
The Libgcrypt Reference Manual
Version 1.4.6

9 July 2009

Werner Koch (wk@gnupg.org)
Moritz Schulte (mo@g10code.com)

mailto:wk@gnupg.org
mailto:mo@g10code.com

This manual is for Libgcrypt (version 1.4.6, 9 July 2009), which is GNU’s library of cryp-
tographic building blocks.
Copyright c© 2000, 2002, 2003, 2004, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.
The text of the license can be found in the section entitled “GNU General Public
License”.

i

Short Contents

1 Introduction . 1

2 Preparation . 3

3 Generalities . 9

4 Handler Functions . 19

5 Symmetric cryptography . 23

6 Public Key cryptography . 31

7 Hashing . 53

8 Random Numbers . 61

9 S-expressions . 63

10 MPI library . 67

11 Prime numbers . 73

12 Utilities . 75

13 Architecture . 77

A Description of the Self-Tests . 85

B Description of the FIPS Mode . 91

GNU Lesser General Public License . 97

GNU General Public License . 107

List of Figures and Tables . 113

Concept Index . 115

Function and Data Index . 117

ii The Libgcrypt Reference Manual

iii

Table of Contents

1 Introduction . 1
1.1 Getting Started . 1
1.2 Features . 1
1.3 Overview . 1

2 Preparation . 3
2.1 Header . 3
2.2 Building sources . 3
2.3 Building sources using Automake . 4
2.4 Initializing the library . 4
2.5 Multi-Threading . 6
2.6 How to enable the FIPS mode . 7

3 Generalities . 9
3.1 Controlling the library . 9
3.2 Modules . 13
3.3 Error Handling . 13

3.3.1 Error Values . 13
3.3.2 Error Sources . 15
3.3.3 Error Codes . 16
3.3.4 Error Strings . 18

4 Handler Functions . 19
4.1 Progress handler . 19
4.2 Allocation handler . 20
4.3 Error handler . 20
4.4 Logging handler . 21

5 Symmetric cryptography . 23
5.1 Available ciphers . 23
5.2 Cipher modules . 24
5.3 Available cipher modes . 26
5.4 Working with cipher handles . 26
5.5 General cipher functions . 29

6 Public Key cryptography . 31
6.1 Available algorithms . 31
6.2 Used S-expressions . 31

6.2.1 RSA key parameters . 31
6.2.2 DSA key parameters . 32
6.2.3 ECC key parameters . 32

iv The Libgcrypt Reference Manual

6.3 Public key modules . 34
6.4 Cryptographic Functions . 36
6.5 General public-key related Functions . 39
6.6 Alternative Public Key Interface . 44

6.6.1 Available asymmetric algorithms . 44
6.6.2 Working with sets of data . 44
6.6.3 Working with IO objects . 46
6.6.4 Working with handles . 47
6.6.5 Working with keys . 47
6.6.6 Using cryptographic functions . 49
6.6.7 Handle-independent functions . 52

7 Hashing . 53
7.1 Available hash algorithms . 53
7.2 Hash algorithm modules . 54
7.3 Working with hash algorithms . 56

8 Random Numbers . 61
8.1 Quality of random numbers . 61
8.2 Retrieving random numbers . 61

9 S-expressions . 63
9.1 Data types for S-expressions . 63
9.2 Working with S-expressions . 63

10 MPI library . 67
10.1 Data types . 67
10.2 Basic functions . 67
10.3 MPI formats . 68
10.4 Calculations . 69
10.5 Comparisons . 70
10.6 Bit manipulations . 70
10.7 Miscellaneous . 71

11 Prime numbers . 73
11.1 Generation . 73
11.2 Checking . 73

12 Utilities . 75
12.1 Memory allocation . 75

v

13 Architecture . 77
13.1 Public-Key Architecture . 78
13.2 Symmetric Encryption Subsystem Architecture 79
13.3 Hashing and MACing Subsystem Architecture 79
13.4 Multi-Precision-Integer Subsystem Architecture 80
13.5 Prime-Number-Generator Subsystem Architecture 80
13.6 Random-Number Subsystem Architecture . 81

13.6.1 Description of the CSPRNG . 82
13.6.2 Description of the FIPS X9.31 PRNG 82

Appendix A Description of the Self-Tests 85
A.1 Power-Up Tests . 85

A.1.1 Symmetric Cipher Algorithm Power-Up Tests 85
A.1.2 Hash Algorithm Power-Up Tests . 85
A.1.3 MAC Algorithm Power-Up Tests . 86
A.1.4 Random Number Power-Up Test . 86
A.1.5 Public Key Algorithm Power-Up Tests 86
A.1.6 Integrity Power-Up Tests . 87
A.1.7 Critical Functions Power-Up Tests . 87

A.2 Conditional Tests . 87
A.2.1 Key-Pair Generation Tests . 87
A.2.2 Software Load Tests . 88
A.2.3 Manual Key Entry Tests . 88
A.2.4 Continuous RNG Tests . 88

A.3 Application Requested Tests . 88
A.3.1 Symmetric Cipher Algorithm Tests . 88
A.3.2 Hash Algorithm Tests . 88
A.3.3 MAC Algorithm Tests . 89

Appendix B Description of the FIPS Mode . . 91
B.1 Restrictions in FIPS Mode . 91
B.2 FIPS Finite State Machine . 92
B.3 FIPS Miscellaneous Information . 96

GNU Lesser General Public License 97

GNU General Public License 107

List of Figures and Tables . 113

Concept Index . 115

Function and Data Index . 117

vi The Libgcrypt Reference Manual

Chapter 1: Introduction 1

1 Introduction

Libgcrypt is a library providing cryptographic building blocks.

1.1 Getting Started

This manual documents the Libgcrypt library application programming interface (API). All
functions and data types provided by the library are explained.
The reader is assumed to possess basic knowledge about applied cryptography.

This manual can be used in several ways. If read from the beginning to the end, it gives
a good introduction into the library and how it can be used in an application. Forward
references are included where necessary. Later on, the manual can be used as a reference
manual to get just the information needed about any particular interface of the library.
Experienced programmers might want to start looking at the examples at the end of the
manual, and then only read up those parts of the interface which are unclear.

1.2 Features

Libgcrypt might have a couple of advantages over other libraries doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of the GNU
Lesser General Public License (see [Library Copying], page 97). Note, that
some parts (which are in general not needed by applications) are subject to the
terms of the GNU General Public License (see [Copying], page 107); please see
the README file of the distribution for of list of these parts.

It encapsulates the low level cryptography
Libgcrypt provides a high level interface to cryptographic building blocks using
an extensible and flexible API.

1.3 Overview

The Libgcrypt library is fully thread-safe, where it makes sense to be thread-safe. Not
thread-safe are some cryptographic functions that modify a certain context stored in han-
dles. If the user really intents to use such functions from different threads on the same
handle, he has to take care of the serialization of such functions himself. If not described
otherwise, every function is thread-safe.

Libgcrypt depends on the library ‘libgpg-error’, which contains common error handling
related code for GnuPG components.

2 The Libgcrypt Reference Manual

Chapter 2: Preparation 3

2 Preparation

To use Libgcrypt, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of
this chapter, it is described how the library is initialized, and how the requirements of the
library are verified.

2.1 Header

All interfaces (data types and functions) of the library are defined in the header file
‘gcrypt.h’. You must include this in all source files using the library, either directly or
through some other header file, like this:

#include <gcrypt.h>

The name space of Libgcrypt is gcry_* for function and type names and GCRY* for other
symbols. In addition the same name prefixes with one prepended underscore are reserved
for internal use and should never be used by an application. Note that Libgcrypt uses
libgpg-error, which uses gpg_* as name space for function and type names and GPG_* for
other symbols, including all the error codes.
Certain parts of gcrypt.h may be excluded by defining these macros:

GCRYPT_NO_MPI_MACROS
Do not define the shorthand macros mpi_* for gcry_mpi_*.

GCRYPT_NO_DEPRECATED
Do not include defintions for deprecated features. This is useful to make sure
that no deprecated features are used.

2.2 Building sources

If you want to compile a source file including the ‘gcrypt.h’ header file, you must make sure
that the compiler can find it in the directory hierarchy. This is accomplished by adding the
path to the directory in which the header file is located to the compilers include file search
path (via the ‘-I’ option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, Libgcrypt ships with a small helper program libgcrypt-config that
knows the path to the include file and other configuration options. The options that need
to be added to the compiler invocation at compile time are output by the ‘--cflags’ option
to libgcrypt-config. The following example shows how it can be used at the command
line:

gcc -c foo.c ‘libgcrypt-config --cflags‘

Adding the output of ‘libgcrypt-config --cflags’ to the compilers command line will
ensure that the compiler can find the Libgcrypt header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the ‘-L’ option). For this, the option ‘--libs’ to libgcrypt-
config can be used. For convenience, this option also outputs all other options that are
required to link the program with the Libgcrypt libraries (in particular, the ‘-lgcrypt’

4 The Libgcrypt Reference Manual

option). The example shows how to link ‘foo.o’ with the Libgcrypt library to a program
foo.

gcc -o foo foo.o ‘libgcrypt-config --libs‘

Of course you can also combine both examples to a single command by specifying both
options to libgcrypt-config:

gcc -o foo foo.c ‘libgcrypt-config --cflags --libs‘

2.3 Building sources using Automake

It is much easier if you use GNU Automake instead of writing your own Makefiles. If you
do that, you do not have to worry about finding and invoking the libgcrypt-config script
at all. Libgcrypt provides an extension to Automake that does all the work for you.

[Macro]AM_PATH_LIBGCRYPT ([minimum-version], [action-if-found],
[action-if-not-found])

Check whether Libgcrypt (at least version minimum-version, if given) exists on the
host system. If it is found, execute action-if-found, otherwise do action-if-not-found,
if given.
Additionally, the function defines LIBGCRYPT_CFLAGS to the flags needed for compi-
lation of the program to find the ‘gcrypt.h’ header file, and LIBGCRYPT_LIBS to the
linker flags needed to link the program to the Libgcrypt library.

You can use the defined Autoconf variables like this in your ‘Makefile.am’:
AM_CPPFLAGS = $(LIBGCRYPT_CFLAGS)
LDADD = $(LIBGCRYPT_LIBS)

2.4 Initializing the library

Before the library can be used, it must initialize itself. This is achieved by invoking the
function gcry_check_version described below.

Also, it is often desirable to check that the version of Libgcrypt used is indeed one
which fits all requirements. Even with binary compatibility, new features may have been
introduced, but due to problem with the dynamic linker an old version may actually be
used. So you may want to check that the version is okay right after program startup.

[Function]const char * gcry_check_version (const char *req_version)
The function gcry_check_version initializes some subsystems used by Libgcrypt
and must be invoked before any other function in the library, with the exception of
the GCRYCTL_SET_THREAD_CBS command (called via the gcry_control function). See
Section 2.5 [Multi-Threading], page 6.
Furthermore, this function returns the version number of the library. It can also verify
that the version number is higher than a certain required version number req version,
if this value is not a null pointer.

Libgcrypt uses a concept known as secure memory, which is a region of memory set aside
for storing sensitive data. Because such memory is a scarce resource, it needs to be setup
in advanced to a fixed size. Further, most operating systems have special requirements on

Chapter 2: Preparation 5

how that secure memory can be used. For example, it might be required to install an ap-
plication as “setuid(root)” to allow allocating such memory. Libgcrypt requires a sequence
of initialization steps to make sure that this works correctly. The following examples show
the necessary steps.

If you don’t have a need for secure memory, for example if your application does not
use secret keys or other confidential data or it runs in a controlled environment where key
material floating around in memory is not a problem, you should initialize Libgcrypt this
way:

/* Version check should be the very first call because it
makes sure that important subsystems are intialized. */

if (!gcry_check_version (GCRYPT_VERSION))
{

fputs ("libgcrypt version mismatch\n", stderr);
exit (2);

}

/* Disable secure memory. */
gcry_control (GCRYCTL_DISABLE_SECMEM, 0);

/* ... If required, other initialization goes here. */

/* Tell Libgcrypt that initialization has completed. */
gcry_control (GCRYCTL_INITIALIZATION_FINISHED, 0);

If you have to protect your keys or other information in memory against being swapped
out to disk and to enable an automatic overwrite of used and freed memory, you need to
initialize Libgcrypt this way:

/* Version check should be the very first call because it
makes sure that important subsystems are intialized. */

if (!gcry_check_version (GCRYPT_VERSION))
{

fputs ("libgcrypt version mismatch\n", stderr);
exit (2);

}

/* We don’t want to see any warnings, e.g. because we have not yet
parsed program options which might be used to suppress such
warnings. */

gcry_control (GCRYCTL_SUSPEND_SECMEM_WARN);

/* ... If required, other initialization goes here. Note that the
process might still be running with increased privileges and that
the secure memory has not been intialized. */

/* Allocate a pool of 16k secure memory. This make the secure memory
available and also drops privileges where needed. */

6 The Libgcrypt Reference Manual

gcry_control (GCRYCTL_INIT_SECMEM, 16384, 0);

/* It is now okay to let Libgcrypt complain when there was/is
a problem with the secure memory. */

gcry_control (GCRYCTL_RESUME_SECMEM_WARN);

/* ... If required, other initialization goes here. */

/* Tell Libgcrypt that initialization has completed. */
gcry_control (GCRYCTL_INITIALIZATION_FINISHED, 0);

It is important that these initialization steps are not done by a library but by the actual
application. A library using Libgcrypt might want to check for finished initialization using:

if (!gcry_control (GCRYCTL_INITIALIZATION_FINISHED_P))
{

fputs ("libgcrypt has not been initialized\n", stderr);
abort ();

}

Instead of terminating the process, the library may instead print a warning and try to
initialize Libgcrypt itself. See also the section on multi-threading below for more pitfalls.

2.5 Multi-Threading

As mentioned earlier, the Libgcrypt library is thread-safe if you adhere to the following
requirements:

• If your application is multi-threaded, you must set the thread support callbacks with
the GCRYCTL_SET_THREAD_CBS command before any other function in the library.

This is easy enough if you are indeed writing an application using Libgcrypt. It is
rather problematic if you are writing a library instead. Here are some tips what to do
if you are writing a library:

If your library requires a certain thread package, just initialize Libgcrypt to use this
thread package. If your library supports multiple thread packages, but needs to be
configured, you will have to implement a way to determine which thread package the
application wants to use with your library anyway. Then configure Libgcrypt to use
this thread package.

If your library is fully reentrant without any special support by a thread package, then
you are lucky indeed. Unfortunately, this does not relieve you from doing either of the
two above, or use a third option. The third option is to let the application initialize
Libgcrypt for you. Then you are not using Libgcrypt transparently, though.

As if this was not difficult enough, a conflict may arise if two libraries try to initialize
Libgcrypt independently of each others, and both such libraries are then linked into the
same application. To make it a bit simpler for you, this will probably work, but only
if both libraries have the same requirement for the thread package. This is currently
only supported for the non-threaded case, GNU Pth and pthread. Support for more
thread packages is easy to add, so contact us if you require it.

Chapter 2: Preparation 7

• The function gcry_check_version must be called before any other function in the
library, except the GCRYCTL_SET_THREAD_CBS command (called via the gcry_control
function), because it initializes the thread support subsystem in Libgcrypt. To achieve
this in multi-threaded programs, you must synchronize the memory with respect to
other threads that also want to use Libgcrypt. For this, it is sufficient to call gcry_
check_version before creating the other threads using Libgcrypt1.

• Just like the function gpg_strerror, the function gcry_strerror is not thread safe.
You have to use gpg_strerror_r instead.

Libgcrypt contains convenient macros, which define the necessary thread callbacks for
PThread and for GNU Pth:

GCRY_THREAD_OPTION_PTH_IMPL
This macro defines the following (static) symbols: gcry_pth_init,
gcry_pth_mutex_init, gcry_pth_mutex_destroy, gcry_pth_mutex_lock,
gcry_pth_mutex_unlock, gcry_pth_read, gcry_pth_write, gcry_pth_
select, gcry_pth_waitpid, gcry_pth_accept, gcry_pth_connect,
gcry_threads_pth.

After including this macro, gcry_control() shall be used with a command
of GCRYCTL_SET_THREAD_CBS in order to register the thread callback structure
named “gcry threads pth”.

GCRY_THREAD_OPTION_PTHREAD_IMPL
This macro defines the following (static) symbols: gcry_pthread_
mutex_init, gcry_pthread_mutex_destroy, gcry_pthread_mutex_lock,
gcry_pthread_mutex_unlock, gcry_threads_pthread.

After including this macro, gcry_control() shall be used with a command
of GCRYCTL_SET_THREAD_CBS in order to register the thread callback structure
named “gcry threads pthread”.

Note that these macros need to be terminated with a semicolon. Keep in mind that
these are convenient macros for C programmers; C++ programmers might have to wrap
these macros in an “extern C” body.

2.6 How to enable the FIPS mode

Libgcrypt may be used in a FIPS 140-2 mode. Note, that this does not necessary
mean that Libcgrypt is an appoved FIPS 140-2 module. Check the NIST database
at http://csrc.nist.gov/groups/STM/cmvp/ to see what versions of Libgcrypt are
approved.

Because FIPS 140 has certain restrictions on the use of cryptography which are not
always wanted, Libgcrypt needs to be put into FIPS mode explicitly. Three alternative
mechanisms are provided to switch Libgcrypt into this mode:

1 At least this is true for POSIX threads, as pthread_create is a function that synchronizes memory with
respects to other threads. There are many functions which have this property, a complete list can be
found in POSIX, IEEE Std 1003.1-2003, Base Definitions, Issue 6, in the definition of the term “Memory
Synchronization”. For other thread packages, more relaxed or more strict rules may apply.

http://csrc.nist.gov/groups/STM/cmvp/

8 The Libgcrypt Reference Manual

• If the file ‘/proc/sys/crypto/fips_enabled’ exists and contains a numeric value other
than 0, Libgcrypt is put into FIPS mode at initialization time. Obviously this works
only on systems with a proc file system (i.e. GNU/Linux).

• If the file ‘/etc/gcrypt/fips_enabled’ exists, Libgcrypt is put into FIPS mode at
initialization time. Note that this filename is hardwired and does not depend on any
configuration options.

• If the application requests FIPS mode using the control command GCRYCTL_FORCE_
FIPS_MODE. This must be done prior to any initialization (i.e. before gcry_check_
version).

In addition to the standard FIPS mode, Libgcrypt may also be put into an Enforced
FIPS mode by writing a non-zero value into the file ‘/etc/gcrypt/fips_enabled’. The
Enforced FIPS mode helps to detect applications which don’t fulfill all requirements for
using Libgcrypt in FIPS mode (see Appendix B [FIPS Mode], page 91).

Once Libgcrypt has been put into FIPS mode, it is not possible to switch back to standard
mode without terminating the process first. If the logging verbosity level of Libgcrypt has
been set to at least 2, the state transitions and the self-tests are logged.

Chapter 3: Generalities 9

3 Generalities

3.1 Controlling the library

[Function]gcry_error_t gcry_control (enum gcry ctl cmds cmd, ...)
This function can be used to influence the general behavior of Libgcrypt in several
ways. Depending on cmd, more arguments can or have to be provided.

GCRYCTL_ENABLE_M_GUARD; Arguments: none
This command enables the built-in memory guard. It must not be used
to activate the memory guard after the memory management has already
been used; therefore it can ONLY be used at initialization time. Note
that the memory guard is NOT used when the user of the library has set
his own memory management callbacks.

GCRYCTL_ENABLE_QUICK_RANDOM; Arguments: none
This command inhibits the use the very secure random quality level
(GCRY_VERY_STRONG_RANDOM) and degrades all request down to GCRY_
STRONG_RANDOM. In general this is not recommened. However, for some
applications the extra quality random Libgcrypt tries to create is not jus-
tified and this option may help to get better performace. Please check
with a crypto expert whether this option can be used for your application.
This option can only be used at initialization time.

GCRYCTL_DUMP_RANDOM_STATS; Arguments: none
This command dumps randum number generator related statistics to the
library’s logging stream.

GCRYCTL_DUMP_MEMORY_STATS; Arguments: none
This command dumps memory managment related statistics to the li-
brary’s logging stream.

GCRYCTL_DUMP_SECMEM_STATS; Arguments: none
This command dumps secure memory manamgent related statistics to
the library’s logging stream.

GCRYCTL_DROP_PRIVS; Arguments: none
This command disables the use of secure memory and drops the priviliges
of the current process. This command has not much use; the suggested
way to disable secure memory is to use GCRYCTL_DISABLE_SECMEM right
after initialization.

GCRYCTL_DISABLE_SECMEM; Arguments: none
This command disables the use of secure memory. If this command is
used in FIPS mode, FIPS mode will be disabled and the function gcry_
fips_mode_active returns false. However, in Enforced FIPS mode this
command has no effect at all.
Many applications do not require secure memory, so they should disable
it right away. This command should be executed right after gcry_check_
version.

10 The Libgcrypt Reference Manual

GCRYCTL_INIT_SECMEM; Arguments: int nbytes
This command is used to allocate a pool of secure memory and thus
enabling the use of secure memory. It also drops all extra privileges the
process has (i.e. if it is run as setuid (root)). If the argument nbytes
is 0, secure memory will be disabled. The minimum amount of secure
memory allocated is currently 16384 bytes; you may thus use a value of
1 to request that default size.

GCRYCTL_TERM_SECMEM; Arguments: none
This command zeroises the secure memory and destroys the handler.
The secure memory pool may not be used anymore after running this
command. If the secure memory pool as already been destroyed, this
command has no effect. Applications might want to run this command
from their exit handler to make sure that the secure memory gets properly
destroyed. This command is not necessarily thread-safe but that should
not be needed in cleanup code. It may be called from a signal handler.

GCRYCTL_DISABLE_SECMEM_WARN; Arguments: none
Disable warning messages about problems with the secure memory sub-
system. This command should be run right after gcry_check_version.

GCRYCTL_SUSPEND_SECMEM_WARN; Arguments: none
Postpone warning messages from the secure memory subsystem. See [the
initialization example], page 5, on how to use it.

GCRYCTL_RESUME_SECMEM_WARN; Arguments: none
Resume warning messages from the secure memory subsystem. See [the
initialization example], page 6, on how to use it.

GCRYCTL_USE_SECURE_RNDPOOL; Arguments: none
This command tells the PRNG to store random numbers in secure mem-
ory. This command should be run right after gcry_check_version and
not later than the command GCRYCTL INIT SECMEM. Note that in
FIPS mode the secure memory is always used.

GCRYCTL_SET_RANDOM_SEED_FILE; Arguments: const char *filename
This command specifies the file, which is to be used as seed file for the
PRNG. If the seed file is registered prior to initialization of the PRNG,
the seed file’s content (if it exists and seems to be valid) is fed into the
PRNG pool. After the seed file has been registered, the PRNG can be
signalled to write out the PRNG pool’s content into the seed file with the
following command.

GCRYCTL_UPDATE_RANDOM_SEED_FILE; Arguments: none
Write out the PRNG pool’s content into the registered seed file.
Multiple instances of the applications sharing the same random seed file
can be started in parallel, in which case they will read out the same
pool and then race for updating it (the last update overwrites earlier
updates). They will differentiate only by the weak entropy that is added
in read seed file based on the PID and clock, and up to 16 bytes of
weak random non-blockingly. The consequence is that the output of

Chapter 3: Generalities 11

these different instances is correlated to some extent. In a perfect attack
scenario, the attacker can control (or at least guess) the PID and clock
of the application, and drain the system’s entropy pool to reduce the
"up to 16 bytes" above to 0. Then the dependencies of the inital states
of the pools are completely known. Note that this is not an issue if
random of GCRY_VERY_STRONG_RANDOM quality is requested as in this case
enough extra entropy gets mixed. It is also not an issue when using Linux
(rndlinux driver), because this one guarantees to read full 16 bytes from
/dev/urandom and thus there is no way for an attacker without kernel
access to control these 16 bytes.

