\ Systems and Internet
‘ Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

CMPSC 447
Temporal Errors

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab
Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Temporal Errors S

e Errors that permit access to memory outside of
the object lifetime

» These are called temporal errors

» Access outside the expected “time”

e Most of these errors are permitted by simple
programming flaws

» Of the sort that you are not taught to avoid

» Let’s see how such errors can be avoided

e Some of the changes are rather simple

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 2

PENNSTATE

Temporal Errors =

o A few of the exploits that we have discussed are
the result of temporal errors

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 3

S
Use After Free PENN%

e Flaw: Program frees data on the heap, but then
references that memory as if it were still valid

» E.g., pointer to Obj B (say “b”)

e Accessible: Adversary can control data written
using the freed pointer

» memcpy(b, adv-data, size);

e Target: Obtain a “‘write primitive”

Obj
C

Systems and Internet Infrastructure Security (SIIS) Laboratory

S
Use After Free PENN%

e Flaw: Program frees data on the heap, but then
references that memory as if it were still valid

» E.g., pointer to Obj B (say “b”)

e Accessible: Adversary can control data written using
the freed pointer

» memcpy(b, adv-data, size);

e Target: Obtain a “write primitive” to new object D

Obj
C

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

What Is Going Wrong?? S

e We have objects (memory regions) and references
(pointers)

» What goes wrong in temporal errors!?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

What Is Going Wrong?? S

e We have objects (memory regions) and references
(pointers)

» What goes wrong in temporal errors!?

e A pointer may reference a memory region that does
not hold a defined (assigned) object

e Normal lifecycle between a pointer and object
» char *p; I/ declare pointer
» p = (char *) malloc(size); /I define pointer to object
» len = snprintf(p, size, "%s", original_value); // use pointer

» free(p); /I deallocate object

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

What Is Going Wrong?? S

e We have objects (memory regions) and references
(pointers)

» What goes wrong in temporal errors!?

e A pointer may reference a memory region that does
not hold a defined (assigned) object

e Normal lifecycle between a pointer and object
» char *p; I/ declare pointer
» p = (char *) malloc(size); /I define pointer to object
» len = snprintf(p, size, "%s", original_value); // use pointer

» free(p); /I deallocate object

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

What Is Going Wrong?? S

e We have objects (memory regions) and references
(pointers)

» What goes wrong in temporal errors!?

e A pointer may reference a memory region that does
not hold a defined (assigned) object

e Normal lifecycle between a pointer and object
» char *p; I/ declare pointer
» p = (char *) malloc(size); /I define pointer to object
» len = snprintf(p, size, "%s", original_value); // use pointer

» free(p); // deallocate object — release memory for reuse

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

What Is Going Wrong?? S

e We have objects (memory regions) and references
(pointers)

» What goes wrong in temporal errors!?

e A pointer may reference a memory region that does
not hold a defined (assigned) object

e What does "’p” reference upon use?
» char *p; I/ declare pointer
» len = snprintf(p, size, "%s", original _value); // use pointer
» p = (char *) malloc(size); /I define pointer to object

» free(p); /I deallocate object

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

What Is Going Wrong?? S

e A pointer may reference a memory region that does
not hold a defined (assigned) object

e What does "’p” reference upon use?
» char *p; I/ declare pointer
» len = snprintf(p, size, "%s", original_value); // use pointer
» p = (char *) malloc(size); /I define pointer to object
» free(p); /I deallocate object
e Called “use before initialization” (UBI)

» Allows an adversary to use reference value defined at the
location used to declare “p” (not an assignment)

» Could be anywhere

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

What Is Going Wrong?? S

e We have objects (memory regions) and references
(pointers)

» What goes wrong in temporal errors!?

e A pointer may reference a memory region that does
not hold a defined (assigned) object

e What does "’p” reference upon use?
» char *p; I/ declare pointer
» p = (char *) malloc(size); /I define pointer to object
» free(p); // deallocate object — release memory for reuse

» len = snprintf(p, size, "%s", original value); // use pointer

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

What Is Going Wrong?? S

e A pointer may reference a memory region that does
not hold a defined (assigned) object

e What does "’p” reference upon use?
» char *p; I/ declare pointer
» p = (char *) malloc(size); /I define pointer to object
» free(p); // deallocate object — release memory for reuse
» len = snprintf(p, size, "%s", original value); // use pointer

e Called “use after free” (UAF)

» Allows an adversary to use reference to memory region
that may be allocated a different object

» Could be anywhere

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Only on the Heap? S

e Can temporal errors happen for stack objects!?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Only on the Heap? S

e Can temporal errors happen for stack objects!?
» Yes

e Use before initialization
» Many references are allocated on the stack (like example)
» As variables may be uninitialized

» Do you initialize all variables!?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Only on the Heap? S

e Can temporal errors happen for stack objects!?
» Yes
e Use after free

» Typically, exploits the deallocation of heap objects

» But, stack objects are deallocated too

e Just automatically by the runtime

» Can you describe a “use after free” flaw for a stack object!?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Exploiting Temporal Errors S

o Use before initialization

e Questions to explore
» Where is the pointer allocated in memory?
e Can the adversary control what is written to that location

» What is the pointer’s value at initialization?

e Can this reference a useful target object to attack?

