
CSE 543 - Fall 2016 - Assignment 3: Return-oriented Programming

1 Dates

• Out: November 2, 2016

• Due: November 17, 2016

2 Introduction

In this assignment, you will produce a few return-oriented programming (ROP) attacks. First, you will
use available tools (ROPgadget [3]) to extract gadgets from programs. Using these gadgets, you will build
exploits for provided programs that will enable you to launch return-oriented attacks. The idea is to build
different types of ROP attacks to see how to use gadgets to enable different types of exploit behaviors.

3 Background

Return-oriented Programming The paper by Roemer et al. describes the principles and capabilities of
return-oriented programming [2]. The critical feature of return-oriented programming is that once adver-
saries gain control of the stack pointer and/or the memory around the stack pointer (and if the binary has
enough code), then the adversary has a Turing-complete environment from which to craft exploits.

ROPgadget ROPgadget [3] is an open-source tool for extracting gadgets from binaries. Obtain the ROP-
gadget codebase from https://github.com/JonathanSalwan/ROPgadget. See the README.md
file for directions on loading and executing. The basic use is below, but there are several options. We can
generate gadgets from any binary, but libc provides far more gadgets than the victim program, so we will
explore using those gadgets.

./ROPgadget.py /lib32/libc-2.23.so ¿ gadgets
The result is a collection of the possible gadgets available in the libc code.

Choosing Gadgets There are many, many gadgets in libc, so a question is which gadgets should you be
looking for. For example, you may need gadgets to reset the stack pointer. Thus, any gadget that loads a
value in the stack pointer register (%esp) would be useful for that. Use the ROP paper for guidance and we
will discuss in class.

Crafting Exploits from Gadgets Crafting ROP exploits from a set of gadgets is a non-trivial exercise,
requiring an understanding of the memory layout of the program and the Intel x86 instruction set (at least to
some extent).

A video [1] demonstrates how one may use ROPgadget and other tools such as gdbtui to generate
exploits and view them in action (and debug mistakes at that level).

1

https://github.com/JonathanSalwan/ROPgadget

Please pay close attention to the commands used in the debugger, as you will want to utilize the same
commands to create a split layout showing the program and the assembly view (layout split), step one
instruction at a time (si), and print the stack. Other useful gdb commands are “print” for displaying the values
in memory (“p var” to print the value of variable “var”) and “info register” to print the values of registers,
such as the stack pointer in esp (“i r esp”), and “x/16wx $esp” to print 16 bytes from the esp address. See
http://users.ece.utexas.edu/˜adnan/gdb-refcard.pdf for more information.

Finding Gadgets in the Binary Once you have determined which gadgets you want to use, a challenge is
to invoke them. While ROPgadget provides the address of the gadgets in the library, the library is dynam-
ically linked into the process’s address space at an address chosen by the system. The question is how do
you find where the library is loaded. The /proc filesystem helps here. Type cat /proc/$PID/maps
where $PID is the process ID of the file-victim process. You will see something like:

08048000-08049000 r-xp 00000000 08:01 3547850 .../cse543-file-victim
08049000-0804a000 rw-p 00001000 08:01 3547850 .../cse543-file-victim
f763f000-f7640000 rw-p 00000000 00:00 0
f7640000-f779e000 r-xp 00000000 08:01 1707696 /lib32/libc-2.23.so
...

The first two lines refer to the executable’s (cse543-file-victim) code (see the execute permis-
sion is set) and data. The address range identifies the beginning and end of these memory segments. The
fourth line (in this case) refers to libc’s code segment. Use the base address plus the gadget address to
compute the location of the gadgets.

Defenses (Turning Them Off) Systems already deploy a variety of defenses that restrict attacks, including
ROP attacks. For example, StackGuard protects the return address from being overwritten without detection
and ASLR moves the location of the stack and libraries to prevent useful code injection or knowledge of
gadget target locations.

In this project, we will turn off these defenses to make our task a bit easier. For example, you will notice
in the Makefile there is the flag -fno-stack-protector, which removes the stack canaries that are
now set by default.

Also, for some project tasks, you should disable the ASLR on your system. First, record the value
of the file /proc/sys/kernel/randomize va space (mine was “2”) using cat. Then invoke the
following command to reset the value to 0.

echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

You should have sudo access on your evaluation machines to perform the attacks. Please let me know if
this is a problem for your team.

