition, the password strengthening algorithms that take the fewest iterations per my testing will win
a 10% bonus.



References

[1] S. Houshmand and S. Aggarwal. Building better passwords using probabilistic techniques. In Pro-
ceedings of the 28th Annual Computer Security Applications Conference, ACSAC *12, pages 109-118.
ACM, 2012.

[2] P. Kelley, S. Komanduri, M. Mazurek, R. Shay, T. Vidas, L. Bauer, N. Christin, L. Cranor, and J. Lopez.
Guess again (and again and again): Measuring password strength by simulating password-cracking
algorithms. In Proceedings of the 2012 IEEE Symposium on Security and Privacy, Oakland *12, pages
523-537. IEEE Computer Society, 2012.

[3] D. Schmidt and T. Jaeger. Pitfalls in the automated strengthening of passwords. In Proceedings of the
29th Annual Computer Security Applications Conference, ACSAC *13, pages 129-138. ACM, 2013.



	Dates
	Introduction
	Overview
	Project Tasks
	Download Tarball
	Make Keys from Master Password
	Obtain Input Domain and Password Pairs
	Check and Strengthen Passwords
	Upload Domain-Password Pairs
	Obtain Domain for Password Retrieval
	Lookup Password for Domain

	Project Questions
	Testing
	Deliverables
	Grading

