CSEA473/Spring 2008 - 2nd Midterm Exam
Th, April 17, 2008 — Professor Trent Jaeger

Please read the instructions and questions carefully. You will be graded for clarity and correctness. You
have 75 minutes to complete this exam, so focus on those questions whose subject matter you know well.
Write legibly and check your answers before handing it in.

Short Answer - some will be one or two words — no more than 3 sentences

1. (3pts) Define a critical section of a program.
answer: A sequence of instructions where if one process/thread is executing those instructions, then
no other process/thread may execute any instruction in that sequence.

2. (4pts) What is a fundamental difference between a mutex and a semaphore? How does this enable
bounded buffer exclusion?

answer: Semaphores enable counting with mutual exclusion. After a certain number of counts, then
we can prevent further access. For example, for a bounded buffer, we can ensure mutual exclusion
and prevent overflow and access to empty buffers.

3. (3pts) Name three of the necessary conditions for a deadlock?

answer: (1) Mutual exclusion; (2) hold and wait; (3) no preemption; (4) circular wait

4. (4pts) What is fragmentation? What is the difference between external and internal fragmentation?

answer: Fragmentation is a result of memory allocation where holes are formed between memory
allocations (external) or within memory allocations (internal) which cannot be used for further allo-
cations. External: total memory space exists to satisfy a request, but it is not contiguous. Internal:
allocated memory is larger than requested, so memory internal to a region is not being used.

5. (4pts) Why is page table size a significant issue in the design of a memory management system? How
does an inverted page table address this challenge?

answer: A page table must store an entry for each virtual page (4K), so for 32-bit and 64-bit virtual
address spaces per process these generates a large number of entries. An inverted page table is based
on physical memory, so its size is limited by that of physical memory.

6. (3pts) What are three types of objects that comprise the file system interface?

answer: Files, Directories, and Partitions (file systems)

7. (3pts) What is the problem with storing file data blocks in a linked list where the first few bytes of
each data block refer to the next data block of the file?

answer: To access the nth data block, you will have to make n reads from the disk. As disk reads
are slow operations, this is unacceptable.

Long Answer - no more than 2 paragraphs

8. (7pts) What is Belady’s anomaly? Suppose that we propose a page replacement algorithm that is a
last-referenced, last-out algorithm, where the last referenced page is the last one replaced. Does this
suffer from Belady’s anomaly? Why or why not?

answer: Belady’s anomaly in a page replacement algorithm may occurs when the addition of more
physical memory may still result in more page faults using this algorithm. The Belady’s anomaly is
not present for stack algorithms — algorithms that maintain the page references in a stack from most
recent to least recent. The last-in, last-out replacement algorithm proposed places the last referenced
page on the top of the stack — as it is the last one to be replaced. Thus, it is an example of a stack
algorithm, so it does not suffer from Belady’s anomaly.

9. (7pts) Show how a strict alternation mutual exclusion algorithm below either satisfies or fails to
satisfy mutex, progress, or bounded waiting.

Strict Alternation

turn = 0;
PO {
while (turn != 0);
/¥** access shared data ***/
turn = 1;
}
P1{
while (turn = 1);
/*** access shared data ***/
turn = 0;
}

answer: Strict alternation satisfies mutex — only the thread whose turn it is (determined by the turn
variable) can access the shared data. It does not satisfy progress, as the approach forces PO to always
run after P1 and vice versa. Should a thread want to enter the critical section consectutively, it will
have to wait, even if the other thread is not interested in the critical section — violating progress.
Also, the waiting time could be infinite. Finally, bounded waiting is satisfied because there is a bound
on the number of other processes that are allowed to enter the critical section before this process

(1).

10. (7pts) Consider the performance of disk reads and the choices of data block allocation (i.e., contiguous,
linked, and indexed allocation). What type of allocation would be most efficient for small files of
a bounded size? Why? What type of allocation would be most efficient for large, unbounded files
accessed directly? Why?

answer: Use contiguous allocation for small bounded files, because: (1) you can predict the size of
memory, so no block movement is necessary; (2) because the file is small, direct and sequential access
is fast and easy. Use indexed allocation for large, unbound files because: (1) direct access can be
done more quickly than linked; (2) no movement of blocks is required because it uses non-contiguous
allocation; (3) access latency to data early in the file is good for direct access and not bad even near
the end (a few blocks).