GCRYCTL_SET_VERBOSITY; Arguments: int level
This command sets the verbosity of the logging. A level of 0 disables
all extra logging whereas positive numbers enable more verbose logging.
The level may be changed at any time but be aware that no memory
synchronization is done so the effect of this command might not immedi-
ately show up in other threads. This command may even be used prior
to gcry_check_version.

GCRYCTL_SET_DEBUG_FLAGS; Arguments: unsigned int flags
Set the debug flag bits as given by the argument. Be aware that that
no memory synchronization is done so the effect of this command might
not immediately show up in other threads. The debug flags are not
considered part of the API and thus may change without notice. As
of now bit 0 enables debugging of cipher functions and bit 1 debugging
of multi-precision-integers. This command may even be used prior to
gcry_check_version.

GCRYCTL_CLEAR_DEBUG_FLAGS; Arguments: unsigned int flags
Set the debug flag bits as given by the argument. Be aware that that no
memory synchronization is done so the effect of this command might not
immediately show up in other threads. This command may even be used
prior to gcry_check_version.

GCRYCTL_DISABLE_INTERNAL_LOCKING; Arguments: none
This command does nothing. It exists only for backward compatibility.

GCRYCTL_ANY_INITIALIZATION_P; Arguments: none
This command returns true if the library has been basically initialized.
Such a basic initialization happens implicitly with many commands to get
certain internal subsystems running. The common and suggested way to
do this basic intialization is by calling gcry check version.

GCRYCTL_INITIALIZATION_FINISHED; Arguments: none
This command tells the libray that the application has finished the in-
tialization.

GCRYCTL_INITIALIZATION_FINISHED_P; Arguments: none
This command returns true if the command
GCRYCTL INITIALIZATION FINISHED has already been run.

12 The Libgcrypt Reference Manual

GCRYCTL_SET_THREAD_CBS; Arguments: struct ath_ops *ath_ops
This command registers a thread-callback structure. See Section 2.5
[Multi-Threading], page 6.

GCRYCTL_FAST_POLL; Arguments: none
Run a fast random poll.

GCRYCTL_SET_RNDEGD_SOCKET; Arguments: const char *filename
This command may be used to override the default name of the EGD
socket to connect to. It may be used only during initialization as it is
not thread safe. Changing the socket name again is not supported. The
function may return an error if the given filename is too long for a local
socket name.
EGD is an alternative random gatherer, used only on systems lacking a
proper random device.

GCRYCTL_PRINT_CONFIG; Arguments: FILE *stream
This command dumps information pertaining to the configuration of the
library to the given stream. If NULL is given for stream, the log system
is used. This command may be used before the intialization has been
finished but not before a gcry version check.

GCRYCTL_OPERATIONAL_P; Arguments: none
This command returns true if the library is in an operational state. This
information makes only sense in FIPS mode. In contrast to other func-
tions, this is a pure test function and won’t put the library into FIPS
mode or change the internal state. This command may be used before
the intialization has been finished but not before a gcry version check.

GCRYCTL_FIPS_MODE_P; Arguments: none
This command returns true if the library is in FIPS mode. Note, that
this is no indication about the current state of the library. This command
may be used before the intialization has been finished but not before a
gcry version check. An application may use this command or the conve-
nience macro below to check whether FIPS mode is actually active.

[Function]int gcry_fips_mode_active (void)
Returns true if the FIPS mode is active. Note that this is imple-
mented as a macro.

GCRYCTL_FORCE_FIPS_MODE; Arguments: none
Running this command puts the library into FIPS mode. If the library is
already in FIPS mode, a self-test is triggered and thus the library will be
put into operational state. This command may be used before a call to
gcry check version and that is actually the recommended way to let an
application switch the library into FIPS mode. Note that Libgcrypt will
reject an attempt to switch to fips mode during or after the intialization.

GCRYCTL_SELFTEST; Arguments: none
This may be used at anytime to have the library run all implemented
self-tests. It works in standard and in FIPS mode. Returns 0 on success
or an error code on failure.

Chapter 3: Generalities 13

3.2 Modules

Libgcrypt supports the use of ‘extension modules’, which implement algorithms in addition
to those already built into the library directly.

[Data type]gcry_module_t
This data type represents a ‘module’.

Functions registering modules provided by the user take a ‘module specification struc-
ture’ as input and return a value of gcry_module_t and an ID that is unique in the modules’
category. This ID can be used to reference the newly registered module. After registering
a module successfully, the new functionality should be able to be used through the normal
functions provided by Libgcrypt until it is unregistered again.

3.3 Error Handling

Many functions in Libgcrypt can return an error if they fail. For this reason, the application
should always catch the error condition and take appropriate measures, for example by
releasing the resources and passing the error up to the caller, or by displaying a descriptive
message to the user and cancelling the operation.

Some error values do not indicate a system error or an error in the operation, but the
result of an operation that failed properly. For example, if you try to decrypt a tempered
message, the decryption will fail. Another error value actually means that the end of a data
buffer or list has been reached. The following descriptions explain for many error codes
what they mean usually. Some error values have specific meanings if returned by a certain
functions. Such cases are described in the documentation of those functions.

Libgcrypt uses the libgpg-error library. This allows to share the error codes with
other components of the GnuPG system, and to pass error values transparently from the
crypto engine, or some helper application of the crypto engine, to the user. This way no
information is lost. As a consequence, Libgcrypt does not use its own identifiers for error
codes, but uses those provided by libgpg-error. They usually start with GPG_ERR_.

However, Libgcrypt does provide aliases for the functions defined in libgpg-error, which
might be preferred for name space consistency.

Most functions in Libgcrypt return an error code in the case of failure. For this reason,
the application should always catch the error condition and take appropriate measures, for
example by releasing the resources and passing the error up to the caller, or by displaying
a descriptive message to the user and canceling the operation.

Some error values do not indicate a system error or an error in the operation, but the
result of an operation that failed properly.

GnuPG components, including Libgcrypt, use an extra library named libgpg-error to
provide a common error handling scheme. For more information on libgpg-error, see the
according manual.

3.3.1 Error Values

[Data type]gcry_err_code_t
The gcry_err_code_t type is an alias for the libgpg-error type gpg_err_code_t.
The error code indicates the type of an error, or the reason why an operation failed.

14 The Libgcrypt Reference Manual

A list of important error codes can be found in the next section.

[Data type]gcry_err_source_t
The gcry_err_source_t type is an alias for the libgpg-error type gpg_err_
source_t. The error source has not a precisely defined meaning. Sometimes it is
the place where the error happened, sometimes it is the place where an error was
encoded into an error value. Usually the error source will give an indication to where
to look for the problem. This is not always true, but it is attempted to achieve this
goal.
A list of important error sources can be found in the next section.

[Data type]gcry_error_t
The gcry_error_t type is an alias for the libgpg-error type gpg_error_t. An
error value like this has always two components, an error code and an error source.
Both together form the error value.
Thus, the error value can not be directly compared against an error code, but the
accessor functions described below must be used. However, it is guaranteed that only
0 is used to indicate success (GPG_ERR_NO_ERROR), and that in this case all other parts
of the error value are set to 0, too.
Note that in Libgcrypt, the error source is used purely for diagnostic purposes. Only
the error code should be checked to test for a certain outcome of a function. The
manual only documents the error code part of an error value. The error source is left
unspecified and might be anything.

[Function]gcry_err_code_t gcry_err_code (gcry error t err)
The static inline function gcry_err_code returns the gcry_err_code_t component
of the error value err. This function must be used to extract the error code from an
error value in order to compare it with the GPG_ERR_* error code macros.

[Function]gcry_err_source_t gcry_err_source (gcry error t err)
The static inline function gcry_err_source returns the gcry_err_source_t compo-
nent of the error value err. This function must be used to extract the error source
from an error value in order to compare it with the GPG_ERR_SOURCE_* error source
macros.

[Function]gcry_error_t gcry_err_make (gcry err source t source ,
gcry err code t code)

The static inline function gcry_err_make returns the error value consisting of the
error source source and the error code code.
This function can be used in callback functions to construct an error value to return
it to the library.

[Function]gcry_error_t gcry_error (gcry err code t code)
The static inline function gcry_error returns the error value consisting of the default
error source and the error code code.
For GCRY applications, the default error source is GPG_ERR_SOURCE_USER_1. You can
define GCRY_ERR_SOURCE_DEFAULT before including ‘gcrypt.h’ to change this default.
This function can be used in callback functions to construct an error value to return
it to the library.

Chapter 3: Generalities 15

The libgpg-error library provides error codes for all system error numbers it knows
about. If err is an unknown error number, the error code GPG_ERR_UNKNOWN_ERRNO is used.
The following functions can be used to construct error values from system errno numbers.

[Function]gcry_error_t gcry_err_make_from_errno
(gcry err source t source , int err)

The function gcry_err_make_from_errno is like gcry_err_make, but it takes a sys-
tem error like errno instead of a gcry_err_code_t error code.

[Function]gcry_error_t gcry_error_from_errno (int err)
The function gcry_error_from_errno is like gcry_error, but it takes a system error
like errno instead of a gcry_err_code_t error code.

Sometimes you might want to map system error numbers to error codes directly, or map
an error code representing a system error back to the system error number. The following
functions can be used to do that.

[Function]gcry_err_code_t gcry_err_code_from_errno (int err)
The function gcry_err_code_from_errno returns the error code for the system error
err. If err is not a known system error, the function returns GPG_ERR_UNKNOWN_ERRNO.

[Function]int gcry_err_code_to_errno (gcry err code t err)
The function gcry_err_code_to_errno returns the system error for the error code
err. If err is not an error code representing a system error, or if this system error is
not defined on this system, the function returns 0.

3.3.2 Error Sources

The library libgpg-error defines an error source for every component of the GnuPG
system. The error source part of an error value is not well defined. As such it is mainly
useful to improve the diagnostic error message for the user.

If the error code part of an error value is 0, the whole error value will be 0. In this case
the error source part is of course GPG_ERR_SOURCE_UNKNOWN.

The list of error sources that might occur in applications using Libgcrypt is:

GPG_ERR_SOURCE_UNKNOWN
The error source is not known. The value of this error source is 0.

GPG_ERR_SOURCE_GPGME
The error source is GPGME itself.

GPG_ERR_SOURCE_GPG
The error source is GnuPG, which is the crypto engine used for the OpenPGP
protocol.

GPG_ERR_SOURCE_GPGSM
The error source is GPGSM, which is the crypto engine used for the OpenPGP
protocol.

GPG_ERR_SOURCE_GCRYPT
The error source is libgcrypt, which is used by crypto engines to perform
cryptographic operations.

16 The Libgcrypt Reference Manual

GPG_ERR_SOURCE_GPGAGENT
The error source is gpg-agent, which is used by crypto engines to perform
operations with the secret key.

GPG_ERR_SOURCE_PINENTRY
The error source is pinentry, which is used by gpg-agent to query the
passphrase to unlock a secret key.

GPG_ERR_SOURCE_SCD
The error source is the SmartCard Daemon, which is used by gpg-agent to
delegate operations with the secret key to a SmartCard.

GPG_ERR_SOURCE_KEYBOX
The error source is libkbx, a library used by the crypto engines to manage
local keyrings.

GPG_ERR_SOURCE_USER_1
GPG_ERR_SOURCE_USER_2
GPG_ERR_SOURCE_USER_3
GPG_ERR_SOURCE_USER_4

These error sources are not used by any GnuPG component and can be used by
other software. For example, applications using Libgcrypt can use them to mark
error values coming from callback handlers. Thus GPG_ERR_SOURCE_USER_1 is
the default for errors created with gcry_error and gcry_error_from_errno,
unless you define GCRY_ERR_SOURCE_DEFAULT before including ‘gcrypt.h’.

3.3.3 Error Codes

The library libgpg-error defines many error values. The following list includes the most
important error codes.

GPG_ERR_EOF
This value indicates the end of a list, buffer or file.

GPG_ERR_NO_ERROR
This value indicates success. The value of this error code is 0. Also, it is
guaranteed that an error value made from the error code 0 will be 0 itself (as a
whole). This means that the error source information is lost for this error code,
however, as this error code indicates that no error occurred, this is generally
not a problem.

GPG_ERR_GENERAL
This value means that something went wrong, but either there is not enough
information about the problem to return a more useful error value, or there is
no separate error value for this type of problem.

GPG_ERR_ENOMEM
This value means that an out-of-memory condition occurred.

GPG_ERR_E...
System errors are mapped to GPG ERR EFOO where FOO is the symbol for
the system error.

Chapter 3: Generalities 17

GPG_ERR_INV_VALUE
This value means that some user provided data was out of range.

GPG_ERR_UNUSABLE_PUBKEY
This value means that some recipients for a message were invalid.

GPG_ERR_UNUSABLE_SECKEY
This value means that some signers were invalid.

GPG_ERR_NO_DATA
This value means that data was expected where no data was found.

GPG_ERR_CONFLICT
This value means that a conflict of some sort occurred.

GPG_ERR_NOT_IMPLEMENTED
This value indicates that the specific function (or operation) is not implemented.
This error should never happen. It can only occur if you use certain values or
configuration options which do not work, but for which we think that they
should work at some later time.

GPG_ERR_DECRYPT_FAILED
This value indicates that a decryption operation was unsuccessful.

GPG_ERR_WRONG_KEY_USAGE
This value indicates that a key is not used appropriately.

GPG_ERR_NO_SECKEY
This value indicates that no secret key for the user ID is available.

GPG_ERR_UNSUPPORTED_ALGORITHM
This value means a verification failed because the cryptographic algorithm is
not supported by the crypto backend.

GPG_ERR_BAD_SIGNATURE
This value means a verification failed because the signature is bad.

GPG_ERR_NO_PUBKEY
This value means a verification failed because the public key is not available.

GPG_ERR_NOT_OPERATIONAL
This value means that the library is not yet in state which allows to use this
function. This error code is in particular returned if Libgcrypt is operated in
FIPS mode and the internal state of the library does not yet or not anymore
allow the use of a service.

This error code is only available with newer libgpg-error versions, thus you
might see “invalid error code” when passing this to gpg_strerror. The numeric
value of this error code is 176.

GPG_ERR_USER_1
GPG_ERR_USER_2
...

18 The Libgcrypt Reference Manual

GPG_ERR_USER_16
These error codes are not used by any GnuPG component and can be freely
used by other software. Applications using Libgcrypt might use them to mark
specific errors returned by callback handlers if no suitable error codes (including
the system errors) for these errors exist already.

3.3.4 Error Strings

[Function]const char * gcry_strerror (gcry error t err)
The function gcry_strerror returns a pointer to a statically allocated string con-
taining a description of the error code contained in the error value err. This string
can be used to output a diagnostic message to the user.

[Function]const char * gcry_strsource (gcry error t err)
The function gcry_strerror returns a pointer to a statically allocated string con-
taining a description of the error source contained in the error value err. This string
can be used to output a diagnostic message to the user.

The following example illustrates the use of the functions described above:
{
gcry_cipher_hd_t handle;
gcry_error_t err = 0;

err = gcry_cipher_open (&handle, GCRY_CIPHER_AES,
GCRY_CIPHER_MODE_CBC, 0);

if (err)
{

fprintf (stderr, "Failure: %s/%s\n",
gcry_strsource (err),
gcry_strerror (err));

}
}

Chapter 4: Handler Functions 19

4 Handler Functions

Libgcrypt makes it possible to install so called ‘handler functions’, which get called by
Libgcrypt in case of certain events.

4.1 Progress handler

It is often useful to retrieve some feedback while long running operations are performed.

[Data type]gcry_handler_progress_t
Progress handler functions have to be of the type gcry_handler_progress_t, which
is defined as:

void (*gcry_handler_progress_t) (void *, const char *, int, int, int)

The following function may be used to register a handler function for this purpose.

[Function]void gcry_set_progress_handler (gcry handler progress t cb, void
*cb_data)

This function installs cb as the ‘Progress handler’ function. It may be used only
during initialization. cb must be defined as follows:

void
my_progress_handler (void *cb_data, const char *what,

int printchar, int current, int total)
{
/* Do something. */

}

A description of the arguments of the progress handler function follows.

cb data The argument provided in the call to gcry_set_progress_handler.

what A string identifying the type of the progress output. The following values
for what are defined:

need_entropy
Not enough entropy is available. total holds the number of
required bytes.

primegen Values for printchar:

\n Prime generated.

! Need to refresh the pool of prime numbers.

<, > Number of bits adjusted.

^ Searching for a generator.

. Fermat test on 10 candidates failed.

: Restart with a new random value.

+ Rabin Miller test passed.

20 The Libgcrypt Reference Manual

4.2 Allocation handler

It is possible to make Libgcrypt use special memory allocation functions instead of the
built-in ones.

Memory allocation functions are of the following types:

[Data type]gcry_handler_alloc_t
This type is defined as: void *(*gcry_handler_alloc_t) (size_t n).

[Data type]gcry_handler_secure_check_t
This type is defined as: int *(*gcry_handler_secure_check_t) (const void *).

[Data type]gcry_handler_realloc_t
This type is defined as: void *(*gcry_handler_realloc_t) (void *p, size_t n).

[Data type]gcry_handler_free_t
This type is defined as: void *(*gcry_handler_free_t) (void *).

Special memory allocation functions can be installed with the following function:

[Function]void gcry_set_allocation_handler (gcry handler alloc t
func_alloc, gcry handler alloc t func_alloc_secure,
gcry handler secure check t func_secure_check, gcry handler realloc t
func_realloc, gcry handler free t func_free)

Install the provided functions and use them instead of the built-in functions for doing
memory allocation. Using this function is in general not recommended because the
standard Libgcrypt allocation functions are guaranteed to zeroize memory if needed.

This function may be used only during initialization and may not be used in fips
mode.

4.3 Error handler

The following functions may be used to register handler functions that are called by
Libgcrypt in case certain error conditions occur. They may and should be registered prior
to calling gcry_check_version.

[Data type]gcry_handler_no_mem_t
This type is defined as: int (*gcry_handler_no_mem_t) (void *, size_t,
unsigned int)

[Function]void gcry_set_outofcore_handler (gcry handler no mem t
func_no_mem, void *cb_data)

This function registers func no mem as ‘out-of-core handler’, which means that it will
be called in the case of not having enough memory available. The handler is called
with 3 arguments: The first one is the pointer cb data as set with this function, the
second is the requested memory size and the last being a flag. If bit 0 of the flag is set,
secure memory has been requested. The handler should either return true to indicate
that Libgcrypt should try again allocating memory or return false to let Libgcrypt
use its default fatal error handler.

Chapter 4: Handler Functions 21

[Data type]gcry_handler_error_t
This type is defined as: void (*gcry_handler_error_t) (void *, int, const char
*)

[Function]void gcry_set_fatalerror_handler (gcry handler error t
func_error, void *cb_data)

This function registers func error as ‘error handler’, which means that it will be called
in error conditions.

4.4 Logging handler

[Data type]gcry_handler_log_t
This type is defined as: void (*gcry_handler_log_t) (void *, int, const char
*, va_list)

[Function]void gcry_set_log_handler (gcry handler log t func_log, void
*cb_data)

This function registers func log as ‘logging handler’, which means that it will be
called in case Libgcrypt wants to log a message. This function may and should be
used prior to calling gcry_check_version.

22 The Libgcrypt Reference Manual

Chapter 5: Symmetric cryptography 23

5 Symmetric cryptography

The cipher functions are used for symmetrical cryptography, i.e. cryptography using a
shared key. The programming model follows an open/process/close paradigm and is in that
similar to other building blocks provided by Libgcrypt.

5.1 Available ciphers

GCRY_CIPHER_NONE
This is not a real algorithm but used by some functions as error return. The
value always evaluates to false.

GCRY_CIPHER_IDEA
This is the IDEA algorithm. The constant is provided but there is currently no
implementation for it because the algorithm is patented.

GCRY_CIPHER_3DES
Triple-DES with 3 Keys as EDE. The key size of this algorithm is 168 but you
have to pass 192 bits because the most significant bits of each byte are ignored.

GCRY_CIPHER_CAST5
CAST128-5 block cipher algorithm. The key size is 128 bits.

GCRY_CIPHER_BLOWFISH
The blowfish algorithm. The current implementation allows only for a key size
of 128 bits.

GCRY_CIPHER_SAFER_SK128
Reserved and not currently implemented.

GCRY_CIPHER_DES_SK
Reserved and not currently implemented.

GCRY_CIPHER_AES
GCRY_CIPHER_AES128
GCRY_CIPHER_RIJNDAEL
GCRY_CIPHER_RIJNDAEL128

AES (Rijndael) with a 128 bit key.

GCRY_CIPHER_AES192
GCRY_CIPHER_RIJNDAEL192

AES (Rijndael) with a 192 bit key.

GCRY_CIPHER_AES256
GCRY_CIPHER_RIJNDAEL256

AES (Rijndael) with a 256 bit key.

GCRY_CIPHER_TWOFISH
The Twofish algorithm with a 256 bit key.

GCRY_CIPHER_TWOFISH128
The Twofish algorithm with a 128 bit key.

24 The Libgcrypt Reference Manual

GCRY_CIPHER_ARCFOUR
An algorithm which is 100% compatible with RSA Inc.’s RC4 algorithm. Note
that this is a stream cipher and must be used very carefully to avoid a couple
of weaknesses.

GCRY_CIPHER_DES
Standard DES with a 56 bit key. You need to pass 64 bit but the high bits of
each byte are ignored. Note, that this is a weak algorithm which can be broken
in reasonable time using a brute force approach.

GCRY_CIPHER_SERPENT128
GCRY_CIPHER_SERPENT192
GCRY_CIPHER_SERPENT256

The Serpent cipher from the AES contest.

GCRY_CIPHER_RFC2268_40
GCRY_CIPHER_RFC2268_128

Ron’s Cipher 2 in the 40 and 128 bit variants. Note, that we currently only
support the 40 bit variant. The identifier for 128 is reserved for future use.

GCRY_CIPHER_SEED
A 128 bit cipher as described by RFC4269.

GCRY_CIPHER_CAMELLIA128
GCRY_CIPHER_CAMELLIA192
GCRY_CIPHER_CAMELLIA256

The Camellia cipher by NTT. See http://info.isl.ntt.co.jp/crypt/eng/
camellia/specifications.html.

5.2 Cipher modules

Libgcrypt makes it possible to load additional ‘cipher modules’; these ciphers can be used
just like the cipher algorithms that are built into the library directly. For an introduction
into extension modules, see See Section 3.2 [Modules], page 13.

[Data type]gcry_cipher_spec_t
This is the ‘module specification structure’ needed for registering cipher modules,
which has to be filled in by the user before it can be used to register a module. It
contains the following members:

const char *name
The primary name of the algorithm.

const char **aliases
A list of strings that are ‘aliases’ for the algorithm. The list must be
terminated with a NULL element.

gcry_cipher_oid_spec_t *oids
A list of OIDs that are to be associated with the algorithm. The list’s
last element must have it’s ‘oid’ member set to NULL. See below for an
explanation of this type.

http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html
http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html

Chapter 5: Symmetric cryptography 25

size_t blocksize
The block size of the algorithm, in bytes.

size_t keylen
The length of the key, in bits.

size_t contextsize
The size of the algorithm-specific ‘context’, that should be allocated for
each handle.

gcry_cipher_setkey_t setkey
The function responsible for initializing a handle with a provided key. See
below for a description of this type.

gcry_cipher_encrypt_t encrypt
The function responsible for encrypting a single block. See below for a
description of this type.

gcry_cipher_decrypt_t decrypt
The function responsible for decrypting a single block. See below for a
description of this type.

gcry_cipher_stencrypt_t stencrypt
Like ‘encrypt’, for stream ciphers. See below for a description of this
type.

gcry_cipher_stdecrypt_t stdecrypt
Like ‘decrypt’, for stream ciphers. See below for a description of this
type.

