Crypto Overview Note

Trent Jaeger
Systems and Internet Infrastructure Security Laboratory
The Pennsylvania State University, University Park PA 16802

In this note, we provide basic definitions and outline some fundamental cryptographic con-
structions.

Nomenclature Here are the set of primitive crypto statements:

a,b,c,... are data

A, B,C, ... are principals (A=Alice, B=Bob, C=Charlie, ...)

PW# is the password of Alice (A)

K is a key

n is a nonce, a random number used in establishing the freshness of a communication
KB is a key shared between Alice and Bob (symmetric key cryptosystem)

K and K are Alice’s public and private keys, respectively (public key cryptosystem)

E(d,K) is an encryption of data d with key K (K“P for symmetric key and K} or K
for public and private key encryption by Alice)

H(d) is the cryptographic hash of data d

HMAC(d, K) is a HMAC message authentication code used to confirm integrity in sym-
metric key cryptosystems

S(K,d) is Alice’s signature of data d (S(K,,d) = E(K,, H(d)))

"+ or '—’ refer to concatenation

Cryptographic operations aim to protect the secrecy of communication (Secrecy), verify
that the message has not been tampered (Integrity), and enable identification of the source of
message (Authenticity).

Secrecy To protect the secrecy of data, we encrypt the data ¢ = E(d, Kp), where c is the
ciphertext. Symmetric key encryption limits access to the holders of the key. K, p can be read
by both A and B, but no other parties (assuming proper key distribution). Decryption uses
the same key, d = D(c, Kap).

Thus, for Alice to send a secret message to Bob and for Bob to decrypt and read it, we
have:

e Alice and Bob establish a symmetric key K 4p

e Alice encrypts: ¢ = E(d, Kap)

e Bob decrypts: d = D(¢, Kap)

e Roles are reversed when Bob sends a secret message to Alice

Using public key cryptography, a public key encryption is used to protect secrecy. If anyone
wants to send a secret message to Alice they generate ¢ = F(d, K). Note that this operation
can be performed by any party, since the public key is available to all. Only Alice can decrypt
the resultant ciphertext ¢ because only she has the corresponding private key, K.

e Alice has a private key, K
e Anyone can obtain the corresponding public key K}
e Anyone can encrypt a message to Alice: ¢ = E(d, K})

e But, only Alice can decrypt the message: d = D(¢, K)

Integrity Simply encrypting a message does not ensure that the receiver can determine
whether a received message was the original encrypted message. This is due to the mecha-
nisms used to encrypt messages, called modes, and because the content of the message may
make it hard for a receiver to determine if its has been tampered.

Suppose Alice sends a random number to Bob, and she encrypts it to keep it secret. Mallory
(the malicious adversary) may modify the encrypted message, and Bob will not be able to tell
whether this was the original that Alice sent, because he doesn’t know what the intended
plaintext value was.

In symmetric key cryptography, we use a message authentication code (MAC) to enable
a remote party to verify the integrity of an encrypted message. A MAC is a keyed-hash,
mac = H(d|K 4p) using the shared key of the two parties.

An HMAC is a specific MAC function, resistant against some attacks that are possible
against the naive MAC function above, HMAC(d, Kap) = H(Kap|h(Kag|d)). Use HMAC to
protect integrity of symmetric key encrypted messages.

To send a secret, integrity-verifiable message using a symmetric key cryptosystem:

e Alice and Bob establish a symmetric key Kp
e Alice encrypts and MAC’s her message for integrity: ¢ = E(d, Kap)|h = HMAC(d, K4p)
e Bob decrypts: d = D(c, Kap)

e Bob verifies the integrity of decrypted message: h' = HMAC(d, Kap) == h?

e Roles are reversed when Bob sends a secret message to Alice

Using public key cryptography, signatures are used to protect integrity. A signature is a
private key encryption of a hash of the message, s = E(H(d), K). Note that a signature
encryption does not provide secrecy (any can decrypt with the corresponding public key), but
only one principal could have generated the signature. The hash ensures that changes to the
data do not go undetected, as in the MAC case.

To send a secret, integrity-verifiable message using a public key cryptosystem:

e Alice has a private key, K

e Anyone can obtain the corresponding public key K}

Bob has a private key, Kz

e Anyone can obtain the corresponding public key K7

Bob encrypts a message to Alice: ¢ = E(d,K})|s = E(H(d), Kg)

e Only Alice can decrypt the message: d = D(c, K)

e She can also verify that the message is really what Bob sent: s’ = D(H(d), K}) == s?

We also write signatures in the shorter way, S(d, K,) = E(H(d), K).

Authenticity Authenticity is the ability to determine who really generated a particular mes-
sage.

For symmetric key cryptography, any party that holds the key may have generated a mes-
sage. For example, a message encrypted by K,p, such as E(d, K4p) could have been generated
by either Alice or Bob. While Alice probably knows when Bob generated a message instead of
her (if the integrity is protected via an HMAC), it is not possible for her to prove to a third
party that only Bob could have generated the message, as both have the capability (i.e., the
key).

The problem of proving to a third party that a message was generated by a specific principal
is the non-repudiation problem because that principal cannot deny generating the message
without being detected. It cannot be solved in symmetric key cryptosystems, but it can in
public key cryptosystems.

For a public key system, the signature of a message is a non-repudiable statement that the
message was generated by the signing party. Thus, you must take care in signing messages.
For example, you should not sign an encrypted message because it may say something that you
don’t approve of.

Key Distribution The final problem is to get the keys for symmetric and public key systems
in the first place. The goal is to obtain a key that enables verification of the secrecy and integrity
of another principal’s messages. That is, we want to determine that a key is shared only with a
specific principal (for symmetric key cryptosystems) or that only a specific principal has private
key corresponding to a particular public key (for public key cryptosystems). This problem is
called the key distribution problem.

Needham-Schroeder provides protocol designs for key distribution in both kinds of systems.
For symmetric key systems, the challenge is to prove freshness of a particular distributed key
with a remote principal (supported by a trusted third party). A nonce is a (pseudo)random
value used to provide freshness.

For public key systems, the challenge is to verify that the mapping between a private-public
key pair obtain from a trusted third party (or via a certificate signed by a special trusted third
party, a certificate authority). Private keys may be exposed or cracked, so a prior statement
from a trusted third party may not longer be accurate. There is actually a bug in the Needham-
Schroeder public key protocol, it must not be used.

A certificate binding a principal to a public key from a certificate authority C'A looks like
this:

CA has a private key, Kg,

The CA’s public key is widely broadcast, so everyone knows it K4

CA generates a certificate certy = K |data for Alice’s public key, S(cert, K¢ 4)

Remote principals who obtain Alice’s certificate can verify that C'A certified it via a
signature verification

Often, you will use a public key cryptosystem to support a key distribution protocol for a
symmetric cryptosystem. That is, we use public key certificates to help identify parties and
distribute a symmetric key for subsequent use (see SSL/TLS).

Summary Typically, all of these tasks, key distribution, secrecy, integrity and authenticity,
must be met in order to complete a secure communication.

You must know these basics, when to apply them, and how to combine into effective cryp-
tographic constructions.

