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Type Errors
• Errors that permit access to memory according to 

a multiple, incompatible formats 

‣ These are called type errors

‣ Access outside the expected “type”

• Most of these errors are permitted by simple 
programming flaws

‣ Of the sort that you are not taught to avoid

‣ Let’s see how such errors can be avoided 

• Some of the changes are rather simple
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Temporal Errors
• A few of the exploits that we have discussed are 

the result of temporal errors
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Type Confusion
• Many effective attacks exploit data of another type

struct A {  

struct C *c;
char buffer[40];

};

struct B {

int B1;

int B2;

char info[32];

};
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Type Confusion
• Adversary can abuse ambiguity to control writes

struct A {  x = (struct A *)malloc(sizeof(struct A));

struct C *c; y = (struct B *)x;
char buffer[40]; y->B1 = adversary-controlled-value;

}; x->c->field = adversary-controlled-value-also;

struct B {

int B1;

int B2;

char info[32];

};
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Type Confusion
• Adversary can abuse ambiguity to control writes

struct A {  x = (struct A *)malloc(sizeof(struct A));

struct C *c; y = (struct B *)x;
char buffer[40]; y->B1 = adversary-controlled-value;

}; x->c->field = adversary-controlled-value-also;

struct B {

int B1;

int B2;

char info[32];

};

• Arbitrary Write Primitive!
‣ Adversary controls the value to write and the location of the write
‣ Allow adversary to write an arbitrary value to an arbitrary location
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What Is Going Wrong?

• We have objects (memory regions) and references 
(pointers) 
‣ What goes wrong in type errors?
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How Do Type Casts Work?
• We have objects (memory regions) and references

(pointers) 
‣ What goes wrong in temporal errors?

• A pointer may reference a memory region using two 
different types (i.e., memory formats)

• Normal lifecycle between a pointer and object
‣ t1 *p, t2 *q;                          // declare pointers

‣ p = (t1 *) malloc(sizeof(t1));  // allocate object and define p

‣ pàfield = value;                   // use pointer for t1

‣ q = (t2 *)p;                          // type cast and define q

‣ qàX = value2;                    // use pointer for t2
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How Do Type Casts Work?
• We have objects (memory regions) and references

(pointers) 
‣ What goes wrong in temporal errors?

• A pointer may reference a memory region using two 
different types (i.e., memory formats)

• Normal lifecycle between a pointer and object
‣ t1 *p, t2 *q;                          // declare pointers

‣ p = (t1 *) malloc(sizeof(t1));  // allocate object and define p

‣ pàfield = value;                   // use pointer for t1

‣ q = (t2 *)p;                          // type cast and define q

‣ qàX = value2;                    // use pointer for t2
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What Can Go Wrong?

• A pointer may reference a memory region using two 
different types (i.e., memory formats)

• Normal lifecycle between a pointer and object
‣ t1 *p, t2 *q;                          // declare pointers

‣ p = (t1 *) malloc(sizeof(t1));  // allocate object and define p

‣ pàfield = value;                   // use pointer for t1

‣ q = (t2 *)p;                          // type cast and define q

‣ qàX = value2;                    // use pointer for t2

• Semantics of ”pàfield” may be different than “qàX”
‣ Even if these reference the same memory location
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What Can Go Wrong?

• Downcasts – Cast to a larger type; causes overflow
‣ t1 *p, t2 *q;                          // declare pointers

‣ p = (t1 *) malloc(sizeof (t1)); // allocate t1 object, define p

‣ pàfield = value;                   // suppose this is an int field

‣ q = (t2 *)p;                          // downcast, t2 is a larger type

‣ qàextra= value2;                // overflow memory of object

• E.g., t2 is a child type of t1
‣ So, the size of type t2 is greater than the size of type t1

‣ “extra” field is added to the type t1 to create type t2
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What Can Go Wrong?
• Downcasts – Cast to a larger type; causes overflow
‣ t1 *p, t2 *q;                          // declare pointers