11. (7pts) Suppose that you have two UNIX threads that are writing to the same file’s data blocks. Why
would it be more efficient for concurrency control between these two threads to be implemented on
the block-writes by the file system, rather than application-level semaphores? Why would the file
system not be able to enforce such concurrency control if the file is memory-mapped? Why might
file system concurrency control be insufficient for the application requirements?

answer: The file system could synchronize block writes more efficiently because this could be done
within the write system call, rather than requiring more system calls for mutexes or semaphores.
However, a memory-mapped file is modified without executing a write system call, so the file system
has no way to synchronize such memory operations. Finally, the application’s critical section may
require that multiple writes be performed as an atomic unit. Such OS-level synchronization will not
be aware of the synchronization requirements of a set of writes.

Word Problems - take your time and answer clearly and completely.

12. (10pts) Consider a system with 4 processes (P through Py) and 3 resource types A, B, C. Suppose
at time T the following snapshot has been taken:

Process ID | Allocated (A/B/C) | Max (A/B/C)
Py 1/3/2 9/4/3
Py 3/2/0 4/9/6
Py 4/1/1 5/1/5
2 1/4/2 6/7/3

(a) (2pts) Draw the Needs table for the system.

(b) (2pts) Suppose the number of free resources are: A =1, B =2, C' = 4. Find a process sequence
that will prove that this system is in a safe state or identify that it is not in a safe state.

(c) (2pts) Suppose that process P, makes a request for B = 1, C' = 2. Would this result in a safe
state (if so, show how)?

13.

(d) (2pts) Suppose that the request in step (c) is granted by the system (from the free resources in
(b)). Will the following request set result in a deadlock? Py = (4,1,1), P, = (0,0,4), P3 = (3,0,6),
Py = (0,1,1). If there is no deadlock, show a legal process sequence.

(e) (2pts) Specify two ways to recover from a deadlock.

answer: (a)

Needs (A/B/C)
8/1/1
1/7/6
1/0/4
5/3/1

(b) P3, P4, P2, P1 or P3, P4, P1, P2
(¢) No, not safe
(d) No deadlock. P4, P2, P1, P3

after P4: 2/5/4 only P2 can go after P2: 6/7/6 either P3 or P1

(e) two of preempt resources, kill the process, checkpoint and roolback

(10pts) Answer the questions regarding the page table of one process specified below. Assume 4K
pages.

Virtual Page | Frame Number | Valid Bit | Reference Bit | Dirty Bit
0 3 v 0 1
1 - i 0 0
2 0 v 1 1
3 - i 0 0
4 9 v 1 0
5 i 0 0
6 - i 0 0
7 12 A\ 0 0

(a) (2pts) How many pages of this process are resident in physical memory? What happens when
one of the other pages is accessed?

(b) (2pts) What physical memory address is accessed when the process accesses the virtual address
0x432£7

(c) (2pts) Suppose there is a reference to virtual page 6 by the process and that there is no free
frame. If we use a Not Recently Used page replacement strategy, which page would be selected for

14.

replacement? What operation(s) would need to occur before freeing that page?

(d) (2pts) Write the resulting page table entries for virtual page 6 and the page that was replaced.
Assume that the reference to virtual page 6 was to write to the page.

(e) (2pts) Suppose the memory access time is 100 nanoseconds and the average page-fault service
time is 1 millisecond. What is the page fault probability for an effective access time of 1 microsecond
(a close approximation is acceptable — show work)?

answer: (a) four frames. Page fault.

(b) Physical address would be 0x932f.

(c) 7. Nothing — the page is clean.