[Data type]gcry_cipher_oid_spec_t
This type is used for associating a user-provided algorithm implementation with cer-
tain OIDs. It contains the following members:

const char *oid
Textual representation of the OID.

int mode Cipher mode for which this OID is valid.

[Data type]gcry_cipher_setkey_t
Type for the ‘setkey’ function, defined as: gcry err code t (*gcry cipher setkey t)
(void *c, const unsigned char *key, unsigned keylen)

[Data type]gcry_cipher_encrypt_t
Type for the ‘encrypt’ function, defined as: gcry err code t (*gcry cipher encrypt t)
(void *c, const unsigned char *outbuf, const unsigned char *inbuf)

[Data type]gcry_cipher_decrypt_t
Type for the ‘decrypt’ function, defined as: gcry err code t (*gcry cipher decrypt t)
(void *c, const unsigned char *outbuf, const unsigned char *inbuf)

[Data type]gcry_cipher_stencrypt_t
Type for the ‘stencrypt’ function, defined as: gcry err code t (*gcry cipher
stencrypt t) (void *c, const unsigned char *outbuf, const unsigned char *, unsigned
int n)

26 The Libgcrypt Reference Manual

[Data type]gcry_cipher_stdecrypt_t
Type for the ‘stdecrypt’ function, defined as: gcry err code t (*gcry cipher
stdecrypt t) (void *c, const unsigned char *outbuf, const unsigned char *, unsigned
int n)

[Function]gcry_error_t gcry_cipher_register (gcry cipher spec t *cipher,
unsigned int *algorithm id, gcry module t *module)

Register a new cipher module whose specification can be found in cipher. On success,
a new algorithm ID is stored in algorithm id and a pointer representing this module
is stored in module.

[Function]void gcry_cipher_unregister (gcry module t module)
Unregister the cipher identified by module, which must have been registered with
gcry cipher register.

[Function]gcry_error_t gcry_cipher_list (int *list, int *list_length)
Get a list consisting of the IDs of the loaded cipher modules. If list is zero, write the
number of loaded cipher modules to list length and return. If list is non-zero, the
first *list length algorithm IDs are stored in list, which must be of according size. In
case there are less cipher modules than *list length, *list length is updated to the
correct number.

5.3 Available cipher modes

GCRY_CIPHER_MODE_NONE
No mode specified. This should not be used. The only exception is that if
Libgcrypt is not used in FIPS mode and if any debug flag has been set, this
mode may be used to bypass the actual encryption.

GCRY_CIPHER_MODE_ECB
Electronic Codebook mode.

GCRY_CIPHER_MODE_CFB
Cipher Feedback mode. The shift size equals the block size of the cipher (e.g.
for AES it is CFB-128).

GCRY_CIPHER_MODE_CBC
Cipher Block Chaining mode.

GCRY_CIPHER_MODE_STREAM
Stream mode, only to be used with stream cipher algorithms.

GCRY_CIPHER_MODE_OFB
Output Feedback mode.

GCRY_CIPHER_MODE_CTR
Counter mode.

5.4 Working with cipher handles

To use a cipher algorithm, you must first allocate an according handle. This is to be done
using the open function:

Chapter 5: Symmetric cryptography 27

[Function]gcry_error_t gcry_cipher_open (gcry cipher hd t *hd, int algo, int
mode, unsigned int flags)

This function creates the context handle required for most of the other cipher functions
and returns a handle to it in ‘hd’. In case of an error, an according error code is
returned.

The ID of algorithm to use must be specified via algo. See See Section 5.1 [Available
ciphers], page 23, for a list of supported ciphers and the according constants.

Besides using the constants directly, the function gcry_cipher_map_name may be
used to convert the textual name of an algorithm into the according numeric ID.

The cipher mode to use must be specified via mode. See See Section 5.3 [Avail-
able cipher modes], page 26, for a list of supported cipher modes and the according
constants. Note that some modes are incompatible with some algorithms - in particu-
lar, stream mode (GCRY_CIPHER_MODE_STREAM) only works with stream ciphers. Any
block cipher mode (GCRY_CIPHER_MODE_ECB, GCRY_CIPHER_MODE_CBC, GCRY_CIPHER_
MODE_CFB, GCRY_CIPHER_MODE_OFB or GCRY_CIPHER_MODE_CTR) will work with any
block cipher algorithm.

The third argument flags can either be passed as 0 or as the bit-wise OR of the
following constants.

GCRY_CIPHER_SECURE
Make sure that all operations are allocated in secure memory. This is
useful when the key material is highly confidential.

GCRY_CIPHER_ENABLE_SYNC
This flag enables the CFB sync mode, which is a special feature of
Libgcrypt’s CFB mode implementation to allow for OpenPGP’s CFB
variant. See gcry_cipher_sync.

GCRY_CIPHER_CBC_CTS
Enable cipher text stealing (CTS) for the CBC mode. Cannot be used
simultaneous as GCRY CIPHER CBC MAC. CTS mode makes it pos-
sible to transform data of almost arbitrary size (only limitation is that it
must be greater than the algorithm’s block size).

GCRY_CIPHER_CBC_MAC
Compute CBC-MAC keyed checksums. This is the same as CBC
mode, but only output the last block. Cannot be used simultaneous as
GCRY CIPHER CBC CTS.

Use the following function to release an existing handle:

[Function]void gcry_cipher_close (gcry cipher hd t h)
This function releases the context created by gcry_cipher_open. It also zeroises all
sensitive information associated with this cipher handle.

In order to use a handle for performing cryptographic operations, a ‘key’ has to be set
first:

28 The Libgcrypt Reference Manual

[Function]gcry_error_t gcry_cipher_setkey (gcry cipher hd t h, const void
*k, size t l)

Set the key k used for encryption or decryption in the context denoted by the handle
h. The length l (in bytes) of the key k must match the required length of the algorithm
set for this context or be in the allowed range for algorithms with variable key size.
The function checks this and returns an error if there is a problem. A caller should
always check for an error.

Most crypto modes requires an initialization vector (IV), which usually is a non-secret
random string acting as a kind of salt value. The CTR mode requires a counter, which is
also similar to a salt value. To set the IV or CTR, use these functions:

[Function]gcry_error_t gcry_cipher_setiv (gcry cipher hd t h, const void *k,
size t l)

Set the initialization vector used for encryption or decryption. The vector is passed
as the buffer K of length l bytes and copied to internal data structures. The function
checks that the IV matches the requirement of the selected algorithm and mode.

[Function]gcry_error_t gcry_cipher_setctr (gcry cipher hd t h, const void
*c, size t l)

Set the counter vector used for encryption or decryption. The counter is passed as the
buffer c of length l bytes and copied to internal data structures. The function checks
that the counter matches the requirement of the selected algorithm (i.e., it must be
the same size as the block size).

[Function]gcry_error_t gcry_cipher_reset (gcry cipher hd t h)
Set the given handle’s context back to the state it had after the last call to
gcry cipher setkey and clear the initialization vector.
Note that gcry cipher reset is implemented as a macro.

The actual encryption and decryption is done by using one of the following functions.
They may be used as often as required to process all the data.

[Function]gcry_error_t gcry_cipher_encrypt (gcry cipher hd t h, unsigned
char *out, size t outsize, const unsigned char *in, size t inlen)

gcry_cipher_encrypt is used to encrypt the data. This function can either work in
place or with two buffers. It uses the cipher context already setup and described by
the handle h. There are 2 ways to use the function: If in is passed as NULL and inlen
is 0, in-place encryption of the data in out or length outsize takes place. With in
being not NULL, inlen bytes are encrypted to the buffer out which must have at least
a size of inlen. outsize must be set to the allocated size of out, so that the function
can check that there is sufficient space. Note that overlapping buffers are not allowed.
Depending on the selected algorithms and encryption mode, the length of the buffers
must be a multiple of the block size.
The function returns 0 on success or an error code.

[Function]gcry_error_t gcry_cipher_decrypt (gcry cipher hd t h, unsigned
char *out, size t outsize, const unsigned char *in, size t inlen)

gcry_cipher_decrypt is used to decrypt the data. This function can either work in
place or with two buffers. It uses the cipher context already setup and described by

Chapter 5: Symmetric cryptography 29

the handle h. There are 2 ways to use the function: If in is passed as NULL and inlen
is 0, in-place decryption of the data in out or length outsize takes place. With in
being not NULL, inlen bytes are decrypted to the buffer out which must have at least
a size of inlen. outsize must be set to the allocated size of out, so that the function
can check that there is sufficient space. Note that overlapping buffers are not allowed.
Depending on the selected algorithms and encryption mode, the length of the buffers
must be a multiple of the block size.
The function returns 0 on success or an error code.

OpenPGP (as defined in RFC-2440) requires a special sync operation in some places.
The following function is used for this:

[Function]gcry_error_t gcry_cipher_sync (gcry cipher hd t h)
Perform the OpenPGP sync operation on context h. Note that this is a no-op unless
the context was created with the flag GCRY_CIPHER_ENABLE_SYNC

Some of the described functions are implemented as macros utilizing a catch-all control
function. This control function is rarely used directly but there is nothing which would
inhibit it:

[Function]gcry_error_t gcry_cipher_ctl (gcry cipher hd t h, int cmd, void
*buffer, size t buflen)

gcry_cipher_ctl controls various aspects of the cipher module and specific cipher
contexts. Usually some more specialized functions or macros are used for this pur-
pose. The semantics of the function and its parameters depends on the the command
cmd and the passed context handle h. Please see the comments in the source code
(src/global.c) for details.

[Function]gcry_error_t gcry_cipher_info (gcry cipher hd t h, int what, void
*buffer, size t *nbytes)

gcry_cipher_info is used to retrieve various information about a cipher context or
the cipher module in general.
Currently no information is available.

5.5 General cipher functions

To work with the algorithms, several functions are available to map algorithm names to
the internal identifiers, as well as ways to retrieve information about an algorithm or the
current cipher context.

[Function]gcry_error_t gcry_cipher_algo_info (int algo, int what, void
*buffer, size t *nbytes)

This function is used to retrieve information on a specific algorithm. You pass the
cipher algorithm ID as algo and the type of information requested as what. The
result is either returned as the return code of the function or copied to the provided
buffer whose allocated length must be available in an integer variable with the address
passed in nbytes. This variable will also receive the actual used length of the buffer.
Here is a list of supported codes for what:

30 The Libgcrypt Reference Manual

GCRYCTL_GET_KEYLEN:
Return the length of the key. If the algorithm supports multiple key
lengths, the maximum supported value is returned. The length is re-
turned as number of octets (bytes) and not as number of bits in nbytes;
buffer must be zero.

GCRYCTL_GET_BLKLEN:
Return the block length of the algorithm. The length is returned as a
number of octets in nbytes; buffer must be zero.

GCRYCTL_TEST_ALGO:
Returns 0 when the specified algorithm is available for use. buffer and
nbytes must be zero.

[Function]const char * gcry_cipher_algo_name (int algo)
gcry_cipher_algo_name returns a string with the name of the cipher algorithm algo.
If the algorithm is not known or another error occurred, the string "?" is returned.
This function should not be used to test for the availability of an algorithm.

[Function]int gcry_cipher_map_name (const char *name)
gcry_cipher_map_name returns the algorithm identifier for the cipher algorithm de-
scribed by the string name. If this algorithm is not available 0 is returned.

[Function]int gcry_cipher_mode_from_oid (const char *string)
Return the cipher mode associated with an ASN.1 object identifier. The object identi-
fier is expected to be in the IETF-style dotted decimal notation. The function returns
0 for an unknown object identifier or when no mode is associated with it.

Chapter 6: Public Key cryptography 31

6 Public Key cryptography

Public key cryptography, also known as asymmetric cryptography, is an easy way for key
management and to provide digital signatures. Libgcrypt provides two completely different
interfaces to public key cryptography, this chapter explains the one based on S-expressions.

6.1 Available algorithms

Libgcrypt supports the RSA (Rivest-Shamir-Adleman) algorithms as well as DSA (Digital
Signature Algorithm) and Elgamal. The versatile interface allows to add more algorithms
in the future.

6.2 Used S-expressions

Libgcrypt’s API for asymmetric cryptography is based on data structures called
S-expressions (see http://people.csail.mit.edu/rivest/sexp.html) and does not
work with contexts as most of the other building blocks of Libgcrypt do.
The following information are stored in S-expressions:

keys
plain text data
encrypted data
signatures

To describe how Libgcrypt expect keys, we use examples. Note that words in italics indicate
parameters whereas lowercase words are literals.

Note that all MPI (multi-precision-integers) values are expected to be in GCRYMPI_FMT_
USG format. An easy way to create S-expressions is by using gcry_sexp_build which allows
to pass a string with printf-like escapes to insert MPI values.

6.2.1 RSA key parameters

An RSA private key is described by this S-expression:
(private-key
(rsa
(n n-mpi)
(e e-mpi)
(d d-mpi)
(p p-mpi)
(q q-mpi)
(u u-mpi)))

An RSA public key is described by this S-expression:
(public-key
(rsa
(n n-mpi)
(e e-mpi)))

n-mpi RSA public modulus n.

http://people.csail.mit.edu/rivest/sexp.html

32 The Libgcrypt Reference Manual

e-mpi RSA public exponent e.

d-mpi RSA secret exponent d = e−1 mod (p− 1)(q − 1).

p-mpi RSA secret prime p.

q-mpi RSA secret prime q with p < q.

u-mpi Multiplicative inverse u = p−1 mod q.

For signing and decryption the parameters (p, q, u) are optional but greatly improve the
performance. Either all of these optional parameters must be given or none of them. They
are mandatory for gcry pk testkey.

Note that OpenSSL uses slighly different parameters: q < p and u = q−1 mod p. To use
these parameters you will need to swap the values and recompute u. Here is example code
to do this:

if (gcry_mpi_cmp (p, q) > 0)
{

gcry_mpi_swap (p, q);
gcry_mpi_invm (u, p, q);

}

6.2.2 DSA key parameters

A DSA private key is described by this S-expression:
(private-key
(dsa
(p p-mpi)
(q q-mpi)
(g g-mpi)
(y y-mpi)
(x x-mpi)))

p-mpi DSA prime p.

q-mpi DSA group order q (which is a prime divisor of p− 1).

g-mpi DSA group generator g.

y-mpi DSA public key value y = gx mod p.

x-mpi DSA secret exponent x.

The public key is similar with "private-key" replaced by "public-key" and no x-mpi.

6.2.3 ECC key parameters

An ECC private key is described by this S-expression:
(private-key

(ecc
(p p-mpi)
(a a-mpi)
(b b-mpi)
(g g-point)

Chapter 6: Public Key cryptography 33

(n n-mpi)
(q q-point)
(d d-mpi)))

p-mpi Prime specifying the field GF (p).

a-mpi
b-mpi The two coefficients of the Weierstrass equation y2 = x3 + ax + b

g-point Base point g.

n-mpi Order of g

q-point The point representing the public key Q = dP .

d-mpi The private key d

All point values are encoded in standard format; Libgcrypt does currently only support
uncompressed points, thus the first byte needs to be 0x04.

The public key is similar with "private-key" replaced by "public-key" and no d-mpi.
If the domain parameters are well-known, the name of this curve may be used. For

example
(private-key

(ecc
(curve "NIST P-192")
(q q-point)
(d d-mpi)))

The curve parameter may be given in any case and is used to replace missing parameters.
Currently implemented curves are:

NIST P-192
1.2.840.10045.3.1.1
prime192v1
secp192r1

The NIST 192 bit curve, its OID, X9.62 and SECP aliases.

NIST P-224
secp224r1

The NIST 224 bit curve and its SECP alias.

NIST P-256
1.2.840.10045.3.1.7
prime256v1
secp256r1

The NIST 256 bit curve, its OID, X9.62 and SECP aliases.

NIST P-384
secp384r1

The NIST 384 bit curve and its SECP alias.

NIST P-521
secp521r1

The NIST 521 bit curve and its SECP alias.

As usual the OIDs may optionally be prefixed with the string OID. or oid..

34 The Libgcrypt Reference Manual

6.3 Public key modules

Libgcrypt makes it possible to load additional ‘public key modules’; these public key algo-
rithms can be used just like the algorithms that are built into the library directly. For an
introduction into extension modules, see See Section 3.2 [Modules], page 13.

[Data type]gcry_pk_spec_t
This is the ‘module specification structure’ needed for registering public key modules,
which has to be filled in by the user before it can be used to register a module. It
contains the following members:

const char *name
The primary name of this algorithm.

char **aliases
A list of strings that are ‘aliases’ for the algorithm. The list must be
terminated with a NULL element.

const char *elements_pkey
String containing the one-letter names of the MPI values contained in a
public key.

const char *element_skey
String containing the one-letter names of the MPI values contained in a
secret key.

const char *elements_enc
String containing the one-letter names of the MPI values that are the
result of an encryption operation using this algorithm.

const char *elements_sig
String containing the one-letter names of the MPI values that are the
result of a sign operation using this algorithm.

const char *elements_grip
String containing the one-letter names of the MPI values that are to be
included in the ‘key grip’.

int use The bitwise-OR of the following flags, depending on the abilities of the
algorithm:

GCRY_PK_USAGE_SIGN
The algorithm supports signing and verifying of data.

GCRY_PK_USAGE_ENCR
The algorithm supports the encryption and decryption of
data.

gcry_pk_generate_t generate
The function responsible for generating a new key pair. See below for a
description of this type.

gcry_pk_check_secret_key_t check_secret_key
The function responsible for checking the sanity of a provided secret key.
See below for a description of this type.

Chapter 6: Public Key cryptography 35

gcry_pk_encrypt_t encrypt
The function responsible for encrypting data. See below for a description
of this type.

gcry_pk_decrypt_t decrypt
The function responsible for decrypting data. See below for a description
of this type.

gcry_pk_sign_t sign
The function responsible for signing data. See below for a description of
this type.

gcry_pk_verify_t verify
The function responsible for verifying that the provided signature matches
the provided data. See below for a description of this type.

gcry_pk_get_nbits_t get_nbits
The function responsible for returning the number of bits of a provided
key. See below for a description of this type.

[Data type]gcry_pk_generate_t
Type for the ‘generate’ function, defined as: gcry err code t (*gcry pk generate t)
(int algo, unsigned int nbits, unsigned long use e, gcry mpi t *skey, gcry mpi t **ret-
factors)

[Data type]gcry_pk_check_secret_key_t
Type for the ‘check secret key’ function, defined as: gcry err code t
(*gcry pk check secret key t) (int algo, gcry mpi t *skey)

[Data type]gcry_pk_encrypt_t
Type for the ‘encrypt’ function, defined as: gcry err code t (*gcry pk encrypt t) (int
algo, gcry mpi t *resarr, gcry mpi t data, gcry mpi t *pkey, int flags)

[Data type]gcry_pk_decrypt_t
Type for the ‘decrypt’ function, defined as: gcry err code t (*gcry pk decrypt t) (int
algo, gcry mpi t *result, gcry mpi t *data, gcry mpi t *skey, int flags)

[Data type]gcry_pk_sign_t
Type for the ‘sign’ function, defined as: gcry err code t (*gcry pk sign t) (int algo,
gcry mpi t *resarr, gcry mpi t data, gcry mpi t *skey)

[Data type]gcry_pk_verify_t
Type for the ‘verify’ function, defined as: gcry err code t (*gcry pk verify t) (int
algo, gcry mpi t hash, gcry mpi t *data, gcry mpi t *pkey, int (*cmp) (void *,
gcry mpi t), void *opaquev)

[Data type]gcry_pk_get_nbits_t
Type for the ‘get nbits’ function, defined as: unsigned (*gcry pk get nbits t) (int
algo, gcry mpi t *pkey)

36 The Libgcrypt Reference Manual

[Function]gcry_error_t gcry_pk_register (gcry pk spec t *pubkey, unsigned
int *algorithm id, gcry module t *module)

Register a new public key module whose specification can be found in pubkey. On
success, a new algorithm ID is stored in algorithm id and a pointer representing this
module is stored in module.

[Function]void gcry_pk_unregister (gcry module t module)
Unregister the public key module identified by module, which must have been regis-
tered with gcry pk register.

[Function]gcry_error_t gcry_pk_list (int *list, int *list_length)
Get a list consisting of the IDs of the loaded pubkey modules. If list is zero, write the
number of loaded pubkey modules to list length and return. If list is non-zero, the
first *list length algorithm IDs are stored in list, which must be of according size. In
case there are less pubkey modules than *list length, *list length is updated to the
correct number.

6.4 Cryptographic Functions

Note that we will in future allow to use keys without p,q and u specified and may also
support other parameters for performance reasons.

Some functions operating on S-expressions support ‘flags’, that influence the operation.
These flags have to be listed in a sub-S-expression named ‘flags’; the following flags are
known:

pkcs1 Use PKCS#1 block type 2 padding.

no-blinding
Do not use a technique called ‘blinding’, which is used by default in order to
prevent leaking of secret information. Blinding is only implemented by RSA,
but it might be implemented by other algorithms in the future as well, when
necessary.

Now that we know the key basics, we can carry on and explain how to encrypt and decrypt
data. In almost all cases the data is a random session key which is in turn used for the
actual encryption of the real data. There are 2 functions to do this:

[Function]gcry_error_t gcry_pk_encrypt (gcry sexp t *r_ciph,
gcry sexp t data, gcry sexp t pkey)

Obviously a public key must be provided for encryption. It is expected as an ap-
propriate S-expression (see above) in pkey. The data to be encrypted can either be
in the simple old format, which is a very simple S-expression consisting only of one
MPI, or it may be a more complex S-expression which also allows to specify flags for
operation, like e.g. padding rules.
If you don’t want to let Libgcrypt handle the padding, you must pass an appropriate
MPI using this expression for data:

(data
(flags raw)
(value mpi))

Chapter 6: Public Key cryptography 37

This has the same semantics as the old style MPI only way. MPI is the actual data,
already padded appropriate for your protocol. Most systems however use PKCS#1
padding and so you can use this S-expression for data:

(data
(flags pkcs1)
(value block))

Here, the "flags" list has the "pkcs1" flag which let the function know that it should
provide PKCS#1 block type 2 padding. The actual data to be encrypted is passed
as a string of octets in block. The function checks that this data actually can be used
with the given key, does the padding and encrypts it.
If the function could successfully perform the encryption, the return value will be 0
and a new S-expression with the encrypted result is allocated and assigned to the
variable at the address of r ciph. The caller is responsible to release this value using
gcry_sexp_release. In case of an error, an error code is returned and r ciph will be
set to NULL.
The returned S-expression has this format when used with RSA:

(enc-val
(rsa

(a a-mpi)))

Where a-mpi is an MPI with the result of the RSA operation. When using the
Elgamal algorithm, the return value will have this format:

(enc-val
(elg

(a a-mpi)
(b b-mpi)))

Where a-mpi and b-mpi are MPIs with the result of the Elgamal encryption operation.