4 Research Platforms

For this project, we have created a set of VMs, one for each team. I will provide the user names, initial
passwords, and VM IP addresses for each VM separately. Please change your passwords by class time on
Th, as they are weak.

2

http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

5 Problem Statement

Your task is to produce ROP attacks against the given program (cse543-file-victim) for buffer overflows
that overwrite the return address. You will produce exploits from libc code to perform ROP tasks described
below. The vulnerable code has an obvious buffer overflow and a function called shell that launches a
shell that we will use in some of the exploits.

6 Exercise Steps

The initial code for the project is available at http://www.cse.psu.edu/˜tjaeger/cse543-f16/
p3-rop.tgz. This code consists of two main files: (1) the victim program cse543-file-victim.c
and (2) the program that produces buffers to attack return addresses cse543-buf-attack.c. “make
all” should build executables corresponding to each file.

The current code in cse543-buf-attack.c produces a buffer that performs a return-oriented attack
using the shell function in the victim program, cse543-file-victim.c. In this case, the attack stack
consists only of the address of the shell function in the code segment - we jump directly there to launch the
attack. In this case, the following value is non-zero (for argument i) already, so we need not do anything
else to test that cse543-buf-attack produces a buffer will open a new shell when run on your virtual
machine.

In this project, you will design multiple return-oriented attacks using gadgets from libc to explore the
design of return-oriented attacks.

The project consists of the following steps.

1. With ASLR off, launch the function shell() using gadgets in libc in the following manner. First,
using the gadgets in libc, change the stack pointer to a new stack containing the address of shell()
to launch a new shell. You must create the new stack as part of the attack also. You may create the
new stack in any writeable data area. Ensure that the gadget exits cleanly from the exploit. Call this
program cse543-buf-attack.shell.c.

2. With ASLR off, Use an indirect jump gadget to launch shell(). Call this program cse543-buf-
attack.jump.c.

3. With ASLR off, perform a return-to-libc attack to use system() to run /bin/bash. Use the
existing string /bin/bash assigned to the environment variable SHELL. Call this program cse543-
buf-attack.system.c.

4. Launch at least one of the attacks above with ASLR enabled. This will require some research of how
attacks are performed given that ASLR is enabled. In this case, you may leverage other gadgets than
the ones in libc. Call this program cse543-buf-attack.aslr.c.

The metric for this project is the length of the gadget chains used to achieve all 4 attacks.

6.1 Teams

Below are the teams. I will provide information on your VMs and logins later.

1. Sheatsley, Frank Liu, Latkar

2. Veerabhadraiah, Sharma, Brotzman-Smith

3

http://www.cse.psu.edu/~tjaeger/cse543-f16/p3-rop.tgz
http://www.cse.psu.edu/~tjaeger/cse543-f16/p3-rop.tgz

3. Papernot, Jonas Wang, Kaul

4. Sridhar, Sharp, Huhman

5. Sun, Riegel, Luo

6. Pahadia, Wheatman, Kang-Lin Wang

7. Adavi, Zhao, Sha Liu

8. Bandyopadhyay, Chun-Yi Liu, Karamchandani

9. Acquaviva, Basu, Heidorn

10. Shan, Krych, De, Yunqi Zhang

11. Hanling Zhang, Lee, Remazani

7 Deliverables

Please submit the following:

1. Your exploit programs.

2. Gadgets used in each exploit (base address and instructions in gadget)

3. Victim process (cse543-file-victim) address space map from /proc (ASLR off)

4. Trace of print messages (and shell invocation) from your execution of each case

5. Brief writeup on how to execute your programs (in your VM).

8 Grading

The assignment is worth 100 points total broken down as follows.

1. Writeup for how to execute your program and gadget information (20 pts)

2. Attacks (80 pts - 20 pts each)

4

References
[1] Return-oriented programming attack demo. https://www.youtube.com/watch?v=a8_

fDdWB2-M.
[2] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented programming: Systems, lan-

guages, and applications. ACM Trans. Inf. Syst. Secur., 15(1):2:1–2:34, Mar. 2012.
[3] J. Salwan. Ropgadget. https://github.com/JonathanSalwan/ROPgadget.

5

https://www.youtube.com/watch?v=a8_fDdWB2-M
https://www.youtube.com/watch?v=a8_fDdWB2-M
https://github.com/JonathanSalwan/ROPgadget

	Dates
	Introduction
	Background
	Research Platforms
	Problem Statement
	Exercise Steps
	Teams

	Deliverables
	Grading