(d) for 6: v:6, £:12, vb:v, rb:1, db:1; for 7: v:7, f:-) vb:i, rb:0, db:0
(e) 1 = (1-p).1 + 1000p = .1 - .1p + 1000p 9 in 10000
(

10pts) Answer questions about concurrency control for the following code.
Data Base Access Code
database_t db;

void *threadl(void *arg)

{
query_t *q = (arg ? (input_t *) arg—query : NULL); /* get query from arg */
update_query(q, arg—more_stuff); /* change q use “more stuff” */
update_db(db, q); /* query updates database */
return NULL;

}

void *thread2(void *arg)

{
query_t *q = (arg ? (input_t *) arg—query : NULL); /* get query from arg */
verify_query(q, arg—test); /* read q to compare to “test” */
read_db(db, q); /* query reads from database */
return NULL;

}

(a) (2pts) Which variable(s) are definitely shared between two threads, one running thread! and the
other running thread2?

15.

(b) (2pts) State how you would rewrite the code of threadl to enforce mutual exclusion to these
variable(s). Use mutex_lock and mutex unlock.

(c) (2pts) State how you would rewrite the code of thread?2 to enforce mutual exclusion to these
variable(s). Use mutex_lock and mutex_unlock.

(d) (2pts) Suppose many threads run the code of thread2, and few threads run threadl. What is the
problem with using a simple, mutual exclusion solution between thread! and thread2?

(e) (2pts) How would you rewrite the code (in abstract terms — just describe) in thread2 to solve this
problem?

answer: (a) db

(b) add mutex_locks around db in threadl

(c¢) add mutex_locks around db in thread2

(d) readers-writes problem — blocking progress of a reader in thread2 where no problem would occur
(e) Use mutex to protect number of readers, before and after mutex — write semaphore to protect db
in thread2. Other answers are possible

(8pts) Answer the following questions about process creation and memory management.

(a) (2pts) Suppose a process has stack of 2 pages, a heap of 4 pages, and a code segment of 4 pages.
When the process is created how many physical frames will it consume?

(b) (2pts) Suppose that the first thing that this process does is execute a malloc instruction from

16.

the code segment that allocates 2 pages of memory and assigns the address of this memory to a stack
variable. How many physical frames will be allocated for executing this operation?

(c) (2pts) A new process is created by forking this process. If copy-on-write is used how many new
physical frames must be allocated for the new process?

(d) (2pts) What happens when the original process writes to a page after the fork operation described
in (c)?

answer: (a) None.

(b) 2. The code page must be mapped in and the stack page for the reference.

(c) None.

(d) A memory exception is taken (because the pages are marked readonly) and a new frame is
allocated for this page for the original

/
(10pts) Consider this file system. / / \\

bin etc usr home

AN

network you

file

(a) (2pts) Specify the absolute path name to the file file and the relative path name from the directory
network.

(b) (2pts) Suppose that one process opens file using the absolute path name and another process
opens file using the relative path name. How many entries are added to the respective process’s open
file descriptor tables? How many inodes are added to the system-wide open file table?

(c) (2pts) How many disk accesses (assume nothing is cached) must be made to create an in-memory
representation for file using a UNIX file system? Specify them. Assume one data block per directory
to find the specified entry.

(d) (2pts) How are the first and second data blocks in a file added to a File Allocation Table (FAT)?

(e) (2pts) How are the first and second data blocks in a file added to a UNIX inode?

answer: (a) /home/me/file and ../../home/me/file.

(b) Per-process: one entry each for the newly opened file; only one entry in the system-wide open
file descriptor table.

(c) 8. (1) the partition control block for the file system; (2-4) the root, home, and me directory data
blocks; (5) the file control block for file. Plus, the directory inodes and data blocks are separate in
UNIX. So, we access 2 blocks per directory.

(d) The FAT stores a table where each block number stores the next block number in the file. For
the first block, we would find a block, and have the file control block reference this block. For the
second block, it would be referenced by the FAT entry for the first block.

(e) An inode has several direct blocks for specifying data. The first two data blocks in the file would
be assigned to the first two direct blocks in the file control block (inode).