[Function]gcry_error_t gcry_pk_decrypt (gcry sexp t *r_plain,
gcry sexp t data, gcry sexp t skey)

Obviously a private key must be provided for decryption. It is expected as an appro-
priate S-expression (see above) in skey. The data to be decrypted must match the
format of the result as returned by gcry_pk_encrypt, but should be enlarged with a
flags element:

(enc-val
(flags)
(elg
(a a-mpi)
(b b-mpi)))

Note that this function currently does not know of any padding methods and the
caller must do any un-padding on his own.
The function returns 0 on success or an error code. The variable at the address of
r plain will be set to NULL on error or receive the decrypted value on success. The
format of r plain is a simple S-expression part (i.e. not a valid one) with just one
MPI if there was no flags element in data; if at least an empty flags is passed in
data, the format is:

38 The Libgcrypt Reference Manual

(value plaintext)

Another operation commonly performed using public key cryptography is signing data.
In some sense this is even more important than encryption because digital signatures are
an important instrument for key management. Libgcrypt supports digital signatures using
2 functions, similar to the encryption functions:

[Function]gcry_error_t gcry_pk_sign (gcry sexp t *r_sig, gcry sexp t data,
gcry sexp t skey)

This function creates a digital signature for data using the private key skey and place
it into the variable at the address of r sig. data may either be the simple old style
S-expression with just one MPI or a modern and more versatile S-expression which
allows to let Libgcrypt handle padding:

(data
(flags pkcs1)
(hash hash-algo block))

This example requests to sign the data in block after applying PKCS#1 block type
1 style padding. hash-algo is a string with the hash algorithm to be encoded into
the signature, this may be any hash algorithm name as supported by Libgcrypt.
Most likely, this will be "sha256" or "sha1". It is obvious that the length of block
must match the size of that message digests; the function checks that this and other
constraints are valid.

If PKCS#1 padding is not required (because the caller does already provide a padded
value), either the old format or better the following format should be used:

(data
(flags raw)
(value mpi))

Here, the data to be signed is directly given as an MPI.

The signature is returned as a newly allocated S-expression in r sig using this format
for RSA:

(sig-val
(rsa

(s s-mpi)))

Where s-mpi is the result of the RSA sign operation. For DSA the S-expression
returned is:

(sig-val
(dsa

(r r-mpi)
(s s-mpi)))

Where r-mpi and s-mpi are the result of the DSA sign operation. For Elgamal sign-
ing (which is slow, yields large numbers and probably is not as secure as the other
algorithms), the same format is used with "elg" replacing "dsa".

The operation most commonly used is definitely the verification of a signature. Libgcrypt
provides this function:

Chapter 6: Public Key cryptography 39

[Function]gcry_error_t gcry_pk_verify (gcry sexp t sig , gcry sexp t data ,
gcry sexp t pkey)

This is used to check whether the signature sig matches the data. The public key
pkey must be provided to perform this verification. This function is similar in its
parameters to gcry_pk_sign with the exceptions that the public key is used instead
of the private key and that no signature is created but a signature, in a format as
created by gcry_pk_sign, is passed to the function in sig.
The result is 0 for success (i.e. the data matches the signature), or an error code where
the most relevant code is GCRYERR_BAD_SIGNATURE to indicate that the signature does
not match the provided data.

6.5 General public-key related Functions

A couple of utility functions are available to retrieve the length of the key, map algorithm
identifiers and perform sanity checks:

[Function]const char * gcry_pk_algo_name (int algo)
Map the public key algorithm id algo to a string representation of the algorithm name.
For unknown algorithms this functions returns the string "?". This function should
not be used to test for the availability of an algorithm.

[Function]int gcry_pk_map_name (const char *name)
Map the algorithm name to a public key algorithm Id. Returns 0 if the algorithm
name is not known.

[Function]int gcry_pk_test_algo (int algo)
Return 0 if the public key algorithm algo is available for use. Note that this is
implemented as a macro.

[Function]unsigned int gcry_pk_get_nbits (gcry sexp t key)
Return what is commonly referred as the key length for the given public or private
in key.

[Function]unsigned char * gcry_pk_get_keygrip (gcry sexp t key ,
unsigned char *array)

Return the so called "keygrip" which is the SHA-1 hash of the public key parameters
expressed in a way depended on the algorithm. array must either provide space for
20 bytes or be NULL. In the latter case a newly allocated array of that size is returned.
On success a pointer to the newly allocated space or to array is returned. NULL is
returned to indicate an error which is most likely an unknown algorithm or one where
a "keygrip" has not yet been defined. The function accepts public or secret keys in
key.

[Function]gcry_error_t gcry_pk_testkey (gcry sexp t key)
Return zero if the private key key is ‘sane’, an error code otherwise. Note that it is
not possible to check the ‘saneness’ of a public key.

[Function]gcry_error_t gcry_pk_algo_info (int algo , int what ,
void *buffer , size t *nbytes)

Depending on the value of what return various information about the public key
algorithm with the id algo. Note that the function returns -1 on error and the actual

40 The Libgcrypt Reference Manual

error code must be retrieved using the function gcry_errno. The currently defined
values for what are:

GCRYCTL_TEST_ALGO:
Return 0 if the specified algorithm is available for use. buffer must be
NULL, nbytes may be passed as NULL or point to a variable with the
required usage of the algorithm. This may be 0 for "don’t care" or the
bit-wise OR of these flags:

GCRY_PK_USAGE_SIGN
Algorithm is usable for signing.

GCRY_PK_USAGE_ENCR
Algorithm is usable for encryption.

Unless you need to test for the allowed usage, it is in general better to
use the macro gcry pk test algo instead.

GCRYCTL_GET_ALGO_USAGE:
Return the usage flags for the given algorithm. An invalid algorithm
return 0. Disabled algorithms are ignored here because we want to know
whether the algorithm is at all capable of a certain usage.

GCRYCTL_GET_ALGO_NPKEY
Return the number of elements the public key for algorithm algo consist
of. Return 0 for an unknown algorithm.

GCRYCTL_GET_ALGO_NSKEY
Return the number of elements the private key for algorithm algo consist
of. Note that this value is always larger than that of the public key.
Return 0 for an unknown algorithm.

GCRYCTL_GET_ALGO_NSIGN
Return the number of elements a signature created with the algorithm
algo consists of. Return 0 for an unknown algorithm or for an algorithm
not capable of creating signatures.

GCRYCTL_GET_ALGO_NENC
Return the number of elements a encrypted message created with the
algorithm algo consists of. Return 0 for an unknown algorithm or for an
algorithm not capable of encryption.

Please note that parameters not required should be passed as NULL.

[Function]gcry_error_t gcry_pk_ctl (int cmd , void *buffer , size t buflen)
This is a general purpose function to perform certain control operations. cmd controls
what is to be done. The return value is 0 for success or an error code. Currently
supported values for cmd are:

GCRYCTL_DISABLE_ALGO
Disable the algorithm given as an algorithm id in buffer. buffer must
point to an int variable with the algorithm id and buflen must have the
value sizeof (int).

Chapter 6: Public Key cryptography 41

Libgcrypt also provides a function to generate public key pairs:

[Function]gcry_error_t gcry_pk_genkey (gcry sexp t *r_key ,
gcry sexp t parms)

This function create a new public key pair using information given in the S-expression
parms and stores the private and the public key in one new S-expression at the address
given by r key. In case of an error, r key is set to NULL. The return code is 0 for
success or an error code otherwise.
Here is an example for parms to create an 2048 bit RSA key:

(genkey
(rsa
(nbits 4:2048)))

To create an Elgamal key, substitute "elg" for "rsa" and to create a DSA key use
"dsa". Valid ranges for the key length depend on the algorithms; all commonly used
key lengths are supported. Currently supported parameters are:

nbits This is always required to specify the length of the key. The argument is
a string with a number in C-notation. The value should be a multiple of
8.

curve name

For ECC a named curve may be used instead of giving the number of
requested bits. This allows to request a specific curve to override a de-
fault selection Libgcrypt would have taken if nbits has been given. The
available names are listed with the description of the ECC public key
parameters.

rsa-use-e
This is only used with RSA to give a hint for the public exponent. The
value will be used as a base to test for a usable exponent. Some values
are special:

‘0’ Use a secure and fast value. This is currently the number 41.

‘1’ Use a value as required by some crypto policies. This is
currently the number 65537.

‘2’ Reserved

‘> 2’ Use the given value.

If this parameter is not used, Libgcrypt uses for historic reasons 65537.

qbits This is only meanigful for DSA keys. If it is given the DSA key is gen-
erated with a Q parameyer of this size. If it is not given or zero Q is
deduced from NBITS in this way:

‘512 <= N <= 1024’
Q = 160

‘N = 2048’ Q = 224

‘N = 3072’ Q = 256

42 The Libgcrypt Reference Manual

‘N = 7680’ Q = 384

‘N = 15360’
Q = 512

Note that in this case only the values for N, as given in the table, are
allowed. When specifying Q all values of N in the range 512 to 15680 are
valid as long as they are multiples of 8.

transient-key
This is only meaningful for RSA and DSA keys. This is a flag with no
value. If given the RSA or DSA key is created using a faster and a
somewhat less secure random number generator. This flag may be used
for keys which are only used for a short time and do not require full
cryptographic strength.

domain This is only meaningful for DLP algorithms. If specified keys are gen-
erated with domain parameters taken from this list. The exact format
of this parameter depends on the actual algorithm. It is currently only
implemented for DSA using this format:

(genkey
(dsa
(domain

(p p-mpi)
(q q-mpi)
(g q-mpi))))

nbits and qbits may not be specified because they are derived from the
domain parameters.

derive-parms
This is currently only implemented for RSA and DSA keys. It is not
allowed to use this together with a domain specification. If given, it is
used to derive the keys using the given parameters.
If given for an RSA key the X9.31 key generation algorithm is used even
if libgcrypt is not in FIPS mode. If given for a DSA key, the FIPS 186
algorithm is used even if libgcrypt is not in FIPS mode.

(genkey
(rsa
(nbits 4:1024)
(rsa-use-e 1:3)
(derive-parms

(Xp1 #1A1916DDB29B4EB7EB6732E128#)
(Xp2 #192E8AAC41C576C822D93EA433#)
(Xp #D8CD81F035EC57EFE822955149D3BFF70C53520D

769D6D76646C7A792E16EBD89FE6FC5B605A6493
39DFC925A86A4C6D150B71B9EEA02D68885F5009
B98BD984#)

(Xq1 #1A5CF72EE770DE50CB09ACCEA9#)
(Xq2 #134E4CAA16D2350A21D775C404#)

Chapter 6: Public Key cryptography 43

(Xq #CC1092495D867E64065DEE3E7955F2EBC7D47A2D
7C9953388F97DDDC3E1CA19C35CA659EDC2FC325
6D29C2627479C086A699A49C4C9CEE7EF7BD1B34
321DE34A#))))

(genkey
(dsa
(nbits 4:1024)
(derive-parms

(seed seed-mpi))))

use-x931 Force the use of the ANSI X9.31 key generation algorithm instead of the
default algorithm. This flag is only meaningful for RSA and usually not
required. Note that this algorithm is implicitly used if either derive-
parms is given or Libgcrypt is in FIPS mode.

use-fips186
Force the use of the FIPS 186 key generation algorithm instead of the
default algorithm. This flag is only meaningful for DSA and usually not
required. Note that this algorithm is implicitly used if either derive-
parms is given or Libgcrypt is in FIPS mode. As of now FIPS 186-2 is
implemented; after the approval of FIPS 186-3 the code will be changed
to implement 186-3.

use-fips186-2
Force the use of the FIPS 186-2 key generation algorithm instead of the
default algorithm. This algorithm is slighlty different from FIPS 186-3
and allows only 1024 bit keys. This flag is only meaningful for DSA and
only required for FIPS testing backward compatibility.

The key pair is returned in a format depending on the algorithm. Both private
and public keys are returned in one container and may be accompanied by some
miscellaneous information.
As an example, here is what the Elgamal key generation returns:

(key-data
(public-key
(elg
(p p-mpi)
(g g-mpi)
(y y-mpi)))

(private-key
(elg
(p p-mpi)
(g g-mpi)
(y y-mpi)
(x x-mpi)))

(misc-key-info
(pm1-factors n1 n2 ... nn))

As you can see, some of the information is duplicated, but this provides an easy way
to extract either the public or the private key. Note that the order of the elements is

44 The Libgcrypt Reference Manual

not defined, e.g. the private key may be stored before the public key. n1 n2 ... nn is
a list of prime numbers used to composite p-mpi; this is in general not a very useful
information and only available if the key generation algorithm provides them.

6.6 Alternative Public Key Interface

This section documents the alternative interface to asymmetric cryptography (ac) that is not
based on S-expressions, but on native C data structures. As opposed to the pk interface
described in the former chapter, this one follows an open/use/close paradigm like other
building blocks of the library.

This interface has a few known problems; most noteworthy an inherent tendency to leak
memory. It might not be available in forthcoming versions of Libgcrypt.

6.6.1 Available asymmetric algorithms

Libgcrypt supports the RSA (Rivest-Shamir-Adleman) algorithms as well as DSA (Digital
Signature Algorithm) and Elgamal. The versatile interface allows to add more algorithms
in the future.

[Data type]gcry_ac_id_t
The following constants are defined for this type:

GCRY_AC_RSA
Rivest-Shamir-Adleman

GCRY_AC_DSA
Digital Signature Algorithm

GCRY_AC_ELG
Elgamal

GCRY_AC_ELG_E
Elgamal, encryption only.

6.6.2 Working with sets of data

In the context of this interface the term ‘data set’ refers to a list of ‘named MPI values’
that is used by functions performing cryptographic operations; a named MPI value is a an
MPI value, associated with a label.

Such data sets are used for representing keys, since keys simply consist of a variable
amount of numbers. Furthermore some functions return data sets to the caller that are to
be provided to other functions.

This section documents the data types, symbols and functions that are relevant for
working with data sets.

[Data type]gcry_ac_data_t
A single data set.

The following flags are supported:

GCRY_AC_FLAG_DEALLOC
Used for storing data in a data set. If given, the data will be released by the
library. Note that whenever one of the ac functions is about to release objects

Chapter 6: Public Key cryptography 45

because of this flag, the objects are expected to be stored in memory allocated
through the Libgcrypt memory management. In other words: gcry free() is
used instead of free().

GCRY_AC_FLAG_COPY
Used for storing/retrieving data in/from a data set. If given, the library will
create copies of the provided/contained data, which will then be given to the
user/associated with the data set.

[Function]gcry_error_t gcry_ac_data_new (gcry ac data t *data)
Creates a new, empty data set and stores it in data.

[Function]void gcry_ac_data_destroy (gcry ac data t data)
Destroys the data set data.

[Function]gcry_error_t gcry_ac_data_set (gcry ac data t data, unsigned int
flags, char *name, gcry mpi t mpi)

Add the value mpi to data with the label name. If flags contains
GCRY AC FLAG COPY, the data set will contain copies of name and
mpi. If flags contains GCRY AC FLAG DEALLOC or GCRY AC FLAG COPY,
the values contained in the data set will be deallocated when they are to be removed
from the data set.

[Function]gcry_error_t gcry_ac_data_copy (gcry ac data t *data_cp,
gcry ac data t data)

Create a copy of the data set data and store it in data cp. FIXME: exact semantics
undefined.

[Function]unsigned int gcry_ac_data_length (gcry ac data t data)
Returns the number of named MPI values inside of the data set data.

[Function]gcry_error_t gcry_ac_data_get_name (gcry ac data t data,
unsigned int flags, char *name, gcry mpi t *mpi)

Store the value labelled with name found in data in mpi. If flags contains
GCRY AC FLAG COPY, store a copy of the mpi value contained in the data set.
mpi may be NULL (this might be useful for checking the existence of an MPI with
extracting it).

[Function]gcry_error_t gcry_ac_data_get_index (gcry ac data t data,
unsigned int flags, unsigned int index, const char **name, gcry mpi t *mpi)

Stores in name and mpi the named mpi value contained in the data set data with
the index idx. If flags contains GCRY AC FLAG COPY, store copies of the values
contained in the data set. name or mpi may be NULL.

[Function]void gcry_ac_data_clear (gcry ac data t data)
Destroys any values contained in the data set data.

[Function]gcry_error_t gcry_ac_data_to_sexp (gcry ac data t data,
gcry sexp t *sexp, const char **identifiers)

This function converts the data set data into a newly created S-Expression, which is
to be stored in sexp; identifiers is a NULL terminated list of C strings, which specifies
the structure of the S-Expression.

46 The Libgcrypt Reference Manual

Example:
If identifiers is a list of pointers to the strings “foo” and “bar” and if data is a
data set containing the values “val1 = 0x01” and “val2 = 0x02”, then the resulting
S-Expression will look like this: (foo (bar ((val1 0x01) (val2 0x02))).

[Function]gcry_error gcry_ac_data_from_sexp (gcry ac data t *data,
gcry sexp t sexp, const char **identifiers)

This function converts the S-Expression sexp into a newly created data set, which is
to be stored in data; identifiers is a NULL terminated list of C strings, which specifies
the structure of the S-Expression. If the list of identifiers does not match the structure
of the S-Expression, the function fails.

6.6.3 Working with IO objects

Note: IO objects are currently only used in the context of message encoding/decoding and
encryption/signature schemes.

[Data type]gcry_ac_io_t
gcry_ac_io_t is the type to be used for IO objects.

IO objects provide an uniform IO layer on top of different underlying IO
mechanisms; either they can be used for providing data to the library (mode is
GCRY AC IO READABLE) or they can be used for retrieving data from the library
(mode is GCRY AC IO WRITABLE).

IO object need to be initialized by calling on of the following functions:

[Function]void gcry_ac_io_init (gcry ac io t *ac_io, gcry ac io mode t mode,
gcry ac io type t type, ...);

Initialize ac io according to mode, type and the variable list of arguments. The list
of variable arguments to specify depends on the given type.

[Function]void gcry_ac_io_init_va (gcry ac io t *ac_io, gcry ac io mode t
mode, gcry ac io type t type, va list ap);

Initialize ac io according to mode, type and the variable list of arguments ap. The
list of variable arguments to specify depends on the given type.

The following types of IO objects exist:

GCRY_AC_IO_STRING
In case of GCRY AC IO READABLE the IO object will provide data from a
memory string. Arguments to specify at initialization time:

unsigned char *
Pointer to the beginning of the memory string

size_t Size of the memory string

In case of GCRY AC IO WRITABLE the object will store retrieved data in a
newly allocated memory string. Arguments to specify at initialization time:

unsigned char **
Pointer to address, at which the pointer to the newly created mem-
ory string is to be stored

Chapter 6: Public Key cryptography 47

size_t * Pointer to address, at which the size of the newly created memory
string is to be stored

GCRY_AC_IO_CALLBACK
In case of GCRY AC IO READABLE the object will forward read requests to
a provided callback function. Arguments to specify at initialization time:

gcry_ac_data_read_cb_t
Callback function to use

void * Opaque argument to provide to the callback function

In case of GCRY AC IO WRITABLE the object will forward write requests to
a provided callback function. Arguments to specify at initialization time:

gcry_ac_data_write_cb_t
Callback function to use

void * Opaque argument to provide to the callback function

6.6.4 Working with handles

In order to use an algorithm, an according handle must be created. This is done using the
following function:

[Function]gcry_error_t gcry_ac_open (gcry ac handle t *handle, int
algorithm, int flags)

Creates a new handle for the algorithm algorithm and stores it in handle. flags is not
used currently.
algorithm must be a valid algorithm ID, see See Section 6.6.1 [Available asymmetric
algorithms], page 44, for a list of supported algorithms and the according constants.
Besides using the listed constants directly, the functions gcry_pk_name_to_id may
be used to convert the textual name of an algorithm into the according numeric ID.

[Function]void gcry_ac_close (gcry ac handle t handle)
Destroys the handle handle.

6.6.5 Working with keys

[Data type]gcry_ac_key_type_t
Defined constants:

GCRY_AC_KEY_SECRET
Specifies a secret key.

GCRY_AC_KEY_PUBLIC
Specifies a public key.

[Data type]gcry_ac_key_t
This type represents a single ‘key’, either a secret one or a public one.

[Data type]gcry_ac_key_pair_t
This type represents a ‘key pair’ containing a secret and a public key.

48 The Libgcrypt Reference Manual

Key data structures can be created in two different ways; a new key pair can be generated,
resulting in ready-to-use key. Alternatively a key can be initialized from a given data set.

[Function]gcry_error_t gcry_ac_key_init (gcry ac key t *key,
gcry ac handle t handle, gcry ac key type t type, gcry ac data t data)

Creates a new key of type type, consisting of the MPI values contained in the data
set data and stores it in key.

[Function]gcry_error_t gcry_ac_key_pair_generate (gcry ac handle t
handle, unsigned int nbits, void *key_spec, gcry ac key pair t *key_pair,
gcry mpi t **misc_data)

Generates a new key pair via the handle handle of NBITS bits and stores it in
key pair.
In case non-standard settings are wanted, a pointer to a structure of type gcry_ac_
key_spec_<algorithm>_t, matching the selected algorithm, can be given as key spec.
misc data is not used yet. Such a structure does only exist for RSA. A description of
the members of the supported structures follows.

gcry_ac_key_spec_rsa_t

gcry_mpi_t e
Generate the key pair using a special e. The value of e has
the following meanings:

= 0 Let Libgcrypt decide what exponent should be
used.

= 1 Request the use of a “secure” exponent; this is
required by some specification to be 65537.

> 2 Try starting at this value until a working expo-
nent is found. Note that the current implemen-
tation leaks some information about the private
key because the incrementation used is not ran-
domized. Thus, this function will be changed in
the future to return a random exponent of the
given size.

Example code:
{

gcry_ac_key_pair_t key_pair;
gcry_ac_key_spec_rsa_t rsa_spec;

rsa_spec.e = gcry_mpi_new (0);
gcry_mpi_set_ui (rsa_spec.e, 1);

err = gcry_ac_open (&handle, GCRY_AC_RSA, 0);
assert (! err);

err = gcry_ac_key_pair_generate (handle, 1024, &rsa_spec,
&key_pair, NULL);

Chapter 6: Public Key cryptography 49

assert (! err);
}

[Function]gcry_ac_key_t gcry_ac_key_pair_extract (gcry ac key pair t
key_pair, gcry ac key type t which)

Returns the key of type which out of the key pair key pair.

[Function]void gcry_ac_key_destroy (gcry ac key t key)
Destroys the key key.

[Function]void gcry_ac_key_pair_destroy (gcry ac key pair t key_pair)
Destroys the key pair key pair.

[Function]gcry_ac_data_t gcry_ac_key_data_get (gcry ac key t key)
Returns the data set contained in the key key.

[Function]gcry_error_t gcry_ac_key_test (gcry ac handle t handle,
gcry ac key t key)

Verifies that the private key key is sane via handle.

[Function]gcry_error_t gcry_ac_key_get_nbits (gcry ac handle t handle,
gcry ac key t key, unsigned int *nbits)

Stores the number of bits of the key key in nbits via handle.

[Function]gcry_error_t gcry_ac_key_get_grip (gcry ac handle t handle,
gcry ac key t key, unsigned char *key_grip)

Writes the 20 byte long key grip of the key key to key grip via handle.

6.6.6 Using cryptographic functions

The following flags might be relevant:

GCRY_AC_FLAG_NO_BLINDING
Disable any blinding, which might be supported by the chosen algorithm; blind-
ing is the default.

There exist two kinds of cryptographic functions available through the ac interface:
primitives, and high-level functions.

