CS202 – Advanced Operating Systems

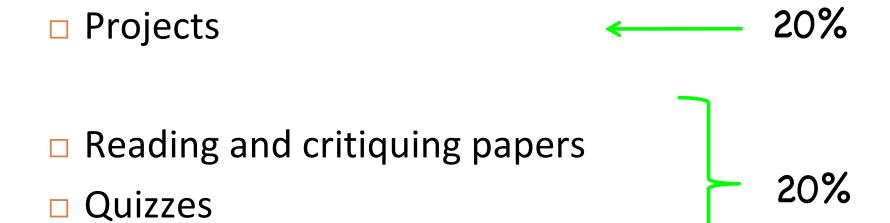
Introduction
January 6, 2025

What is this course about?

- How has the role of the operating system evolved over time?
 - How does the past inform the present?
- What are the principles that underlie Operating Systems?
- What are current and future trends in OS?
- Make it real: projects to get some experience with
 OS development and research
- □ Get you ready to do Systems Research!

A little bit about me

- Have worked on OS projects
 - L4 microkernel research
 - Security liaison to the IBM Linux Technology Center
 - Linux Security Modules (LSM) and SELinux
 - Linux Integrity Measurement Architecture (IMA)
 - In Academia mostly security focused
 - Access control, File systems security, Driver security, TEEs, Kernel integrity
- But, I don't think of myself as an OS person
 - My favorite two answers are
 - I don't know
 - What do YOU think?
 - I am looking forward to learning with you


Class format

- For every topic:
 - Some review (undergrad OS) and research
 - Discuss research papers
- Research papers:
 - Review required for some papers (7 papers during the quarter)
 - Additional papers discussed in class
 - You are responsible for required papers and material discussed in class
 - Discuss review format next time

Reading Research Papers

- Guidelines for reading papers
 - Make sure to identify authors' goals and assumptions. Not always directly stated.
 - Look for high-level takeaways.
 - Follow a multi-pass reading strategy
 - Pass1: Get overview. Pass2: Read details and make notes.
 Pass3: Re-read details to evaluate.
 - Think how techniques used are applicable today. Identify extensions.
- Specifics on review format next time

Course Logistics

Projects

- Projects (3)
 - Programming on xv6
 - Or alternative of a research project for P3
- Teams of two
 - Same team throughout the quarter
- Often not directly connected to the research topics we discuss
 - Primary goal is to improve systems-building skills

Quizzes

- Will be four quizzes during the quarter
 - Mainly to test review material
 - 3-4 questions per quiz
- Goal is to achieve 10pts for the quarter to gain full credit for the 10% quiz grade.
 - □ Thus, 100% not necessary to get 100% of credit
 - Extra credit above that

Exams

- □ One take-home midterm 2/12 to 2/14
 - Review questions
 - Open-ended questions
 - □ About 50/50
- Final exam is in-class and cumulative
 - Again, will have review questions and research questions

Course Material

- Will provide a review of undergraduate material (probably not enough)
 - For more background:
 - Three Easy Pieces: http://pages.cs.wisc.edu/~remzi/OSTEP/
 - Its free!
 - Its excellent!

Significant material from research papers

Prerequisites

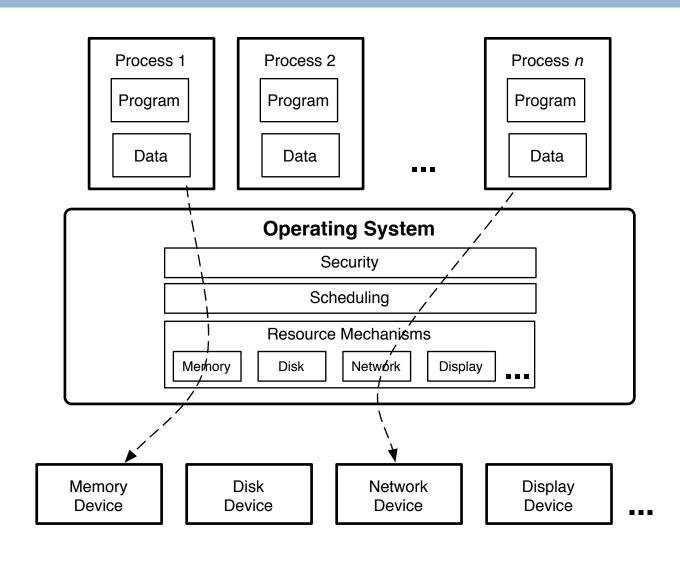
Will recap basics of OS, but it will be quick