‣ p = (t1 *) malloc(sizeof (t1)); // allocate t1 object, define p

‣ pàfield = value;                   // suppose this is an int field

‣ q = (t2 *)p;                          // down cast, t2 is a larger type

‣ qàextra = value2;               // overflow memory of object

• By downcasting to the larger type t2 with the “extra” 
field, gives the adversary the ability to read/write 
beyond the memory region allocated
‣ Memory region is the “sizeof(t1)” in size 
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Exploiting Type Errors

• Type t2 is a child type (downcast) of type t1

• Allocate object of type t1 and assign “p” to reference 

Int
F3

Int
F2

Int
F1

“p”
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Exploiting Type Errors

• Type t2 is a child type (downcast) of type t1

• Assign “q” of type t2 to the memory location of “p”
‣ But, ”q” of type t2 thinks it is referencing a larger region

Int
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Exploiting Type Errors

• Type t2 is a child type (downcast) of type t1

• What will happen when the program accesses 
“qàextra”?

Int
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What Can Go Wrong?

• Type confusion – use data to craft a pointer
‣ t1 *p, t2 *q;                          // declare pointers

‣ p = (t1 *) malloc(sizeof(t1));  // allocate object and define p

‣ pàfield = value;                   // suppose “field” is an int field

‣ q = (t2 *)p;                          // type cast and define q

‣ qàXàtarget = value2;        // suppose “X” is a pointer field

• “pàfield” is a data field, so may store adversary data

• But, “qàX” is a pointer field 
‣ Should we allow adversaries to define pointer values?
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What Can Go Wrong?
• Type confusion – use an integer to craft a pointer
‣ t1 *p, t2 *q;                          // declare pointers

‣ p = (t1 *) malloc(sizeof(t1));  // allocate object and define p

‣ pàfield = value;                   // suppose “field” is an int field

‣ q = (t2 *)p;                          // type cast and define q

‣ qàXàtarget = value2;        // suppose “X” is a pointer field

• The write to “field” of type “p” gives the adversary the 
ability to choose a memory location for the write to 
“X” – if at the same offset as “field”
‣ To modify an adversary-chosen memory location

‣ Relative to the field “target”
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Exploiting Type Errors

• Type t2 is unrelated to type t1

• Allocate object of type t1 and assign “p” to reference 
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Exploiting Type Errors

• Type t2 is unrelated to type t1

• The offset of “Field” from “p” of type t1 and “X” 
from “q” of type t2 are the same
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Exploiting Type Errors
• Type t2 is unrelated to type t1

• Assign an adversary-controlled value at “pàField”
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Exploiting Type Errors
• Type t2 is unrelated to type t1

• But, program accesses “qàX” as a pointer
‣ What can an adversary do?
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Exploiting Type Errors

• Type t2 is unrelated to type t1

• But, program accesses “qàX” as a pointer
‣ Adversary chose the address stored at ”qàX”

‣ Thus, the adversary can choose the memory to access
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Exploiting Type Errors

• Project 2
‣ What object can be accessed by pointers of multiple types?

‣ Is there a flaw that allows you to create an object of one 
type …

‣ And access that object with a pointer of a different type?

‣ Can you find a target that you can modify using the 
mismatched type’s pointer?

‣ What do you want to exploit if you can modify the target?

‣ Craft the payload to cause a modification that implements 
the desired exploit
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Exploiting Type+Temporal Errors

• With temporal errors

• Can also exploit type confusion using temporal 
errors, such as use-after-free
‣ Obj B of type B is deallocated, but has a stale pointer “b”

‣ Obj D of a different type D is allocated in that free slot

‣ Then, a use-after-free flaw can use “b” of type B to access 
Obj D of a different type D

Obj
A

Obj 
B

Obj 
C
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Integer Overflows

• Yet, another issue (probably the last one) to consider
‣ NOTE: Very different from buffer overflows

• Key question
‣ What is an integer?

‣ In a computer system?
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Integer Overflows

• Yet, another issue (probably the last one) to consider
‣ NOTE: Very different from buffer overflows

• Key question
‣ What is an integer?

‣ In a computer system?