Primitives deal with MPIs (data sets) directly; what they provide is direct access to the
cryptographic operations provided by an algorithm implementation.

High-level functions deal with octet strings, according to a specified “scheme”. Schemes
make use of “encoding methods”, which are responsible for converting the provided octet
strings into MPIs, which are then forwared to the cryptographic primitives. Since schemes
are to be used for a special purpose in order to achieve a particular security goal, there exist
“encryption schemes” and “signature schemes”. Encoding methods can be used seperately
or implicitly through schemes.

What follows is a description of the cryptographic primitives.

[Function]gcry_error_t gcry_ac_data_encrypt (gcry ac handle t handle,
unsigned int flags, gcry ac key t key, gcry mpi t data_plain,
gcry ac data t *data_encrypted)

Encrypts the plain text MPI value data plain with the key public key under the
control of the flags flags and stores the resulting data set into data encrypted.

50 The Libgcrypt Reference Manual

[Function]gcry_error_t gcry_ac_data_decrypt (gcry ac handle t handle,
unsigned int flags, gcry ac key t key, gcry mpi t *data_plain,
gcry ac data t data_encrypted)

Decrypts the encrypted data contained in the data set data encrypted with the secret
key KEY under the control of the flags flags and stores the resulting plain text MPI
value in DATA PLAIN.

[Function]gcry_error_t gcry_ac_data_sign (gcry ac handle t handle,
gcry ac key t key, gcry mpi t data, gcry ac data t *data_signature)

Signs the data contained in data with the secret key key and stores the resulting
signature in the data set data signature.

[Function]gcry_error_t gcry_ac_data_verify (gcry ac handle t handle,
gcry ac key t key, gcry mpi t data, gcry ac data t data_signature)

Verifies that the signature contained in the data set data signature is indeed the result
of signing the data contained in data with the secret key belonging to the public key
key.

What follows is a description of the high-level functions.

The type “gcry ac em t” is used for specifying encoding methods; the following methods
are supported:

GCRY_AC_EME_PKCS_V1_5
PKCS-V1 5 Encoding Method for Encryption. Options must be
provided through a pointer to a correctly initialized object of type
gcry ac eme pkcs v1 5 t.

GCRY_AC_EMSA_PKCS_V1_5
PKCS-V1 5 Encoding Method for Signatures with Appendix. Options
must be provided through a pointer to a correctly initialized object of type
gcry ac emsa pkcs v1 5 t.

Option structure types:

gcry_ac_eme_pkcs_v1_5_t

gcry_ac_key_t key
gcry_ac_handle_t handle

gcry_ac_emsa_pkcs_v1_5_t

gcry_md_algo_t md
size_t em_n

Encoding methods can be used directly through the following functions:

[Function]gcry_error_t gcry_ac_data_encode (gcry ac em t method, unsigned
int flags, void *options, unsigned char *m, size t m_n, unsigned char **em,
size t *em_n)

Encodes the message contained in m of size m n according to method, flags and
options. The newly created encoded message is stored in em and em n.

Chapter 6: Public Key cryptography 51

[Function]gcry_error_t gcry_ac_data_decode (gcry ac em t method, unsigned
int flags, void *options, unsigned char *em, size t em_n, unsigned char **m,
size t *m_n)

Decodes the message contained in em of size em n according to method, flags and
options. The newly created decoded message is stored in m and m n.

The type “gcry ac scheme t” is used for specifying schemes; the following schemes are
supported:

GCRY_AC_ES_PKCS_V1_5
PKCS-V1 5 Encryption Scheme. No options can be provided.

GCRY_AC_SSA_PKCS_V1_5
PKCS-V1 5 Signature Scheme (with Appendix). Options can be
provided through a pointer to a correctly initialized object of type
gcry ac ssa pkcs v1 5 t.

Option structure types:

gcry_ac_ssa_pkcs_v1_5_t

gcry_md_algo_t md

The functions implementing schemes:

[Function]gcry_error_t gcry_ac_data_encrypt_scheme (gcry ac handle t
handle, gcry ac scheme t scheme, unsigned int flags, void *opts,
gcry ac key t key, gcry ac io t *io_message, gcry ac io t *io_cipher)

Encrypts the plain text readable from io message through handle with the public key
key according to scheme, flags and opts. If opts is not NULL, it has to be a pointer
to a structure specific to the chosen scheme (gcry ac es * t). The encrypted message
is written to io cipher.

[Function]gcry_error_t gcry_ac_data_decrypt_scheme (gcry ac handle t
handle, gcry ac scheme t scheme, unsigned int flags, void *opts,
gcry ac key t key, gcry ac io t *io_cipher, gcry ac io t *io_message)

Decrypts the cipher text readable from io cipher through handle with the secret key
key according to scheme, flags and opts. If opts is not NULL, it has to be a pointer
to a structure specific to the chosen scheme (gcry ac es * t). The decrypted message
is written to io message.

[Function]gcry_error_t gcry_ac_data_sign_scheme (gcry ac handle t
handle, gcry ac scheme t scheme, unsigned int flags, void *opts,
gcry ac key t key, gcry ac io t *io_message, gcry ac io t *io_signature)

Signs the message readable from io message through handle with the secret key key
according to scheme, flags and opts. If opts is not NULL, it has to be a pointer to
a structure specific to the chosen scheme (gcry ac ssa * t). The signature is written
to io signature.

[Function]gcry_error_t gcry_ac_data_verify_scheme (gcry ac handle t
handle, gcry ac scheme t scheme, unsigned int flags, void *opts,
gcry ac key t key, gcry ac io t *io_message, gcry ac io t *io_signature)

Verifies through handle that the signature readable from io signature is indeed the
result of signing the message readable from io message with the secret key belonging

52 The Libgcrypt Reference Manual

to the public key key according to scheme and opts. If opts is not NULL, it has to
be an anonymous structure (gcry ac ssa * t) specific to the chosen scheme.

6.6.7 Handle-independent functions

These two functions are deprecated; do not use them for new code.

[Function]gcry_error_t gcry_ac_id_to_name (gcry ac id t algorithm, const
char **name)

Stores the textual representation of the algorithm whose id is given in algorithm in
name. Deprecated; use gcry_pk_algo_name.

[Function]gcry_error_t gcry_ac_name_to_id (const char *name, gcry ac id t
*algorithm)

Stores the numeric ID of the algorithm whose textual representation is contained in
name in algorithm. Deprecated; use gcry_pk_map_name.

Chapter 7: Hashing 53

7 Hashing

Libgcrypt provides an easy and consistent to use interface for hashing. Hashing is buffered
and several hash algorithms can be updated at once. It is possible to compute a MAC using
the same routines. The programming model follows an open/process/close paradigm and
is in that similar to other building blocks provided by Libgcrypt.

For convenience reasons, a few cyclic redundancy check value operations are also sup-
ported.

7.1 Available hash algorithms

GCRY_MD_NONE
This is not a real algorithm but used by some functions as an error return value.
This constant is guaranteed to have the value 0.

GCRY_MD_SHA1
This is the SHA-1 algorithm which yields a message digest of 20 bytes. Note
that SHA-1 begins to show some weaknesses and it is suggested to fade out its
use if strong cryptographic properties are required.

GCRY_MD_RMD160
This is the 160 bit version of the RIPE message digest (RIPE-MD-160). Like
SHA-1 it also yields a digest of 20 bytes. This algorithm share a lot of design
properties with SHA-1 and thus it is advisable not to use it for new protocols.

GCRY_MD_MD5
This is the well known MD5 algorithm, which yields a message digest of 16
bytes. Note that the MD5 algorithm has severe weaknesses, for example it is
easy to compute two messages yielding the same hash (collision attack). The
use of this algorithm is only justified for non-cryptographic application.

GCRY_MD_MD4
This is the MD4 algorithm, which yields a message digest of 16 bytes. This
algorithms ha severe weaknesses and should not be used.

GCRY_MD_MD2
This is an reserved identifier for MD-2; there is no implementation yet. This
algorithm has severe weaknesses and should not be used.

GCRY_MD_TIGER
This is the TIGER/192 algorithm which yields a message digest of 24 bytes.

GCRY_MD_HAVAL
This is an reserved value for the HAVAL algorithm with 5 passes and 160 bit.
It yields a message digest of 20 bytes. Note that there is no implementation
yet available.

GCRY_MD_SHA224
This is the SHA-224 algorithm which yields a message digest of 28 bytes. See
Change Notice 1 for FIPS 180-2 for the specification.

54 The Libgcrypt Reference Manual

GCRY_MD_SHA256
This is the SHA-256 algorithm which yields a message digest of 32 bytes. See
FIPS 180-2 for the specification.

GCRY_MD_SHA384
This is the SHA-384 algorithm which yields a message digest of 48 bytes. See
FIPS 180-2 for the specification.

GCRY_MD_SHA512
This is the SHA-384 algorithm which yields a message digest of 64 bytes. See
FIPS 180-2 for the specification.

GCRY_MD_CRC32
This is the ISO 3309 and ITU-T V.42 cyclic redundancy check. It yields an
output of 4 bytes. Note that this is not a hash algorithm in the cryptographic
sense.

GCRY_MD_CRC32_RFC1510
This is the above cyclic redundancy check function, as modified by RFC 1510.
It yields an output of 4 bytes. Note that this is not a hash algorithm in the
cryptographic sense.

GCRY_MD_CRC24_RFC2440
This is the OpenPGP cyclic redundancy check function. It yields an output of
3 bytes. Note that this is not a hash algorithm in the cryptographic sense.

GCRY_MD_WHIRLPOOL
This is the Whirlpool algorithm which yields a message digest of 64 bytes.

7.2 Hash algorithm modules

Libgcrypt makes it possible to load additional ‘message digest modules’; these digests can
be used just like the message digest algorithms that are built into the library directly. For
an introduction into extension modules, see See Section 3.2 [Modules], page 13.

[Data type]gcry_md_spec_t
This is the ‘module specification structure’ needed for registering message digest mod-
ules, which has to be filled in by the user before it can be used to register a module.
It contains the following members:

const char *name
The primary name of this algorithm.

unsigned char *asnoid
Array of bytes that form the ASN OID.

int asnlen
Length of bytes in ‘asnoid’.

gcry_md_oid_spec_t *oids
A list of OIDs that are to be associated with the algorithm. The list’s
last element must have it’s ‘oid’ member set to NULL. See below for an
explanation of this type. See below for an explanation of this type.

Chapter 7: Hashing 55

int mdlen Length of the message digest algorithm. See below for an explanation of
this type.

gcry_md_init_t init
The function responsible for initializing a handle. See below for an ex-
planation of this type.

gcry_md_write_t write
The function responsible for writing data into a message digest context.
See below for an explanation of this type.

gcry_md_final_t final
The function responsible for ‘finalizing’ a message digest context. See
below for an explanation of this type.

gcry_md_read_t read
The function responsible for reading out a message digest result. See
below for an explanation of this type.

size_t contextsize
The size of the algorithm-specific ‘context’, that should be allocated for
each handle.

[Data type]gcry_md_oid_spec_t
This type is used for associating a user-provided algorithm implementation with cer-
tain OIDs. It contains the following members:

const char *oidstring
Textual representation of the OID.

[Data type]gcry_md_init_t
Type for the ‘init’ function, defined as: void (*gcry md init t) (void *c)

[Data type]gcry_md_write_t
Type for the ‘write’ function, defined as: void (*gcry md write t) (void *c, unsigned
char *buf, size t nbytes)

[Data type]gcry_md_final_t
Type for the ‘final’ function, defined as: void (*gcry md final t) (void *c)

[Data type]gcry_md_read_t
Type for the ‘read’ function, defined as: unsigned char *(*gcry md read t) (void *c)

[Function]gcry_error_t gcry_md_register (gcry md spec t *digest, unsigned
int *algorithm id, gcry module t *module)

Register a new digest module whose specification can be found in digest. On success,
a new algorithm ID is stored in algorithm id and a pointer representing this module
is stored in module.

[Function]void gcry_md_unregister (gcry module t module)
Unregister the digest identified by module, which must have been registered with
gcry md register.

56 The Libgcrypt Reference Manual

[Function]gcry_error_t gcry_md_list (int *list, int *list_length)
Get a list consisting of the IDs of the loaded message digest modules. If list is zero,
write the number of loaded message digest modules to list length and return. If
list is non-zero, the first *list length algorithm IDs are stored in list, which must be
of according size. In case there are less message digests modules than *list length,
*list length is updated to the correct number.

7.3 Working with hash algorithms

To use most of these function it is necessary to create a context; this is done using:

[Function]gcry_error_t gcry_md_open (gcry md hd t *hd, int algo, unsigned
int flags)

Create a message digest object for algorithm algo. flags may be given as an bitwise
OR of constants described below. algo may be given as 0 if the algorithms to use are
later set using gcry_md_enable. hd is guaranteed to either receive a valid handle or
NULL.
For a list of supported algorithms, see See Section 7.1 [Available hash algorithms],
page 53.
The flags allowed for mode are:

GCRY_MD_FLAG_SECURE
Allocate all buffers and the resulting digest in "secure memory". Use this
is the hashed data is highly confidential.

GCRY_MD_FLAG_HMAC
Turn the algorithm into a HMAC message authentication algorithm. This
only works if just one algorithm is enabled for the handle. Note that the
function gcry_md_setkey must be used to set the MAC key. The size of
the MAC is equal to the message digest of the underlying hash algorithm.
If you want CBC message authentication codes based on a cipher, see See
Section 5.4 [Working with cipher handles], page 26.

You may use the function gcry_md_is_enabled to later check whether an algorithm
has been enabled.

If you want to calculate several hash algorithms at the same time, you have to use the
following function right after the gcry_md_open:

[Function]gcry_error_t gcry_md_enable (gcry md hd t h, int algo)
Add the message digest algorithm algo to the digest object described by handle h.
Duplicated enabling of algorithms is detected and ignored.

If the flag GCRY_MD_FLAG_HMAC was used, the key for the MAC must be set using the
function:

[Function]gcry_error_t gcry_md_setkey (gcry md hd t h, const void *key,
size t keylen)

For use with the HMAC feature, set the MAC key to the value of key of length keylen
bytes. There is no restriction on the length of the key.

Chapter 7: Hashing 57

After you are done with the hash calculation, you should release the resources by using:

[Function]void gcry_md_close (gcry md hd t h)
Release all resources of hash context h. h should not be used after a call to this
function. A NULL passed as h is ignored. The function also zeroises all sensitive
information associated with this handle.

Often you have to do several hash operations using the same algorithm. To avoid the
overhead of creating and releasing context, a reset function is provided:

[Function]void gcry_md_reset (gcry md hd t h)
Reset the current context to its initial state. This is effectively identical to a close
followed by an open and enabling all currently active algorithms.

Often it is necessary to start hashing some data and then continue to hash different data.
To avoid hashing the same data several times (which might not even be possible if the data
is received from a pipe), a snapshot of the current hash context can be taken and turned
into a new context:

[Function]gcry_error_t gcry_md_copy (gcry md hd t *handle_dst,
gcry md hd t handle_src)

Create a new digest object as an exact copy of the object described by handle han-
dle src and store it in handle dst. The context is not reset and you can continue to
hash data using this context and independently using the original context.

Now that we have prepared everything to calculate hashes, it is time to see how it is
actually done. There are two ways for this, one to update the hash with a block of memory
and one macro to update the hash by just one character. Both methods can be used on the
same hash context.

[Function]void gcry_md_write (gcry md hd t h, const void *buffer, size t
length)

Pass length bytes of the data in buffer to the digest object with handle h to update
the digest values. This function should be used for large blocks of data.

[Function]void gcry_md_putc (gcry md hd t h, int c)
Pass the byte in c to the digest object with handle h to update the digest value. This
is an efficient function, implemented as a macro to buffer the data before an actual
update.

The semantics of the hash functions do not provide for reading out intermediate message
digests because the calculation must be finalized first. This finalization may for example
include the number of bytes hashed in the message digest or some padding.

[Function]void gcry_md_final (gcry md hd t h)
Finalize the message digest calculation. This is not really needed because gcry_md_
read does this implicitly. After this has been done no further updates (by means of
gcry_md_write or gcry_md_putc are allowed. Only the first call to this function has
an effect. It is implemented as a macro.

The way to read out the calculated message digest is by using the function:

58 The Libgcrypt Reference Manual

[Function]unsigned char * gcry_md_read (gcry md hd t h, int algo)
gcry_md_read returns the message digest after finalizing the calculation. This func-
tion may be used as often as required but it will always return the same value for
one handle. The returned message digest is allocated within the message context
and therefore valid until the handle is released or reseted (using gcry_md_close or
gcry_md_reset. algo may be given as 0 to return the only enabled message digest or
it may specify one of the enabled algorithms. The function does return NULL if the
requested algorithm has not been enabled.

Because it is often necessary to get the message digest of one block of memory, a fast
convenience function is available for this task:

[Function]void gcry_md_hash_buffer (int algo, void *digest, const void
*buffer, size t length);

gcry_md_hash_buffer is a shortcut function to calculate a message digest of a buffer.
This function does not require a context and immediately returns the message digest
of the length bytes at buffer. digest must be allocated by the caller, large enough to
hold the message digest yielded by the the specified algorithm algo. This required
size may be obtained by using the function gcry_md_get_algo_dlen.

Note that this function will abort the process if an unavailable algorithm is used.

Hash algorithms are identified by internal algorithm numbers (see gcry_md_open for a
list). However, in most applications they are used by names, so two functions are available
to map between string representations and hash algorithm identifiers.

[Function]const char * gcry_md_algo_name (int algo)
Map the digest algorithm id algo to a string representation of the algorithm name.
For unknown algorithms this function returns the string "?". This function should
not be used to test for the availability of an algorithm.

[Function]int gcry_md_map_name (const char *name)
Map the algorithm with name to a digest algorithm identifier. Returns 0 if the algo-
rithm name is not known. Names representing ASN.1 object identifiers are recognized
if the IETF dotted format is used and the OID is prefixed with either "oid." or
"OID.". For a list of supported OIDs, see the source code at ‘cipher/md.c’. This
function should not be used to test for the availability of an algorithm.

[Function]gcry_error_t gcry_md_get_asnoid (int algo, void *buffer, size t
*length)

Return an DER encoded ASN.1 OID for the algorithm algo in the user allocated
buffer. length must point to variable with the available size of buffer and receives
after return the actual size of the returned OID. The returned error code may be GPG_
ERR_TOO_SHORT if the provided buffer is to short to receive the OID; it is possible to
call the function with NULL for buffer to have it only return the required size. The
function returns 0 on success.

To test whether an algorithm is actually available for use, the following macro should
be used:

Chapter 7: Hashing 59

[Function]gcry_error_t gcry_md_test_algo (int algo)
The macro returns 0 if the algorithm algo is available for use.

If the length of a message digest is not known, it can be retrieved using the following
function:

[Function]unsigned int gcry_md_get_algo_dlen (int algo)
Retrieve the length in bytes of the digest yielded by algorithm algo. This is often
used prior to gcry_md_read to allocate sufficient memory for the digest.

In some situations it might be hard to remember the algorithm used for the ongoing
hashing. The following function might be used to get that information:

[Function]int gcry_md_get_algo (gcry md hd t h)
Retrieve the algorithm used with the handle h. Note that this does not work reliable
if more than one algorithm is enabled in h.

The following macro might also be useful:

[Function]int gcry_md_is_secure (gcry md hd t h)
This function returns true when the digest object h is allocated in "secure memory";
i.e. h was created with the GCRY_MD_FLAG_SECURE.

[Function]int gcry_md_is_enabled (gcry md hd t h, int algo)
This function returns true when the algorithm algo has been enabled for the digest
object h.

Tracking bugs related to hashing is often a cumbersome task which requires to add a
lot of printf statements into the code. Libgcrypt provides an easy way to avoid this. The
actual data hashed can be written to files on request.

[Function]void gcry_md_debug (gcry md hd t h, const char *suffix)
Enable debugging for the digest object with handle h. This creates create files named
‘dbgmd-<n>.<string>’ while doing the actual hashing. suffix is the string part in the
filename. The number is a counter incremented for each new hashing. The data in
the file is the raw data as passed to gcry_md_write or gcry_md_putc. If NULL is used
for suffix, the debugging is stopped and the file closed. This is only rarely required
because gcry_md_close implicitly stops debugging.

The following two deprecated macros are used for debugging by old code. They shopuld
be replaced by gcry_md_debug.

[Function]void gcry_md_start_debug (gcry md hd t h, const char *suffix)
Enable debugging for the digest object with handle h. This creates create files named
‘dbgmd-<n>.<string>’ while doing the actual hashing. suffix is the string part in the
filename. The number is a counter incremented for each new hashing. The data in
the file is the raw data as passed to gcry_md_write or gcry_md_putc.

[Function]void gcry_md_stop_debug (gcry md hd t h, int reserved)
Stop debugging on handle h. reserved should be specified as 0. This function is
usually not required because gcry_md_close does implicitly stop debugging.

60 The Libgcrypt Reference Manual

Chapter 8: Random Numbers 61

8 Random Numbers

8.1 Quality of random numbers

Libgcypt offers random numbers of different quality levels:

[Data type]gcry_random_level_t
The constants for the random quality levels are of this enum type.

GCRY_WEAK_RANDOM
For all functions, except for gcry_mpi_randomize, this level maps to
GCRY STRONG RANDOM. If you do not want this, consider using
gcry_create_nonce.

GCRY_STRONG_RANDOM
Use this level for session keys and similar purposes.

GCRY_VERY_STRONG_RANDOM
Use this level for long term key material.

8.2 Retrieving random numbers

[Function]void gcry_randomize (unsigned char *buffer, size t length, enum
gcry random level level)

Fill buffer with length random bytes using a random quality as defined by level.

[Function]void * gcry_random_bytes (size t nbytes, enum gcry random level
level)

Convenience function to allocate a memory block consisting of nbytes fresh random
bytes using a random quality as defined by level.

[Function]void * gcry_random_bytes_secure (size t nbytes, enum
gcry random level level)

Convenience function to allocate a memory block consisting of nbytes fresh random
bytes using a random quality as defined by level. This function differs from gcry_
random_bytes in that the returned buffer is allocated in a “secure” area of the mem-
ory.

[Function]void gcry_create_nonce (unsigned char *buffer, size t length)
Fill buffer with length unpredictable bytes. This is commonly called a nonce and
may also be used for initialization vectors and padding. This is an extra function
nearly independent of the other random function for 3 reasons: It better protects the
regular random generator’s internal state, provides better performance and does not
drain the precious entropy pool.

62 The Libgcrypt Reference Manual

Chapter 9: S-expressions 63

9 S-expressions

S-expressions are used by the public key functions to pass complex data struc-
tures around. These LISP like objects are used by some cryptographic protocols
(cf. RFC-2692) and Libgcrypt provides functions to parse and construct them.
For detailed information, see Ron Rivest, code and description of S-expressions,
http://theory.lcs.mit.edu/~rivest/sexp.html.

9.1 Data types for S-expressions

[Data type]gcry_sexp_t
The gcry_sexp_t type describes an object with the Libgcrypt internal representation
of an S-expression.

9.2 Working with S-expressions

There are several functions to create an Libgcrypt S-expression object from its external
representation or from a string template. There is also a function to convert the internal
representation back into one of the external formats:

[Function]gcry_error_t gcry_sexp_new (gcry sexp t *r_sexp ,
const void *buffer , size t length , int autodetect)

This is the generic function to create an new S-expression object from its external
representation in buffer of length bytes. On success the result is stored at the address
given by r sexp. With autodetect set to 0, the data in buffer is expected to be in
canonized format, with autodetect set to 1 the parses any of the defined external
formats. If buffer does not hold a valid S-expression an error code is returned and
r sexp set to NULL. Note that the caller is responsible for releasing the newly allocated
S-expression using gcry_sexp_release.