 To do well, you must acquire undergrad OS or equivalent preparation

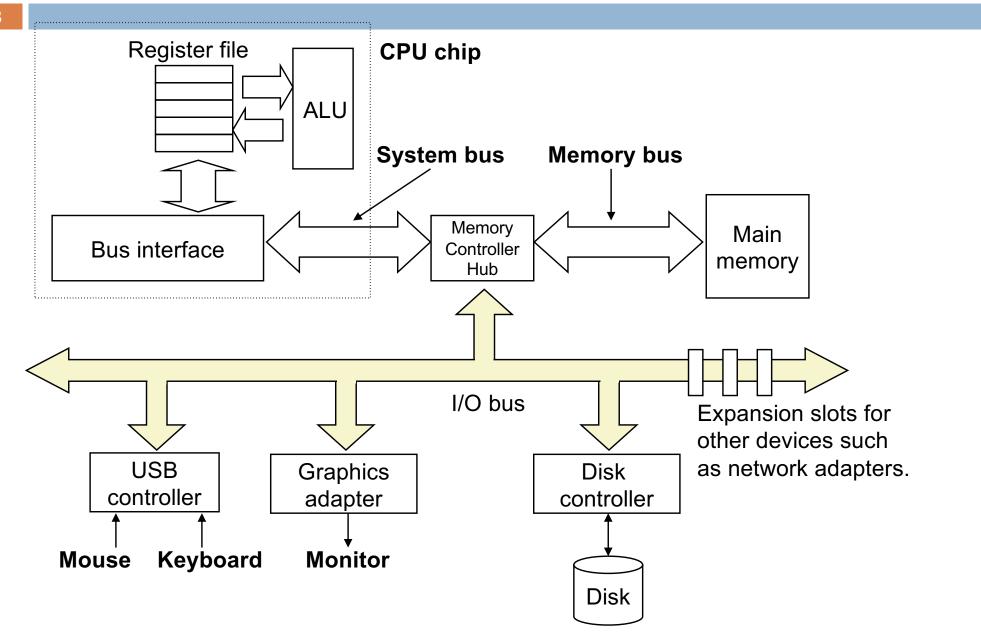
 Architecture, security, distributed systems courses are also a plus.

Resources

- Syllabus and Course Schedule will be posted incrementally on course website
 - Schedule will evolve during the quarter check often


http://www.cs.ucr.edu/~trentj/cs202-w25/

- Canvas
 - I will make announcements
 - Prefer you email me at <u>trentj@ucr.edu</u>
 - Nurlan is the TA contact at nurlan.nazaraliyev@email.ucr.edu
- Slack channel


OS Is Cool!

- May be hard to believe, but it is true
- Covers all facets of computer science
 - Architecture, software, algorithms
 - Something for everyone!
- An extremely valuable skill set
 - If you can do systems programming well, you can get a job anywhere
- At the core of computer science

Situation

OS Abstracts Hardware

Getting more technical

- What is an OS?
 - A piece of software that virtualizes hardware and arbitrates it
- A manager in a shop
 - Directs resources
 - Controls CPUs, memory, devices...
 - Enforces working policies
 - Fairness, resource limits, security, ...
 - Simplifies complex tasks
 - Abstracts hardware; offers system calls

Abstraction

- Programmers do not want to deal with hardware directly
 - Lots of complex hardware
 - Multiple hardware devices do the same thing
 - Network devices, storage devices, memory, etc.
- The operating system provides abstractions of these hardware resources that you work with
 - Processes, files, sockets, etc.
 - Tries to hide the complexity from programmers
 - E.g., virtual memory

Algorithms and Policy

- Need to provide ways for multiple processes / threads to share hardware resources effectively
 - Efficiently, security, fairly, ...
- But, such problems are often computationally complex
 - NP-complete, such as scheduling
 - So, need heuristic algorithms implementing policies
- Regarding policies
 - Separate policy from algorithms
 - Select good policies continually evolving

Three main themes

- Virtualization
 - Create models to simplify use of hardware resources
 - To allow them to be shared
 - Scheduling and security
- Concurrency
 - Support many activities to work with limited resources at the same time
- Persistence
 - I/O and File systems

Some topics we will cover

- Operating Systems models and how they evolved
 - Monolithic kernels, micro-kernels, ...
 - extensibility, scalability, security, ...
 - How do these models influence current OS organizations
 - Modularity, virtualization, containers, ...
- Concurrency:
 - Synchronization
 - Multicore OS
- File systems:
 - Sequential, networked, distributed, internet scale
- How do they evolve to new environments...
 - Multicore, Distributed systems, ...

Catering to Applications

- Provide resource needs of an application
 - CPU, memory, device access
- When applications launch, the OS loads the program from file into memory
 - Allocates memory for code, data, heap and stack
 - Can the application ask for more resources?
 - Yes, the OS receives additional requests and provides resources as needed
- OS also reacts to events in the system
- Gets out of the way as fast as possible

Processor virtualization

- Abstractions
 - Program: static entity
 - Process: program in execution
 - Unit of resource allocation and one thread of execution
 - Threads
 - More than one thread of execution in one context
- Schedule and secure their execution

Memory management

- Abstractions:
 - Address space for each processor
- OS implements these abstractions using the available hardware support
 - Paging, segmentation, TLBs, caches...
- What happens in emerging systems?
 - Disaggregation; RDMA; Persistent memory...

Storage/file system

- Abstraction: Files and directories
 - Implemented in a variety of different ways
- Traditional file system: mapping of files to storage
 - Disk vs. flash vs. PCMs
 - Network file system
 - Distributed FS
 - Internet scale FS

Conclusions

- Today was a quick overview of the role of an OS
- Goal is to get you ready to discuss OS organization and evolution, our first topic
- Quick overview of the history of OSes next time
 - Skim the Thompson article
 - We will discuss what is expected of paper reviews/critiques next time in the context of this
- Then processes and memory
 - Please read on your own if you need to refresh
 - From the Three Easy Steps textbook

Questions