• There are several different computer representations 
for integers
‣ Size – number of bytes used to represent

‣ Signedness – range of values integers can take
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Integer Overflows

• Suppose we have an 8-bit integer type
‣ How many values can it represent?

‣ What range of values can it represent?
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Integer Overflows

• Suppose we have an 8-bit, signed integer type
‣ How many values can it represent?
• 28 = 256

‣ What range of values can it represent?
• Depends on whether it is “signed” or nott

‣ What are the range of values if “unsigned”?
• 0 to 255 

‣ What are the range of values if “signed”?
• -128 to 127
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Integer Overflows

• Can you attack this?

int x;

char *buf = ( char * )malloc( 50 );

x = adversary-controlled-value;

If ( x < 50 ) {

snprintf( buf, x, “%s”, adversary-controlled-input );

}
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Integer Overflows

• Can you attack this?
‣ Unfortunately, we can – snprintf casts to unsigned

‣ Negative value becomes a large positive value

int x;

char *buf = ( char * )malloc( 50 );

x = adversary-controlled-value;    // negative value

If ( x < 50 ) { // passes this condition

snprintf( buf, x, “%s”,        // second arg ‘x’ to snprintf is unsigned

adversary-controlled-input );  // too long input

}
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Integer Overflows

• Can you attack this?
‣ Unfortunately, we can – have to compute “size” correctly

int x;

char *buf = ( char * )malloc( 50 );

x = adversary-controlled-value;    // negative value

If ( x < 50 ) { // passes this condition

snprintf( buf, x, “%s”,        // ‘x’ becomes a large positive value - overflow

adversary-controlled-input );  // too long input

}
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Fundamental Problem?

• What is the fundamental problem that causes 
type errors?
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Fundamental Problem?
• What is the fundamental problem that causes 

type errors?
‣ Type casting – create pointer of different type

‣ Temporal errors – change type of memory region

• These enable the same memory region to be 
referenced as multiple types
‣ Enabling exploitable type errors

• Resulting exploitable flaws
‣ Misinterpret the size of the region (downcast)

‣ Data misinterpreted as a pointer (type confusion)

‣ Data values misinterpreted (integer overflow)



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Safety from Type Errors

• Type safety
‣ Memory region is only referenced by pointers of one type

‣ Corresponding to the type of the memory region 
allocation

• Memory safety (for regions of multiple types)
‣ Memory region may be referenced by pointers of more 

than one type

‣ Semantics of all references correspond to allocation and 
consistent use of the memory region

‣ Think about “question” types in the project
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Obvious Solution in C

• So, do you see an “obvious” solution to prevent 
exploitable type errors?
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Obvious Solution in C

• So, do you see an “obvious” solution to prevent 
exploitable temporal errors?

‣ No type casts?  May be hard to ensure that
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Obvious Solution in C

• So, do you see an “obvious” solution to prevent 
exploitable temporal errors?

‣ What can we do to prevent the misinterpretation of data 
even if we allow type casts?
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Safe Casts

• Only allow “upcasts” for type casts
‣ A “downcast” from a parent data type to a child data type
• Adds more fields – may allow overflow

‣ An “upcast” from a child data type to a parent data type
• Reduces fields – no overflow possible, fields are same type

Upcast Downcast
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Other Ideas

• Can you think of any other ways to prevent type 
error exploits?
‣ May be a little crazy
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Alternatives

• Hypothesis: Validate type consistency on casts
‣ At runtime – but can be expensive (>100%)

‣ Maybe type casts are not super-common in your program

‣ Prove some type casts are safe statically?

• Hypothesis: Use type-specific allocation
‣ Only helps for temporal errors 

‣ Unless do validity checks also
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Take Away
• Flexible type casting in C permits type errors

‣ So, type errors have become common, especially now 
that defenses for spatial errors have improved

• Exploiting type errors involves exploiting a 
reference to a memory region interpreted in 
multiple ways (using multiple types)

‣ Set data value, but use as a pointer

• Preventing type errors is not so easy (except 
upcasts)

‣ And, a bit more expensive than people will accept yet