[Function]gcry_error_t gcry_sexp_create (gcry sexp t *r_sexp ,
void *buffer , size t length , int autodetect , void (*freefnc)(void*))

This function is identical to gcry_sexp_new but has an extra argument freefnc, which,
when not set to NULL, is expected to be a function to release the buffer; most likely the
standard free function is used for this argument. This has the effect of transferring
the ownership of buffer to the created object in r sexp. The advantage of using this
function is that Libgcrypt might decide to directly use the provided buffer and thus
avoid extra copying.

[Function]gcry_error_t gcry_sexp_sscan (gcry sexp t *r_sexp ,
size t *erroff , const char *buffer , size t length)

This is another variant of the above functions. It behaves nearly identical but provides
an erroff argument which will receive the offset into the buffer where the parsing
stopped on error.

[Function]gcry_error_t gcry_sexp_build (gcry sexp t *r_sexp ,
size t *erroff , const char *format, ...)

This function creates an internal S-expression from the string template format and
stores it at the address of r sexp. If there is a parsing error, the function returns an

http://theory.lcs.mit.edu/~rivest/sexp.html

64 The Libgcrypt Reference Manual

appropriate error code and stores the offset into format where the parsing stopped in
erroff. The function supports a couple of printf-like formatting characters and expects
arguments for some of these escape sequences right after format. The following format
characters are defined:

‘%m’ The next argument is expected to be of type gcry_mpi_t and a copy of
its value is inserted into the resulting S-expression.

‘%s’ The next argument is expected to be of type char * and that string is
inserted into the resulting S-expression.

‘%d’ The next argument is expected to be of type int and its value is inserted
into the resulting S-expression.

‘%b’ The next argument is expected to be of type int directly followed by an
argument of type char *. This represents a buffer of given length to be
inserted into the resulting S-expression.

‘%S’ The next argument is expected to be of type gcry_sexp_t and a copy of
that S-expression is embedded in the resulting S-expression. The argu-
ment needs to be a regular S-expression, starting with a parenthesis.

No other format characters are defined and would return an error. Note that the
format character ‘%%’ does not exists, because a percent sign is not a valid character
in an S-expression.

[Function]void gcry_sexp_release (gcry sexp t sexp)
Release the S-expression object sexp. If the S-expression is stored in secure memory
it explicitly zeroises that memory; note that this is done in addition to the zeroisation
always done when freeing secure memory.

The next 2 functions are used to convert the internal representation back into a regular
external S-expression format and to show the structure for debugging.

[Function]size_t gcry_sexp_sprint (gcry sexp t sexp , int mode ,
char *buffer , size t maxlength)

Copies the S-expression object sexp into buffer using the format specified in mode.
maxlength must be set to the allocated length of buffer. The function returns the
actual length of valid bytes put into buffer or 0 if the provided buffer is too short.
Passing NULL for buffer returns the required length for buffer. For convenience reasons
an extra byte with value 0 is appended to the buffer.
The following formats are supported:

GCRYSEXP_FMT_DEFAULT
Returns a convenient external S-expression representation.

GCRYSEXP_FMT_CANON
Return the S-expression in canonical format.

GCRYSEXP_FMT_BASE64
Not currently supported.

GCRYSEXP_FMT_ADVANCED
Returns the S-expression in advanced format.

Chapter 9: S-expressions 65

[Function]void gcry_sexp_dump (gcry sexp t sexp)
Dumps sexp in a format suitable for debugging to Libgcrypt’s logging stream.

Often canonical encoding is used in the external representation. The following function can
be used to check for valid encoding and to learn the length of the S-expression"

[Function]size_t gcry_sexp_canon_len (const unsigned char *buffer ,
size t length , size t *erroff , int *errcode)

Scan the canonical encoded buffer with implicit length values and return the actual
length this S-expression uses. For a valid S-expression it should never return 0. If
length is not 0, the maximum length to scan is given; this can be used for syntax
checks of data passed from outside. errcode and erroff may both be passed as NULL.

There are functions to parse S-expressions and retrieve elements:

[Function]gcry_sexp_t gcry_sexp_find_token (const gcry sexp t list ,
const char *token , size t toklen)

Scan the S-expression for a sublist with a type (the car of the list) matching the string
token. If toklen is not 0, the token is assumed to be raw memory of this length. The
function returns a newly allocated S-expression consisting of the found sublist or NULL
when not found.

[Function]int gcry_sexp_length (const gcry sexp t list)
Return the length of the list. For a valid S-expression this should be at least 1.

[Function]gcry_sexp_t gcry_sexp_nth (const gcry sexp t list , int number)
Create and return a new S-expression from the element with index number in list.
Note that the first element has the index 0. If there is no such element, NULL is
returned.

[Function]gcry_sexp_t gcry_sexp_car (const gcry sexp t list)
Create and return a new S-expression from the first element in list; this called the
"type" and should always exist and be a string. NULL is returned in case of a problem.

[Function]gcry_sexp_t gcry_sexp_cdr (const gcry sexp t list)
Create and return a new list form all elements except for the first one. Note that this
function may return an invalid S-expression because it is not guaranteed, that the
type exists and is a string. However, for parsing a complex S-expression it might be
useful for intermediate lists. Returns NULL on error.

[Function]const char * gcry_sexp_nth_data (const gcry sexp t list ,
int number , size t *datalen)

This function is used to get data from a list. A pointer to the actual data with index
number is returned and the length of this data will be stored to datalen. If there
is no data at the given index or the index represents another list, NULL is returned.
Caution: The returned pointer is valid as long as list is not modified or released.

Here is an example on how to extract and print the surname (Meier) from the S-
expression ‘(Name Otto Meier (address Burgplatz 3))’:

66 The Libgcrypt Reference Manual

size_t len;
const char *name;

name = gcry_sexp_nth_data (list, 2, &len);
printf ("my name is %.*s\n", (int)len, name);

[Function]char * gcry_sexp_nth_string (gcry sexp t list , int number)
This function is used to get and convert data from a list. The data is assumed to be a
Nul terminated string. The caller must release this returned value using gcry_free.
If there is no data at the given index, the index represents a list or the value can’t be
converted to a string, NULL is returned.

[Function]gcry_mpi_t gcry_sexp_nth_mpi (gcry sexp t list , int number ,
int mpifmt)

This function is used to get and convert data from a list. This data is assumed to
be an MPI stored in the format described by mpifmt and returned as a standard
Libgcrypt MPI. The caller must release this returned value using gcry_mpi_release.
If there is no data at the given index, the index represents a list or the value can’t be
converted to an MPI, NULL is returned.

Chapter 10: MPI library 67

10 MPI library

Public key cryptography is based on mathematics with large numbers. To implement the
public key functions, a library for handling these large numbers is required. Because of the
general usefulness of such a library, its interface is exposed by Libgcrypt. In the context
of Libgcrypt and in most other applications, these large numbers are called MPIs (multi-
precision-integers).

10.1 Data types

[Data type]gcry_mpi_t
This type represents an object to hold an MPI.

10.2 Basic functions

To work with MPIs, storage must be allocated and released for the numbers. This can be
done with one of these functions:

[Function]gcry_mpi_t gcry_mpi_new (unsigned int nbits)
Allocate a new MPI object, initialize it to 0 and initially allocate enough memory
for a number of at least nbits. This pre-allocation is only a small performance issue
and not actually necessary because Libgcrypt automatically re-allocates the required
memory.

[Function]gcry_mpi_t gcry_mpi_snew (unsigned int nbits)
This is identical to gcry_mpi_new but allocates the MPI in the so called "secure
memory" which in turn will take care that all derived values will also be stored in this
"secure memory". Use this for highly confidential data like private key parameters.

[Function]gcry_mpi_t gcry_mpi_copy (const gcry mpi t a)
Create a new MPI as the exact copy of a.

[Function]void gcry_mpi_release (gcry mpi t a)
Release the MPI a and free all associated resources. Passing NULL is allowed and
ignored. When a MPI stored in the "secure memory" is released, that memory gets
wiped out immediately.

The simplest operations are used to assign a new value to an MPI:

[Function]gcry_mpi_t gcry_mpi_set (gcry mpi t w , const gcry mpi t u)
Assign the value of u to w and return w. If NULL is passed for w, a new MPI is
allocated, set to the value of u and returned.

[Function]gcry_mpi_t gcry_mpi_set_ui (gcry mpi t w , unsigned long u)
Assign the value of u to w and return w. If NULL is passed for w, a new MPI is
allocated, set to the value of u and returned. This function takes an unsigned int
as type for u and thus it is only possible to set w to small values (usually up to the
word size of the CPU).

[Function]void gcry_mpi_swap (gcry mpi t a , gcry mpi t b)
Swap the values of a and b.

68 The Libgcrypt Reference Manual

10.3 MPI formats

The following functions are used to convert between an external representation of an MPI
and the internal one of Libgcrypt.

[Function]gcry_error_t gcry_mpi_scan (gcry mpi t *r_mpi ,
enum gcry mpi format format , const unsigned char *buffer , size t buflen ,
size t *nscanned)

Convert the external representation of an integer stored in buffer with a length of
buflen into a newly created MPI returned which will be stored at the address of
r mpi. For certain formats the length argument is not required and should be passed
as 0. After a successful operation the variable nscanned receives the number of bytes
actually scanned unless nscanned was given as NULL. format describes the format of
the MPI as stored in buffer:

GCRYMPI_FMT_STD
2-complement stored without a length header.

GCRYMPI_FMT_PGP
As used by OpenPGP (only defined as unsigned). This is basically
GCRYMPI_FMT_STD with a 2 byte big endian length header.

GCRYMPI_FMT_SSH
As used in the Secure Shell protocol. This is GCRYMPI_FMT_STD with a 4
byte big endian header.

GCRYMPI_FMT_HEX
Stored as a C style string with each byte of the MPI encoded as 2 hex
digits. When using this format, buflen must be zero.

GCRYMPI_FMT_USG
Simple unsigned integer.

Note that all of the above formats store the integer in big-endian format (MSB first).

[Function]gcry_error_t gcry_mpi_print (enum gcry mpi format format ,
unsigned char *buffer , size t buflen , size t *nwritten ,
const gcry mpi t a)

Convert the MPI a into an external representation described by format (see above)
and store it in the provided buffer which has a usable length of at least the buflen
bytes. If nwritten is not NULL, it will receive the number of bytes actually stored in
buffer after a successful operation.

[Function]gcry_error_t gcry_mpi_aprint (enum gcry mpi format format ,
unsigned char **buffer , size t *nbytes , const gcry mpi t a)

Convert the MPI a into an external representation described by format (see above)
and store it in a newly allocated buffer which address will be stored in the variable
buffer points to. The number of bytes stored in this buffer will be stored in the
variable nbytes points to, unless nbytes is NULL.

Chapter 10: MPI library 69

[Function]void gcry_mpi_dump (const gcry mpi t a)
Dump the value of a in a format suitable for debugging to Libgcrypt’s logging stream.
Note that one leading space but no trailing space or linefeed will be printed. It is
okay to pass NULL for a.

10.4 Calculations

Basic arithmetic operations:

[Function]void gcry_mpi_add (gcry mpi t w , gcry mpi t u , gcry mpi t v)
w = u + v .

[Function]void gcry_mpi_add_ui (gcry mpi t w , gcry mpi t u , unsigned long v)
w = u + v . Note that v is an unsigned integer.

[Function]void gcry_mpi_addm (gcry mpi t w , gcry mpi t u , gcry mpi t v ,
gcry mpi t m)

w = u + v mod m.

[Function]void gcry_mpi_sub (gcry mpi t w , gcry mpi t u , gcry mpi t v)
w = u− v .

[Function]void gcry_mpi_sub_ui (gcry mpi t w , gcry mpi t u , unsigned long v)
w = u− v . v is an unsigned integer.

[Function]void gcry_mpi_subm (gcry mpi t w , gcry mpi t u , gcry mpi t v ,
gcry mpi t m)

w = u− v mod m.

[Function]void gcry_mpi_mul (gcry mpi t w , gcry mpi t u , gcry mpi t v)
w = u ∗ v .

[Function]void gcry_mpi_mul_ui (gcry mpi t w , gcry mpi t u , unsigned long v)
w = u ∗ v . v is an unsigned integer.

[Function]void gcry_mpi_mulm (gcry mpi t w , gcry mpi t u , gcry mpi t v ,
gcry mpi t m)

w = u ∗ v mod m.

[Function]void gcry_mpi_mul_2exp (gcry mpi t w , gcry mpi t u ,
unsigned long e)

w = u ∗ 2e.

[Function]void gcry_mpi_div (gcry mpi t q , gcry mpi t r ,
gcry mpi t dividend , gcry mpi t divisor , int round)

q = dividend/divisor, r = dividend mod divisor. q and r may be passed as NULL.
round should be negative or 0.

[Function]void gcry_mpi_mod (gcry mpi t r , gcry mpi t dividend ,
gcry mpi t divisor)

r = dividend mod divisor.

70 The Libgcrypt Reference Manual

[Function]void gcry_mpi_powm (gcry mpi t w , const gcry mpi t b ,
const gcry mpi t e , const gcry mpi t m)

w = be mod m.

[Function]int gcry_mpi_gcd (gcry mpi t g , gcry mpi t a , gcry mpi t b)
Set g to the greatest common divisor of a and b. Return true if the g is 1.

[Function]int gcry_mpi_invm (gcry mpi t x , gcry mpi t a , gcry mpi t m)
Set x to the multiplicative inverse of a mod m. Return true if the inverse exists.

10.5 Comparisons

The next 2 functions are used to compare MPIs:

[Function]int gcry_mpi_cmp (const gcry mpi t u , const gcry mpi t v)
Compare the multi-precision-integers number u and v returning 0 for equality, a
positive value for u > v and a negative for u < v.

[Function]int gcry_mpi_cmp_ui (const gcry mpi t u , unsigned long v)
Compare the multi-precision-integers number u with the unsigned integer v returning
0 for equality, a positive value for u > v and a negative for u < v.

10.6 Bit manipulations

There are a couple of functions to get information on arbitrary bits in an MPI and to set
or clear them:

[Function]unsigned int gcry_mpi_get_nbits (gcry mpi t a)
Return the number of bits required to represent a.

[Function]int gcry_mpi_test_bit (gcry mpi t a , unsigned int n)
Return true if bit number n (counting from 0) is set in a.

[Function]void gcry_mpi_set_bit (gcry mpi t a , unsigned int n)
Set bit number n in a.

[Function]void gcry_mpi_clear_bit (gcry mpi t a , unsigned int n)
Clear bit number n in a.

[Function]void gcry_mpi_set_highbit (gcry mpi t a , unsigned int n)
Set bit number n in a and clear all bits greater than n.

[Function]void gcry_mpi_clear_highbit (gcry mpi t a , unsigned int n)
Clear bit number n in a and all bits greater than n.

[Function]void gcry_mpi_rshift (gcry mpi t x , gcry mpi t a , unsigned int n)
Shift the value of a by n bits to the right and store the result in x.

[Function]void gcry_mpi_lshift (gcry mpi t x , gcry mpi t a , unsigned int n)
Shift the value of a by n bits to the left and store the result in x.

Chapter 10: MPI library 71

10.7 Miscellaneous

[Function]gcry_mpi_t gcry_mpi_set_opaque (gcry mpi t a , void *p ,
unsigned int nbits)

Store nbits of the value p points to in a and mark a as an opaque value (i.e. an value
that can’t be used for any math calculation and is only used to store an arbitrary bit
pattern in a).
WARNING: Never use an opaque MPI for actual math operations. The only valid
functions are gcry mpi get opaque and gcry mpi release. Use gcry mpi scan to con-
vert a string of arbitrary bytes into an MPI.

[Function]void * gcry_mpi_get_opaque (gcry mpi t a , unsigned int *nbits)
Return a pointer to an opaque value stored in a and return its size in nbits. Note
that the returned pointer is still owned by a and that the function should never be
used for an non-opaque MPI.

[Function]void gcry_mpi_set_flag (gcry mpi t a , enum gcry mpi flag flag)
Set the flag for the MPI a. Currently only the flag GCRYMPI_FLAG_SECURE is allowed
to convert a into an MPI stored in "secure memory".

[Function]void gcry_mpi_clear_flag (gcry mpi t a , enum gcry mpi flag flag)
Clear flag for the multi-precision-integers a. Note that this function is currently
useless as no flags are allowed.

[Function]int gcry_mpi_get_flag (gcry mpi t a , enum gcry mpi flag flag)
Return true when the flag is set for a.

[Function]void gcry_mpi_randomize (gcry mpi t w , unsigned int nbits ,
enum gcry random level level)

Set the multi-precision-integers w to a random value of nbits, using random data
quality of level level. In case nbits is not a multiple of a byte, nbits is rounded up
to the next byte boundary. When using a level of GCRY_WEAK_RANDOM this function
makes use of gcry_create_nonce.

72 The Libgcrypt Reference Manual

Chapter 11: Prime numbers 73

11 Prime numbers

11.1 Generation

[Function]gcry_error_t gcry_prime_generate (gcry mpi t *prime,unsigned int
prime_bits, unsigned int factor_bits, gcry mpi t **factors,
gcry prime check func t cb_func, void *cb_arg, gcry random level t
random_level, unsigned int flags)

Generate a new prime number of prime bits bits and store it in prime. If factor bits
is non-zero, one of the prime factors of (prime - 1) / 2 must be factor bits bits long.
If factors is non-zero, allocate a new, NULL-terminated array holding the prime factors
and store it in factors. flags might be used to influence the prime number generation
process.

[Function]gcry_error_t gcry_prime_group_generator (gcry mpi t *r_g,
gcry mpi t prime, gcry mpi t *factors, gcry mpi t start_g)

Find a generator for prime where the factorization of (prime-1) is in the NULL termi-
nated array factors. Return the generator as a newly allocated MPI in r g. If start g
is not NULL, use this as the start for the search.

[Function]void gcry_prime_release_factors (gcry mpi t *factors)
Convenience function to release the factors array.

11.2 Checking

[Function]gcry_error_t gcry_prime_check (gcry mpi t p, unsigned int flags)
Check wether the number p is prime. Returns zero in case p is indeed a prime,
returns GPG_ERR_NO_PRIME in case p is not a prime and a different error code in case
something went horribly wrong.

74 The Libgcrypt Reference Manual

Chapter 12: Utilities 75

12 Utilities

12.1 Memory allocation

[Function]void * gcry_malloc (size t n)
This function tries to allocate n bytes of memory. On success it returns a pointer to
the memory area, in an out-of-core condition, it returns NULL.

[Function]void * gcry_malloc_secure (size t n)
Like gcry_malloc, but uses secure memory.

[Function]void * gcry_calloc (size t n, size t m)
This function allocates a cleared block of memory (i.e. initialized with zero bytes)
long enough to contain a vector of n elements, each of size m bytes. On success it
returns a pointer to the memory block; in an out-of-core condition, it returns NULL.

[Function]void * gcry_calloc_secure (size t n, size t m)
Like gcry_calloc, but uses secure memory.

[Function]void * gcry_realloc (void *p, size t n)
This function tries to resize the memory area pointed to by p to n bytes. On success
it returns a pointer to the new memory area, in an out-of-core condition, it returns
NULL. Depending on whether the memory pointed to by p is secure memory or not,
gcry realloc tries to use secure memory as well.

[Function]void gcry_free (void *p)
Release the memory area pointed to by p.

76 The Libgcrypt Reference Manual

Chapter 13: Architecture 77

13 Architecture

This chapter describes the internal architecture of Libgcrypt.
Libgcrypt is a function library written in ISO C-90. Any compliant compiler should be

able to build Libgcrypt as long as the target is either a POSIX platform or compatible to
the API used by Windows NT. Provisions have been take so that the library can be directly
used from C++ applications; however building with a C++ compiler is not supported.

Building Libgcrypt is done by using the common ./configure && make approach. The
configure command is included in the source distribution and as a portable shell script it
works on any Unix-alike system. The result of running the configure script are a C header
file (‘config.h’), customized Makefiles, the setup of symbolic links and a few other things.
After that the make tool builds and optionally installs the library and the documentation.
See the files ‘INSTALL’ and ‘README’ in the source distribution on how to do this.

Libgcrypt is developed using a Subversion1 repository. Although all released versions are
tagged in this repository, they should not be used to build production versions of Libgcrypt.
Instead released tarballs should be used. These tarballs are available from several places
with the master copy at ftp://ftp.gnupg.org/gcrypt/libgcrypt/. Announcements of
new releases are posted to the gnupg-announce@gnupg.org mailing list2.

Public−Key

Encryption

Multi−Precision−

Integers

Prime−Number

Generator

Random

Numbers

Symmetric

Encryption

Hashing

MACing

Memory MiscelleanousS−expressions

Figure 13.1: Libgcrypt subsystems

Libgcrypt consists of several subsystems (see Figure 13.1) and all these subsystems pro-
vide a public API; this includes the helper subsystems like the one for S-expressions. The
API style depends on the subsystem; in general an open-use-close approach is implemented.

1 A version control system available for many platforms
2 See http://www.gnupg.org/documentation/mailing-lists.en.html for details.

http://www.gnupg.org/documentation/mailing-lists.en.html

78 The Libgcrypt Reference Manual

The open returns a handle to a context used for all further operations on this handle, several
functions may then be used on this handle and a final close function releases all resources
associated with the handle.

13.1 Public-Key Architecture

Libgcrypt implements two interfaces for public key cryptography: The standard interface is
PK interface using functions in the gcry_pk_ name space. The AC interface in an alternative
one which is now deprecated and will not be further described. The AC interface is also
disabled in FIPS mode.

Because public key cryptography is almost always used to process small amounts of data
(hash values or session keys), the interface is not implemented using the open-use-close
paradigm, but with single self-contained functions. Due to the wide variety of parameters
required by different algorithms S-expressions, as flexible way to convey these parameters,
are used. There is a set of helper functions to work with these S-expressions.

Aside of functions to register new algorithms, map algorithms names to algorithms
identifiers and to lookup properties of a key, the following main functions are available:

gcry_pk_encrypt
Encrypt data using a public key.

gcry_pk_decrypt
Decrypt data using a private key.

gcry_pk_sign
Sign data using a private key.

gcry_pk_verify
Verify that a signature matches the data.

gcry_pk_testkey
Perform a consistency over a public or private key.

gcry_pk_genkey
Create a new public/private key pair.

With the help of the module registration system all these functions lookup the module
implementing the algorithm and pass the actual work to that module. The parsing of the
S-expression input and the construction of S-expression for the return values is done by the
high level code (‘cipher/pubkey.c’). Thus the internal interface between the algorithm
modules and the high level functions passes data in a custom format. The interface to
the modules is published (‘gcrypt-modules.h’) so that it can used to register external
implementations of algorithms with Libgcrypt. However, for some algorithms this module
interface is to limited and thus for the internal modules an extra interface is sometimes used
to convey more information.

By default Libgcrypt uses a blinding technique for RSA decryption to mitigate real world
timing attacks over a network: Instead of using the RSA decryption directly, a blinded
value y = xre mod n is decrypted and the unblinded value x′ = y′r−1 mod n returned.
The blinding value r is a random value with the size of the modulus n and generated with
GCRY_WEAK_RANDOM random level.

Chapter 13: Architecture 79

The algorithm used for RSA and DSA key generation depends on whether Libgcrypt is
operated in standard or in FIPS mode. In standard mode an algorithm based on the Lim-
Lee prime number generator is used. In FIPS mode RSA keys are generated as specified in
ANSI X9.31 (1998) and DSA keys as specified in FIPS 186-2.

13.2 Symmetric Encryption Subsystem Architecture

The interface to work with symmetric encryption algorithms is made up of functions from
the gcry_cipher_ name space. The implementation follows the open-use-close paradigm
and uses registered algorithm modules for the actual work. Unless a module implements op-
timized cipher mode implementations, the high level code (‘cipher/cipher.c’) implements
the modes and calls the core algorithm functions to process each block.

The most important functions are:

gcry_cipher_open
Create a new instance to encrypt or decrypt using a specified algorithm and
mode.

gcry_cipher_close
Release an instance.

gcry_cipher_setkey
Set a key to be used for encryption or decryption.

gcry_cipher_setiv
Set an initialization vector to be used for encryption or decryption.

gcry_cipher_encrypt
gcry_cipher_decrypt

Encrypt or decrypt data. These functions may be called with arbitrary amounts
of data and as often as needed to encrypt or decrypt all data.

There are also functions to query properties of algorithms or context, like block length,
key length, map names or to enable features like padding methods.

13.3 Hashing and MACing Subsystem Architecture

The interface to work with message digests and CRC algorithms is made up of functions
from the gcry_md_ name space. The implementation follows the open-use-close paradigm
and uses registered algorithm modules for the actual work. Although CRC algorithms are
not considered cryptographic hash algorithms, they share enough properties so that it makes
sense to handle them in the same way. It is possible to use several algorithms at once with
one context and thus compute them all on the same data.

The most important functions are:

gcry_md_open
Create a new message digest instance and optionally enable one algorithm. A
flag may be used to turn the message digest algorithm into a HMAC algorithm.

gcry_md_enable
Enable an additional algorithm for the instance.

80 The Libgcrypt Reference Manual

gcry_md_setkey
Set the key for the MAC.

gcry_md_write
Pass more data for computing the message digest to an instance.

gcry_md_putc
Buffered version of gcry_md_write implemented as a macro.

gcry_md_read
Finalize the computation of the message digest or HMAC and return the result.

gcry_md_close
Release an instance

gcry_md_hash_buffer
Convenience function to directly compute a message digest over a memory buffer
without the need to create an instance first.

There are also functions to query properties of algorithms or the instance, like enabled
algorithms, digest length, map algorithm names. it is also possible to reset an instance or
to copy the current state of an instance at any time. Debug functions to write the hashed
data to files are available as well.

13.4 Multi-Precision-Integer Subsystem Architecture

The implementation of Libgcrypt’s big integer computation code is based on an old release
of GNU Multi-Precision Library (GMP). The decision not to use the GMP library directly
was due to stalled development at that time and due to security requirements which could
not be provided by the code in GMP. As GMP does, Libgcrypt provides high performance
assembler implementations of low level code for several CPUS to gain much better perfor-
mance than with a generic C implementation.

Major features of Libgcrypt’s multi-precision-integer code compared to GMP are:

• Avoidance of stack based allocations to allow protection against swapping out of sen-
sitive data and for easy zeroing of sensitive intermediate results.

• Optional use of secure memory and tracking of its use so that results are also put into
secure memory.

• MPIs are identified by a handle (implemented as a pointer) to give better control over
allocations and to augment them with extra properties like opaque data.

• Removal of unnecessary code to reduce complexity.

• Functions specialized for public key cryptography.

13.5 Prime-Number-Generator Subsystem Architecture

Libgcrypt provides an interface to its prime number generator. These functions make use
of the internal prime number generator which is required for the generation for public key
key pairs. The plain prime checking function is exported as well.

Chapter 13: Architecture 81

The generation of random prime numbers is based on the Lim and Lee algorithm to
create practically save primes.3 This algorithm creates a pool of smaller primes, select a
few of them to create candidate primes of the form 2∗p0 ∗p1 ∗ ...∗pn +1, tests the candidate
for primality and permutates the pool until a prime has been found. It is possible to clamp
one of the small primes to a certain size to help DSA style algorithms. Because most of
the small primes in the pool are not used for the resulting prime number, they are saved
for later use (see save_pool_prime and get_pool_prime in ‘cipher/primegen.c’). The
prime generator optionally supports the finding of an appropriate generator.
The primality test works in three steps:
1. The standard sieve algorithm using the primes up to 4999 is used as a quick first check.
2. A Fermat test filters out almost all non-primes.
3. A 5 round Rabin-Miller test is finally used. The first round uses a witness of 2, whereas

the next rounds use a random witness.

To support the generation of RSA and DSA keys in FIPS mode according to X9.31
and FIPS 186-2, Libgcrypt implements two additional prime generation functions: _gcry_
derive_x931_prime and _gcry_generate_fips186_2_prime. These functions are internal
and not available through the public API.

13.6 Random-Number Subsystem Architecture

Libgcrypt provides 3 levels or random quality: The level GCRY_VERY_STRONG_RANDOM usu-
ally used for key generation, the level GCRY_STRONG_RANDOM for all other strong random
requirements and the function gcry_create_nonce which is used for weaker usages like
nonces. There is also a level GCRY_WEAK_RANDOM which in general maps to GCRY_STRONG_
RANDOM except when used with the function gcry_mpi_randomize, where it randomizes an
multi-precision-integer using the gcry_create_nonce function.
There are two distinct random generators available:
• The Continuously Seeded Pseudo Random Number Generator (CSPRNG), which

is based on the classic GnuPG derived big pool implementation. Implemented in
random/random-csprng.c and used by default.

• A FIPS approved ANSI X9.31 PRNG using AES with a 128 bit key. Implemented in
random/random-fips.c and used if Libgcrypt is in FIPS mode.

Both generators make use of so-called entropy gathering modules:

rndlinux Uses the operating system provided ‘/dev/random’ and ‘/dev/urandom’ devices.

rndunix Runs several operating system commands to collect entropy from sources like
virtual machine and process statistics. It is a kind of poor-man’s /dev/random
implementation. It is not available in FIPS mode.

rndegd Uses the operating system provided Entropy Gathering Daemon (EGD). The
EGD basically uses the same algorithms as rndunix does. However as a system
daemon it keeps on running and thus can serve several processes requiring

3 Chae Hoon Lim and Pil Joong Lee. A key recovery attack on discrete log-based shemes using a prime
order subgroup. In Burton S. Kaliski Jr., editor, Advances in Cryptology: Crypto ’97, pages 249-263,
Berlin / Heidelberg / New York, 1997. Springer-Verlag. Described on page 260.

82 The Libgcrypt Reference Manual

entropy input and does not waste collected entropy if the application does not
need all the collected entropy. It is not available in FIPS mode.

rndw32 Targeted for the Microsoft Windows OS. It uses certain properties of that sys-
tem and is the only gathering module available for that OS.

rndhw Extra module to collect additional entropy by utilizing a hardware random
number generator. As of now the only supported hardware RNG is the Padlock
engine of VIA (Centaur) CPUs. It is not available in FIPS mode.

13.6.1 Description of the CSPRNG

This random number generator is loosely modelled after the one described in Peter Gut-
mann’s paper: "Software Generation of Practically Strong Random Numbers".4

A pool of 600 bytes is used and mixed using the core RIPE-MD160 hash transform
function. Several extra features are used to make the robust against a wide variety of
attacks and to protect against failures of subsystems. The state of the generator may be
saved to a file and initially seed form a file.

Depending on how Libgcrypt was build the generator is able to select the best working
entropy gathering module. It makes use of the slow and fast collection methods and requires
the pool to initially seeded form the slow gatherer or a seed file. An entropy estimation is
used to mix in enough data from the gather modules before returning the actual random
output. Process fork detection and protection is implemented.

The implementation of the nonce generator (for gcry_create_nonce) is a straightfor-
ward repeated hash design: A 28 byte buffer is initially seeded with the PID and the time
in seconds in the first 20 bytes and with 8 bytes of random taken from the GCRY_STRONG_
RANDOM generator. Random numbers are then created by hashing all the 28 bytes with
SHA-1 and saving that again in the first 20 bytes. The hash is also returned as result.

13.6.2 Description of the FIPS X9.31 PRNG

The core of this deterministic random number generator is implemented according to the
document “NIST-Recommended Random Number Generator Based on ANSI X9.31 Ap-
pendix A.2.4 Using the 3-Key Triple DES and AES Algorithms”, dated 2005-01-31. This
implementation uses the AES variant.

The generator is based on contexts to utilize the same core functions for all random
levels as required by the high-level interface. All random generators return their data in
128 bit blocks. If the caller requests less bits, the extra bits are not used. The key for each
generator is only set once at the first time a generator context is used. The seed value is
set along with the key and again after 1000 output blocks.

On Unix like systems the GCRY_VERY_STRONG_RANDOM and GCRY_STRONG_RANDOM gener-
ators are keyed and seeded using the rndlinux module with the ‘/dev/radnom’ device. Thus
these generators may block until the OS kernel has collected enough entropy. When used
with Microsoft Windows the rndw32 module is used instead.

The generator used for gcry_create_nonce is keyed and seeded from the GCRY_STRONG_
RANDOM generator. Thus is may also block if the GCRY_STRONG_RANDOM generator has not

4 Also described in chapter 6 of his book "Cryptographic Security Architecture", New York, 2004, ISBN
0-387-95387-6.

Chapter 13: Architecture 83

yet been used before and thus gets initialized on the first use by gcry_create_nonce. This
special treatment is justified by the weaker requirements for a nonce generator and to save
precious kernel entropy for use by the “real” random generators.

A self-test facility uses a separate context to check the functionality of the core X9.31
functions using a known answers test. During runtime each output block is compared to
the previous one to detect a stucked generator.

The DT value for the generator is made up of the current time down to microseconds
(if available) and a free running 64 bit counter. When used with the test context the DT
value is taken from the context and incremented on each use.

84 The Libgcrypt Reference Manual

Appendix A: Description of the Self-Tests 85

Appendix A Description of the Self-Tests

In addition to the build time regression test suite, Libgcrypt implements self-tests to be
performed at runtime. Which self-tests are actually used depends on the mode Libgcrypt
is used in. In standard mode a limited set of self-tests is run at the time an algorithm is
first used. Note that not all algorithms feature a self-test in standard mode. The GCRYCTL_
SELFTEST control command may be used to run all implemented self-tests at any time; this
will even run more tests than those run in FIPS mode.

If any of the self-tests fails, the library immediately returns an error code to the caller.
If Libgcrypt is in FIPS mode the self-tests will be performed within the “Self-Test” state
and any failure puts the library into the “Error” state.

A.1 Power-Up Tests

Power-up tests are only performed if Libgcrypt is in FIPS mode.

A.1.1 Symmetric Cipher Algorithm Power-Up Tests

The following symmetric encryption algorithm tests are run during power-up:

3DES To test the 3DES 3-key EDE encryption in ECB mode these tests are run:
1. A known answer test is run on a 64 bit test vector processed by 64 rounds

of Single-DES block encryption and decryption using a key changed with
each round.

2. A known answer test is run on a 64 bit test vector processed by 16 rounds
of 2-key and 3-key Triple-DES block encryption and decryptions using a
key changed with each round.

3. 10 known answer tests using 3-key Triple-DES EDE encryption, comparing
the ciphertext to the known value, then running a decryption and compar-
ing it to the initial plaintext.

(cipher/des.c:selftest)

AES-128 A known answer tests is run using one test vector and one test key with AES
in ECB mode. (cipher/rijndael.c:selftest_basic_128)

AES-192 A known answer tests is run using one test vector and one test key with AES
in ECB mode. (cipher/rijndael.c:selftest_basic_192)

AES-256 A known answer tests is run using one test vector and one test key with AES
in ECB mode. (cipher/rijndael.c:selftest_basic_256)

A.1.2 Hash Algorithm Power-Up Tests

The following hash algorithm tests are run during power-up:

SHA-1 A known answer test using the string "abc" is run. (cipher/sha1.c:
selftests_sha1)

SHA-224 A known answer test using the string "abc" is run. (cipher/sha256.c:
selftests_sha224)

86 The Libgcrypt Reference Manual

SHA-256 A known answer test using the string "abc" is run. (cipher/sha256.c:
selftests_sha256)

SHA-384 A known answer test using the string "abc" is run. (cipher/sha512.c:
selftests_sha384)

SHA-512 A known answer test using the string "abc" is run. (cipher/sha512.c:
selftests_sha512)

A.1.3 MAC Algorithm Power-Up Tests

The following MAC algorithm tests are run during power-up:

HMAC SHA-1
A known answer test using 9 byte of data and a 64 byte key is run.
(cipher/hmac-tests.c:selftests_sha1)

HMAC SHA-224
A known answer test using 28 byte of data and a 4 byte key is run.
(cipher/hmac-tests.c:selftests_sha224)

HMAC SHA-256
A known answer test using 28 byte of data and a 4 byte key is run.
(cipher/hmac-tests.c:selftests_sha256)

HMAC SHA-384
A known answer test using 28 byte of data and a 4 byte key is run.
(cipher/hmac-tests.c:selftests_sha384)

HMAC SHA-512
A known answer test using 28 byte of data and a 4 byte key is run.
(cipher/hmac-tests.c:selftests_sha512)

A.1.4 Random Number Power-Up Test

The DRNG is tested during power-up this way:
1. Requesting one block of random using the public interface to check general working

and the duplicated block detection.
2. 3 know answer tests using pre-defined keys, seed and initial DT values. For each test 3

blocks of 16 bytes are requested and compared to the expected result. The DT value
is incremented for each block.

A.1.5 Public Key Algorithm Power-Up Tests

The public key algorithms are tested during power-up:

RSA A pre-defined 1024 bit RSA key is used and these tests are run in turn:
1. Conversion of S-expression to internal format. (cipher/rsa.c:

selftests_rsa)
2. Private key consistency check. (cipher/rsa.c:selftests_rsa)
3. A pre-defined 20 byte value is signed with PKCS#1 padding for SHA-1.

The result is verified using the public key against the original data and
against modified data. (cipher/rsa.c:selftest_sign_1024)

Appendix A: Description of the Self-Tests 87

4. A 1000 bit random value is encrypted and checked that it does not match
the orginal random value. The encrtypted result is then decrypted and
checked that it macthes the original random value. (cipher/rsa.c:
selftest_encr_1024)

DSA A pre-defined 1024 bit DSA key is used and these tests are run in turn:
1. Conversion of S-expression to internal format. (cipher/dsa.c:

selftests_dsa)
2. Private key consistency check. (cipher/dsa.c:selftests_dsa)
3. A pre-defined 20 byte value is signed with PKCS#1 padding for SHA-1.

The result is verified using the public key against the original data and
against modified data. (cipher/dsa.c:selftest_sign_1024)

A.1.6 Integrity Power-Up Tests

The integrity of the Libgcrypt is tested during power-up but only if checking has been
enabled at build time. The check works by computing a HMAC SHA-256 checksum over
the file used to load Libgcrypt into memory. That checksum is compared against a checksum
stored in a file of the same name but with a single dot as a prefix and a suffix of ‘.hmac’.

A.1.7 Critical Functions Power-Up Tests

The 3DES weak key detection is tested during power-up by calling the detection function
with keys taken from a table listening all weak keys. The table itself is protected using a
SHA-1 hash. (cipher/des.c:selftest)

A.2 Conditional Tests

The conditional tests are performed if a certain contidion is met. This may occur at any
time; the library does not necessary enter the “Self-Test” state to run these tests but will
transit to the “Error” state if a test failed.

A.2.1 Key-Pair Generation Tests

After an asymmetric key-pair has been generated, Libgcrypt runs a pair-wise consistency
tests on the generated key. On failure the generated key is not used, an error code is
returned and, if in FIPS mode, the library is put into the “Error” state.

RSA The test uses a random number 64 bits less the size of the modulus as plaintext
and runs an encryption and decryption operation in turn. The encrypted value
is checked to not match the plaintext and the result of the decryption is checked
to match the plaintext.
A new random number of the same size is generated, signed and verified to test
the correctness of the signing operation. As a second signing test, the signature
is modified by incrementing its value and then verified with the expected result
that the verification fails. (cipher/rsa.c:test_keys)

DSA The test uses a random number of the size of the Q parameter to create a
signature and then checks that the signature verifies. As a second signing test,
the data is modified by incrementing its value and then verified against the

88 The Libgcrypt Reference Manual

signature with the expected result that the verification fails. (cipher/dsa.c:
test_keys)

A.2.2 Software Load Tests

Loading of extra modules into libgcrypt is disabled in FIPS mode and thus no tests
are implemented. (cipher/cipher.c:_gcry_cipher_register, cipher/md.c:_gcry_md_
register, cipher/pubkey.c:_gcry_pk_register)

A.2.3 Manual Key Entry Tests

A manual key entry feature is not implemented in Libgcrypt.

A.2.4 Continuous RNG Tests

The continuous random number test is only used in FIPS mode. The RNG generates blocks
of 128 bit size; the first block generated per context is saved in the context and another block
is generated to be returned to the caller. Each block is compared against the saved block
and then stored in the context. If a duplicated block is detected an error is signaled and
the libray is put into the “Fatal-Error” state. (random/random-fips.c:x931_aes_driver)

A.3 Application Requested Tests

The application may requests tests at any time by means of the GCRYCTL_SELFTEST control
command. Note that using these tests is not FIPS conform: Although Libgcrypt rejects
all application requests for services while running self-tests, it does not ensure that no
other operations of Libgcrypt are still being executed. Thus, in FIPS mode an application
requesting self-tests needs to power-cycle Libgcrypt instead.

When self-tests are requested, Libgcrypt runs all the tests it does during power-up as
well as a few extra checks as described below.

A.3.1 Symmetric Cipher Algorithm Tests

The following symmetric encryption algorithm tests are run in addition to the power-up
tests:

AES-128 A known answer tests with test vectors taken from NIST SP800-38a and using
the high level functions is run for block modes CFB and OFB.

A.3.2 Hash Algorithm Tests

The following hash algorithm tests are run in addition to the power-up tests:

SHA-1
SHA-224
SHA-256

1. A known answer test using a 56 byte string is run.
2. A known answer test using a string of one million letters "a" is run.

(cipher/sha1.c:selftests_sha1, cipher/sha256.c:selftests_sha224,
cipher/sha256.c:selftests_sha256)

SHA-384

Appendix A: Description of the Self-Tests 89

SHA-512
1. A known answer test using a 112 byte string is run.
2. A known answer test using a string of one million letters "a" is run.

(cipher/sha512.c:selftests_sha384, cipher/sha512.c:selftests_
sha512)

A.3.3 MAC Algorithm Tests

The following MAC algorithm tests are run in addition to the power-up tests:

HMAC SHA-1
1. A known answer test using 9 byte of data and a 20 byte key is run.
2. A known answer test using 9 byte of data and a 100 byte key is run.
3. A known answer test using 9 byte of data and a 49 byte key is run.

(cipher/hmac-tests.c:selftests_sha1)

HMAC SHA-224
HMAC SHA-256
HMAC SHA-384
HMAC SHA-512

1. A known answer test using 9 byte of data and a 20 byte key is run.
2. A known answer test using 50 byte of data and a 20 byte key is run.
3. A known answer test using 50 byte of data and a 26 byte key is run.
4. A known answer test using 54 byte of data and a 131 byte key is run.
5. A known answer test using 152 byte of data and a 131 byte key is run.

(cipher/hmac-tests.c:selftests_sha224, cipher/hmac-tests.c:
selftests_sha256, cipher/hmac-tests.c:selftests_sha384, cipher/
hmac-tests.c:selftests_sha512)

90 The Libgcrypt Reference Manual

Appendix B: Description of the FIPS Mode 91

Appendix B Description of the FIPS Mode

This appendix gives detailed information pertaining to the FIPS mode. In particular, the
changes to the standard mode and the finite state machine are described. The self-tests
required in this mode are described in the appendix on self-tests.

B.1 Restrictions in FIPS Mode

If Libgcrypt is used in FIPS mode these restrictions are effective:
• The cryptographic algorithms are restricted to this list:

GCRY CIPHER 3DES
3 key EDE Triple-DES symmetric encryption.

GCRY CIPHER AES128
AES 128 bit symmetric encryption.

GCRY CIPHER AES192
AES 192 bit symmetric encryption.

GCRY CIPHER AES256
AES 256 bit symmetric encryption.

GCRY MD SHA1
SHA-1 message digest.

GCRY MD SHA224
SHA-224 message digest.

GCRY MD SHA256
SHA-256 message digest.

GCRY MD SHA384
SHA-384 message digest.

GCRY MD SHA512
SHA-512 message digest.

GCRY MD SHA1,GCRY MD FLAG HMAC
HMAC using a SHA-1 message digest.

GCRY MD SHA224,GCRY MD FLAG HMAC
HMAC using a SHA-224 message digest.

GCRY MD SHA256,GCRY MD FLAG HMAC
HMAC using a SHA-256 message digest.

GCRY MD SHA384,GCRY MD FLAG HMAC
HMAC using a SHA-384 message digest.

GCRY MD SHA512,GCRY MD FLAG HMAC
HMAC using a SHA-512 message digest.

GCRY PK RSA
RSA encryption and signing.

92 The Libgcrypt Reference Manual

GCRY PK DSA
DSA signing.

Note that the CRC algorithms are not considered cryptographic algorithms and thus
are in addition available.

• RSA key generation refuses to create a key with a keysize of less than 1024 bits.

• DSA key generation refuses to create a key with a keysize other than 1024 bits.

• The transient-key flag for RSA and DSA key generation is ignored.

• Support for the VIA Padlock engine is disabled.

• FIPS mode may only be used on systems with a /dev/random device. Switching into
FIPS mode on other systems will fail at runtime.

• Saving and loading a random seed file is ignored.

• An X9.31 style random number generator is used in place of the large-pool-CSPRNG
generator.

• The command GCRYCTL_ENABLE_QUICK_RANDOM is ignored.

• The Alternative Public Key Interface (gcry_ac_xxx) is not supported and all API calls
return an error.

• Registration of external modules is not supported.

• Message digest debugging is disabled.

• All debug output related to cryptographic data is suppressed.

• On-the-fly self-tests are not performed, instead self-tests are run before entering oper-
ational state.

• The function gcry_set_allocation_handler may not be used. If it is used Libgcrypt
disables FIPS mode unless Enforced FIPS mode is enabled, in which case Libgcrypt
will enter the error state.

• The digest algorithm MD5 may not be used. If it is used Libgcrypt disables FIPS
mode unless Enforced FIPS mode is enabled, in which case Libgcrypt will enter the
error state.

• In Enforced FIPS mode the command GCRYCTL_DISABLE_SECMEM is ignored. In stan-
dard FIPS mode it disables FIPS mode.

• A handler set by gcry_set_outofcore_handler is ignored.

• A handler set by gcry_set_fatalerror_handler is ignored.

Note that when we speak about disabling FIPS mode, it merely means that the function
gcry_fips_mode_active returns false; it does not mean that any non FIPS algorithms are
allowed.

B.2 FIPS Finite State Machine

The FIPS mode of libgcrypt implements a finite state machine (FSM) using 8 states (see
Table B.1) and checks at runtime that only valid transitions (see Table B.2) may happen.

Appendix B: Description of the FIPS Mode 93

1

2

3

6

7

8

10

11

12

13

14

15 5

16

4

9

Operational

Init

Self−Test Error

Fatal−Error

ShutdownPower−On

Power−Off

17

19

18

20

Figure B.1: FIPS mode state diagram

94 The Libgcrypt Reference Manual

States used by the FIPS FSM:

Power-Off Libgcrypt is not runtime linked to another application. This usually means
that the library is not loaded into main memory. This state is documentation
only.

Power-On Libgcrypt is loaded into memory and API calls may be made. Compiler in-
troducted constructor functions may be run. Note that Libgcrypt does not
implement any arbitrary constructor functions to be called by the operating
system

Init The Libgcrypt initialization functions are performed and the library has not
yet run any self-test.

Self-Test Libgcrypt is performing self-tests.

Operational
Libgcrypt is in the operational state and all interfaces may be used.

Error Libgrypt is in the error state. When calling any FIPS relevant interfaces they
either return an error (GPG_ERR_NOT_OPERATIONAL) or put Libgcrypt into the
Fatal-Error state and won’t return.

Fatal-Error
Libgcrypt is in a non-recoverable error state and will automatically transit into
the Shutdown state.

Shutdown Libgcrypt is about to be terminated and removed from the memory. The ap-
plication may at this point still runing cleanup handlers.

Table B.1: FIPS mode states

Appendix B: Description of the FIPS Mode 95

The valid state transitions (see Figure B.1) are:

1 Power-Off to Power-On is implicitly done by the OS loading Libgcrypt as a
shared library and having it linked to an application.

2 Power-On to Init is triggered by the application calling the Libgcrypt intializa-
tion function gcry_check_version.

3 Init to Self-Test is either triggred by a dedicated API call or implicit by invoking
a libgrypt service conrolled by the FSM.

4 Self-Test to Operational is triggered after all self-tests passed successfully.

5 Operational to Shutdown is an artifical state without any direct action in
Libgcrypt. When reaching the Shutdown state the library is deinitialized and
can’t return to any other state again.

6 Shutdown to Power-off is the process of removing Libgcrypt from the computer’s
memory. For obvious reasons the Power-Off state can’t be represented within
Libgcrypt and thus this transition is for documentation only.

7 Operational to Error is triggered if Libgcrypt detected an application error
which can’t be returned to the caller but still allows Libgcrypt to properly run.
In the Error state all FIPS relevant interfaces return an error code.

8 Error to Shutdown is similar to the Operational to Shutdown transition (5).

9 Error to Fatal-Error is triggred if Libgrypt detects an fatal error while already
being in Error state.

10 Fatal-Error to Shutdown is automatically entered by Libgcrypt after having
reported the error.

11 Power-On to Shutdown is an artifical state to document that Libgcrypt has not
ye been initializaed but the process is about to terminate.

12 Power-On to Fatal-Error will be triggerd if certain Libgcrypt functions are used
without having reached the Init state.

13 Self-Test to Fatal-Error is triggred by severe errors in Libgcrypt while running
self-tests.

14 Self-Test to Error is triggred by a failed self-test.

15 Operational to Fatal-Error is triggered if Libcrypt encountered a
non-recoverable error.

16 Operational to Self-Test is triggred if the application requested to run the self-
tests again.

17 Error to Self-Test is triggered if the application has requested to run self-tests
to get to get back into operational state after an error.

18 Init to Error is triggered by errors in the initialization code.

19 Init to Fatal-Error is triggered by non-recoverable errors in the initialization
code.

20 Error to Error is triggered by errors while already in the Error state.

Table B.2: FIPS mode state transitions

96 The Libgcrypt Reference Manual

B.3 FIPS Miscellaneous Information

Libgcrypt does not do any key management on itself; the application needs to care about it.
Keys which are passed to Libgcrypt should be allocated in secure memory as available with
the functions gcry_malloc_secure and gcry_calloc_secure. By calling gcry_free on
this memory, the memory and thus the keys are overwritten with zero bytes before releasing
the memory.

For use with the random number generator, Libgcrypt generates 3 internal keys which
are stored in the encryption contexts used by the RNG. These keys are stored in secure
memory for the lifetime of the process. Application are required to use GCRYCTL_TERM_
SECMEM before process termination. This will zero out the entire secure memory and thus
also the encryption contexts with these keys.

GNU Lesser General Public License 97

GNU Lesser General Public License

Version 2.1, February 1999
Copyright c© 1991, 1999 Free Software Foundation, Inc.
59 Temple Place – Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence the
version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated
software—typically libraries—of the Free Software Foundation and other authors who decide
to use it. You can use it too, but we suggest you first think carefully about whether this
license or the ordinary General Public License is the better strategy to use in any particular
case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our
General Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish); that you receive source code
or can get it if you want it; that you can change the software and use pieces of it in new
free programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you
these rights or to ask you to surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them with the library after
making changes to the library and recompiling it. And you must show them these terms so
they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we
offer you this license, which gives you legal permission to copy, distribute and/or modify
the library.

To protect each distributor, we want to make it very clear that there is no warranty for
the free library. Also, if the library is modified by someone else and passed on, the recipients
should know that what they have is not the original version, so that the original author’s
reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program.
We wish to make sure that a company cannot effectively restrict the users of a free program

98 The Libgcrypt Reference Manual

by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent
license obtained for a version of the library must be consistent with the full freedom of use
specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License. This license, the GNU Lesser General Public License, applies to certain
designated libraries, and is quite different from the ordinary General Public License. We
use this license for certain libraries in order to permit linking those libraries into non-free
programs.

When a program is linked with a library, whether statically or using a shared library,
the combination of the two is legally speaking a combined work, a derivative of the original
library. The ordinary General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General Public License permits
more lax criteria for linking other code with the library.

We call this license the Lesser General Public License because it does Less to protect the
user’s freedom than the ordinary General Public License. It also provides other free software
developers Less of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many libraries. However, the
Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest
possible use of a certain library, so that it becomes a de-facto standard. To achieve this,
non-free programs must be allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this case, there is little to
gain by limiting the free library to free software only, so we use the Lesser General Public
License.

In other cases, permission to use a particular library in non-free programs enables a
greater number of people to use a large body of free software. For example, permission to
use the GNU C Library in non-free programs enables many more people to use the whole
GNU operating system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it
does ensure that the user of a program that is linked with the Library has the freedom and
the wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a “work based on the library” and a “work that
uses the library”. The former contains code derived from the library, whereas the latter
must be combined with the library in order to run.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains
a notice placed by the copyright holder or other authorized party saying it may be
distributed under the terms of this Lesser General Public License (also called “this
License”). Each licensee is addressed as “you”.
A “library” means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

GNU Lesser General Public License 99

The “Library”, below, refers to any such software library or work which has been
distributed under these terms. A “work based on the Library” means either the Library
or any derivative work under copyright law: that is to say, a work containing the
Library or a portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term “modification”.)
“Source code” for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is
not restricted, and output from such a program is covered only if its contents constitute
a work based on the Library (independent of the use of the Library in a tool for writing
it). Whether that is true depends on what the Library does and what the program
that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code
as you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence of any warranty; and
distribute a copy of this License along with the Library.
You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:
a. The modified work must itself be a software library.
b. You must cause the files modified to carry prominent notices stating that you

changed the files and the date of any change.
c. You must cause the whole of the work to be licensed at no charge to all third

parties under the terms of this License.
d. If a facility in the modified Library refers to a function or a table of data to

be supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.
(For example, a function in a library to compute square roots has a purpose that
is entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must
still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Library, and can be reasonably considered indepen-
dent and separate works in themselves, then this License, and its terms, do not apply

100 The Libgcrypt Reference Manual

to those sections when you distribute them as separate works. But when you distribute
the same sections as part of a whole which is a work based on the Library, the distri-
bution of the whole must be on the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each and every part regardless of who
wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public
License, version 2, instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify that version
instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.

This option is useful when you wish to copy part of the code of the Library into a
program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled
to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed
to work with the Library by being compiled or linked with it, is called a “work that
uses the Library”. Such a work, in isolation, is not a derivative work of the Library,
and therefore falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather
than a “work that uses the library”. The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of
the Library, the object code for the work may be a derivative work of the Library even
though the source code is not. Whether this is true is especially significant if the work
can be linked without the Library, or if the work is itself a library. The threshold for
this to be true is not precisely defined by law.

GNU Lesser General Public License 101

If such an object file uses only numerical parameters, data structure layouts and ac-
cessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still
fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also
fall under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a “work that
uses the Library” with the Library to produce a work containing portions of the Li-
brary, and distribute that work under terms of your choice, provided that the terms
permit modification of the work for the customer’s own use and reverse engineering for
debugging such modifications.
You must give prominent notice with each copy of the work that the Library is used
in it and that the Library and its use are covered by this License. You must supply
a copy of this License. If the work during execution displays copyright notices, you
must include the copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one of these things:
a. Accompany the work with the complete corresponding machine-readable source

code for the Library including whatever changes were used in the work (which must
be distributed under Sections 1 and 2 above); and, if the work is an executable
linked with the Library, with the complete machine-readable “work that uses the
Library”, as object code and/or source code, so that the user can modify the
Library and then relink to produce a modified executable containing the modified
Library. (It is understood that the user who changes the contents of definitions
files in the Library will not necessarily be able to recompile the application to use
the modified definitions.)

b. Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (1) uses at run time a copy of the library already present
on the user’s computer system, rather than copying library functions into the
executable, and (2) will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is interface-compatible with
the version that the work was made with.

c. Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d. If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

e. Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include
any data and utility programs needed for reproducing the executable from it. However,
as a special exception, the materials to be distributed need not include anything that
is normally distributed (in either source or binary form) with the major components

102 The Libgcrypt Reference Manual

(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other pro-
prietary libraries that do not normally accompany the operating system. Such a con-
tradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in
a single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a. Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed
under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined
form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except
as expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with
or modify the Library subject to these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Library.

GNU Lesser General Public License 103

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Library under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribu-
tion conditions are incompatible with these, write to the author to ask for permission.
For software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free soft-
ware and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH
YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

104 The Libgcrypt Reference Manual

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU Lesser General Public License 105

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public,
we recommend making it free software that everyone can redistribute and change. You can
do so by permitting redistribution under these terms (or, alternatively, under the terms of
the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the “copyright” line and a pointer to where the full notice
is found.

one line to give the library’s name and an idea of what it does.

Copyright (C) year name of author

This library is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 2.1 of the License, or (at

your option) any later version.

This library is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307,

USA.

Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your school, if any,

to sign a “copyright disclaimer” for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library

‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

signature of Ty Coon, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

106 The Libgcrypt Reference Manual

GNU General Public License 107

GNU General Public License

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place – Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

108 The Libgcrypt Reference Manual

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

1. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices stating that you

changed the files and the date of any change.
b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

GNU General Public License 109

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

6. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

110 The Libgcrypt Reference Manual

7. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

11. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software

GNU General Public License 111

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

112 The Libgcrypt Reference Manual

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.

Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License along

with this program; if not, write to the Free Software Foundation, Inc.,

59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type ‘show w’. This is free software, and you are welcome

to redistribute it under certain conditions; type ‘show c’

for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright

interest in the program ‘Gnomovision’

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

List of Figures and Tables 113

List of Figures and Tables

Figure 13.1: Libgcrypt subsystems . 77
Figure B.1: FIPS mode state diagram . 93
Table B.1: FIPS mode states . 94
Table B.2: FIPS mode state transitions . 95

114 The Libgcrypt Reference Manual

Concept Index 115

Concept Index

3
3DES . 23

A
Advanced Encryption Standard 23
AES . 23
Arcfour . 24

B
Blowfish . 23

C
Camellia . 24
CAST5 . 23
CBC, Cipher Block Chaining mode 26
CBC-MAC . 27
CFB, Cipher Feedback mode 26
cipher text stealing . 27
CRC32 . 53
CTR, Counter mode . 26

D
DES . 24
DES-EDE . 23
Digital Encryption Standard 23

E
ECB, Electronic Codebook mode 26
Enforced FIPS mode . 8
error codes . 13
error codes, list of . 15, 16
error codes, printing of . 18
error sources . 13
error sources, printing of . 18
error strings . 18
error values . 13
error values, printing of . 18

F
FIPS 140 . 7
FIPS 186 . 43, 78
FIPS mode . 7

G
GPL, GNU General Public License 107

H
HAVAL . 53
HMAC . 56

I
IDEA . 23

L
LGPL, GNU Lesser General Public License 97

M
MD2, MD4, MD5 . 53

O
OFB, Output Feedback mode 26

R
RC2 . 24
RC4 . 24
rfc-2268 . 24
Rijndael . 23
RIPE-MD-160 . 53

S
Seed (cipher) . 24
Serpent . 24
SHA-1 . 53
SHA-224, SHA-256, SHA-384, SHA-512 53
sync mode (OpenPGP) . 27

T
TIGER . 53
Triple-DES . 23
Twofish . 23

W
Whirlpool . 53

X
X9.31 . 43, 78

116 The Libgcrypt Reference Manual

Function and Data Index 117

Function and Data Index

A
AM_PATH_LIBGCRYPT . 4

G
gcry_ac_close . 47
gcry_ac_data_clear . 45
gcry_ac_data_copy . 45
gcry_ac_data_decode . 51
gcry_ac_data_decrypt . 50
gcry_ac_data_decrypt_scheme 51
gcry_ac_data_destroy . 45
gcry_ac_data_encode . 50
gcry_ac_data_encrypt . 49
gcry_ac_data_encrypt_scheme 51
gcry_ac_data_from_sexp . 46
gcry_ac_data_get_index . 45
gcry_ac_data_get_name . 45
gcry_ac_data_length . 45
gcry_ac_data_new . 45
gcry_ac_data_set . 45
gcry_ac_data_sign . 50
gcry_ac_data_sign_scheme 51
gcry_ac_data_t . 44
gcry_ac_data_to_sexp . 45
gcry_ac_data_verify . 50
gcry_ac_data_verify_scheme 51
gcry_ac_id_t . 44
gcry_ac_id_to_name . 52
gcry_ac_io_init . 46
gcry_ac_io_init_va . 46
gcry_ac_io_t . 46
gcry_ac_key_data_get . 49
gcry_ac_key_destroy . 49
gcry_ac_key_get_grip . 49
gcry_ac_key_get_nbits . 49
gcry_ac_key_init . 48
gcry_ac_key_pair_destroy 49
gcry_ac_key_pair_extract 49
gcry_ac_key_pair_generate 48
gcry_ac_key_pair_t . 47
gcry_ac_key_t . 47
gcry_ac_key_test . 49
gcry_ac_key_type_t . 47
gcry_ac_name_to_id . 52
gcry_ac_open . 47
gcry_calloc . 75
gcry_calloc_secure . 75
gcry_check_version . 4
gcry_cipher_algo_info . 29
gcry_cipher_algo_name . 30
gcry_cipher_close . 27
gcry_cipher_ctl . 29
gcry_cipher_decrypt . 28

gcry_cipher_decrypt_t . 25
gcry_cipher_encrypt . 28
gcry_cipher_encrypt_t . 25
gcry_cipher_info . 29
gcry_cipher_list . 26
gcry_cipher_map_name . 30
gcry_cipher_mode_from_oid 30
gcry_cipher_oid_spec_t . 25
gcry_cipher_open . 27
gcry_cipher_register . 26
gcry_cipher_reset . 28
gcry_cipher_setctr . 28
gcry_cipher_setiv . 28
gcry_cipher_setkey . 28
gcry_cipher_setkey_t . 25
gcry_cipher_spec_t . 24
gcry_cipher_stdecrypt_t . 26
gcry_cipher_stencrypt_t . 25
gcry_cipher_sync . 29
gcry_cipher_unregister . 26
gcry_control . 9
gcry_create_nonce . 61
gcry_err_code . 14
gcry_err_code_from_errno 15
gcry_err_code_t . 13
gcry_err_code_to_errno . 15
gcry_err_make . 14
gcry_err_make_from_errno 15
gcry_err_source . 14
gcry_err_source_t . 14
gcry_error . 14
gcry_error_from_errno . 15
gcry_error_t . 14
gcry_fips_mode_active . 12
gcry_free . 75
gcry_handler_alloc_t . 20
gcry_handler_error_t . 21
gcry_handler_free_t . 20
gcry_handler_log_t . 21
gcry_handler_no_mem_t . 20
gcry_handler_progress_t . 19
gcry_handler_realloc_t . 20
gcry_handler_secure_check_t 20
gcry_malloc . 75
gcry_malloc_secure . 75
gcry_md_algo_name . 58
gcry_md_close . 57
gcry_md_copy . 57
gcry_md_debug . 59
gcry_md_enable . 56
gcry_md_final . 57
gcry_md_final_t . 55
gcry_md_get_algo . 59
gcry_md_get_algo_dlen . 59
gcry_md_get_asnoid . 58

118 The Libgcrypt Reference Manual

gcry_md_hash_buffer . 58
gcry_md_init_t . 55
gcry_md_is_enabled . 59
gcry_md_is_secure . 59
gcry_md_list . 56
gcry_md_map_name . 58
gcry_md_oid_spec_t . 55
gcry_md_open . 56
gcry_md_putc . 57
gcry_md_read . 58
gcry_md_read_t . 55
gcry_md_register . 55
gcry_md_reset . 57
gcry_md_setkey . 56
gcry_md_spec_t . 54
gcry_md_start_debug . 59
gcry_md_stop_debug . 59
gcry_md_test_algo . 59
gcry_md_unregister . 55
gcry_md_write . 57
gcry_md_write_t . 55
gcry_module_t . 13
gcry_mpi_add . 69
gcry_mpi_add_ui . 69
gcry_mpi_addm . 69
gcry_mpi_aprint . 68
gcry_mpi_clear_bit . 70
gcry_mpi_clear_flag . 71
gcry_mpi_clear_highbit . 70
gcry_mpi_cmp . 70
gcry_mpi_cmp_ui . 70
gcry_mpi_copy . 67
gcry_mpi_div . 69
gcry_mpi_dump . 69
gcry_mpi_gcd . 70
gcry_mpi_get_flag . 71
gcry_mpi_get_nbits . 70
gcry_mpi_get_opaque . 71
gcry_mpi_invm . 70
gcry_mpi_lshift . 70
gcry_mpi_mod . 69
gcry_mpi_mul . 69
gcry_mpi_mul_2exp . 69
gcry_mpi_mul_ui . 69
gcry_mpi_mulm . 69
gcry_mpi_new . 67
gcry_mpi_powm . 70
gcry_mpi_print . 68
gcry_mpi_randomize . 71
gcry_mpi_release . 67
gcry_mpi_rshift . 70
gcry_mpi_scan . 68
gcry_mpi_set . 67
gcry_mpi_set_bit . 70
gcry_mpi_set_flag . 71
gcry_mpi_set_highbit . 70
gcry_mpi_set_opaque . 71
gcry_mpi_set_ui . 67

gcry_mpi_snew . 67
gcry_mpi_sub . 69
gcry_mpi_sub_ui . 69
gcry_mpi_subm . 69
gcry_mpi_swap . 67
gcry_mpi_t . 67
gcry_mpi_test_bit . 70
gcry_pk_algo_info . 39
gcry_pk_algo_name . 39
gcry_pk_check_secret_key_t 35
gcry_pk_ctl . 40
gcry_pk_decrypt . 37
gcry_pk_decrypt_t . 35
gcry_pk_encrypt . 36
gcry_pk_encrypt_t . 35
gcry_pk_generate_t . 35
gcry_pk_genkey . 41
gcry_pk_get_keygrip . 39
gcry_pk_get_nbits . 39
gcry_pk_get_nbits_t . 35
gcry_pk_list . 36
gcry_pk_map_name . 39
gcry_pk_register . 36
gcry_pk_sign . 38
gcry_pk_sign_t . 35
gcry_pk_spec_t . 34
gcry_pk_test_algo . 39
gcry_pk_testkey . 39
gcry_pk_unregister . 36
gcry_pk_verify . 39
gcry_pk_verify_t . 35
gcry_prime_check . 73
gcry_prime_generate . 73
gcry_prime_group_generator 73
gcry_prime_release_factors 73
gcry_random_bytes . 61
gcry_random_bytes_secure 61
gcry_random_level_t . 61
gcry_randomize . 61
gcry_realloc . 75
gcry_set_allocation_handler 20
gcry_set_fatalerror_handler 21
gcry_set_log_handler . 21
gcry_set_outofcore_handler 20
gcry_set_progress_handler 19
gcry_sexp_build . 63
gcry_sexp_canon_len . 65
gcry_sexp_car . 65
gcry_sexp_cdr . 65
gcry_sexp_create . 63
gcry_sexp_dump . 65
gcry_sexp_find_token . 65
gcry_sexp_length . 65
gcry_sexp_new . 63
gcry_sexp_nth . 65
gcry_sexp_nth_data . 65
gcry_sexp_nth_mpi . 66
gcry_sexp_nth_string . 66

Function and Data Index 119

gcry_sexp_release . 64
gcry_sexp_sprint . 64
gcry_sexp_sscan . 63

gcry_sexp_t . 63
gcry_strerror . 18
gcry_strsource . 18

120 The Libgcrypt Reference Manual

	Introduction
	Getting Started
	Features
	Overview

	Preparation
	Header
	Building sources
	Building sources using Automake
	Initializing the library
	Multi-Threading
	How to enable the FIPS mode

	Generalities
	Controlling the library
	Modules
	Error Handling
	Error Values
	Error Sources
	Error Codes
	Error Strings

	Handler Functions
	Progress handler
	Allocation handler
	Error handler
	Logging handler

	Symmetric cryptography
	Available ciphers
	Cipher modules
	Available cipher modes
	Working with cipher handles
	General cipher functions

	Public Key cryptography
	Available algorithms
	Used S-expressions
	RSA key parameters
	DSA key parameters
	ECC key parameters

	Public key modules
	Cryptographic Functions
	General public-key related Functions
	Alternative Public Key Interface
	Available asymmetric algorithms
	Working with sets of data
	Working with IO objects
	Working with handles
	Working with keys
	Using cryptographic functions
	Handle-independent functions

	Hashing
	Available hash algorithms
	Hash algorithm modules
	Working with hash algorithms

	Random Numbers
	Quality of random numbers
	Retrieving random numbers

	S-expressions
	Data types for S-expressions
	Working with S-expressions

	MPI library
	Data types
	Basic functions
	MPI formats
	Calculations
	Comparisons
	Bit manipulations
	Miscellaneous

	Prime numbers
	Generation
	Checking

	Utilities
	Memory allocation

	Architecture
	Public-Key Architecture
	Symmetric Encryption Subsystem Architecture
	Hashing and MACing Subsystem Architecture
	Multi-Precision-Integer Subsystem Architecture
	Prime-Number-Generator Subsystem Architecture
	Random-Number Subsystem Architecture
	Description of the CSPRNG
	Description of the FIPS X9.31 PRNG

	Description of the Self-Tests
	Power-Up Tests
	Symmetric Cipher Algorithm Power-Up Tests
	Hash Algorithm Power-Up Tests
	MAC Algorithm Power-Up Tests
	Random Number Power-Up Test
	Public Key Algorithm Power-Up Tests
	Integrity Power-Up Tests
	Critical Functions Power-Up Tests

	Conditional Tests
	Key-Pair Generation Tests
	Software Load Tests
	Manual Key Entry Tests
	Continuous RNG Tests

	Application Requested Tests
	Symmetric Cipher Algorithm Tests
	Hash Algorithm Tests
	MAC Algorithm Tests

	Description of the FIPS Mode
	Restrictions in FIPS Mode
	FIPS Finite State Machine
	FIPS Miscellaneous Information

	GNU Lesser General Public License
	GNU General Public License
	List of Figures and Tables
	Concept Index
	Function and Data Index