Systems and Internet Infrastructure Security (SIIS) Laboratory

- S
Exploiting Temporal Errors -3

e Use before initialization

e Assume function “A” calls functions “B’”’ and “C”
» When function “B” is called, a new stack frame is created
» Using memory in the stack region

» Suppose there is a string “buffer” built from adversary
input

» Then, function ’B” returns

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Exploiting Temporal Errors =

e Use before initialization

e Assume function “A” calls functions “B’”’ and “C”
» When function “C” is called, a new stack frame is created
» Using memory in the stack region — used by function “B”

» Suppose there is a local variable pointer “ptr” declared in
function “C”

» But, "ptr” is not initialized — what is the value of “ptr™?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Exploiting Temporal Errors =

e Use before initialization

e Assume function “A’” calls functions “B” and “C”

» Suppose there is a local variable pointer “ptr” declared in
“C”

» But, "ptr” is not initialized — what is the value of “ptr™?
» The value of “ptr” is the value of the bytes of “buffer”

» Suppose “ptr” is used before initialized. Can you exploit
this! How!?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Exploiting Temporal Errors =

e Use before initialization

e Can you exploit this! How!?

» Use the debugger to determine the relative offset of
“buffer” and “ptr”

» Build filler from the start of the buffer to the start of the
pointer “ptr”

» Then, insert the address of the target object in “ptr”

» Now, you can access the target via “ptr”

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Exploiting Temporal Errors S

o Use after free

Obj
C

e Assume you have a heap as shown
» Focus on object "B”

» You have a reference to “B” — say pointer “b”

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Exploiting Temporal Errors S

o Use after free

Obj
C

e Assume you have a heap as shown
» Object "B” is deallocated
» And you still have a reference to “B” — pointer “b”

» And, pointer “b” may be have “uses” after the deallocation
of object "B”

» But, the allocator is free to reuse the memory region

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Exploiting Temporal Errors =

o Use after free

Obj
C

e Assume you have a heap as shown

» The allocator chooses to use the memory region for
object “D”

» So, a “use” of pointer “b” will access the object "D’ instead

» If object “B” and object “D” are of different types, you can
exploit the differences

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Exploiting Temporal Errors =

o Use after free

Obj
C

e How exactly do you exploit this!?

» Create and free an object — object “B” - record its location
using the debugger

» With a pointer with a use-after-free flaw — pointer “b”
» Cause program to allocate instances of the target object “D”

» Find when a “D” is in the location of the original object “B”
using the debugger

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Exploiting Temporal Errors S

o Use after free

Obj
C

e How exactly do you exploit this!?
» To get new allocation in the same spot

» Size of Obj “D” <= Obj “B” - Equal only in some cases

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Exploiting Temporal Errors S

o Use after free

Obj
C

e How exactly do you exploit this!?
» To exploit object "D”

» Should be a target field in object “D” that can be modified
or read using the stale pointer ”’b”

» Suppose “D” has a pointer field that is aligned with a data

field in the type of object “B” that can be modified with
(‘b”

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Fundamental Problem?? =

e What is the fundamental problem that causes
temporal errors?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Fundamental Problem?? =

e What is the fundamental problem that causes
temporal errors?

» We have pointers (references)

» We have memory regions (objects)

» We have assignments of pointers to memory regions

e But, the actual relationships may change

» A pointer is assigned to some value when declared that
could be a legal memory region

e Before assignment — permitting use before initialization

» Memory regions may be reused for other objects

e After assignment — permitting use after free

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Obvious Solution in C =

e So, do you see an “obvious” solution to prevent
exploitable temporal errors?

Systems and Internet Infrastructure Security (SIIS) Laboratory

Obvious Solution in C Rl

PENNSTAT

e So, do you see an “obvious” solution to prevent

exp

» S
a

oitable temporal errors!?

nhouldn’t pointers either reference their assigned and

located objects or be invalid?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Zeroing Pointers S

e Set every pointer value to zero on initialization
» Assign to zero on the stack
e char *p = NULL;

» Zero memory allocated from the heap (including its
pointers)

e obj = (char *) calloc(size, |);

e As aresult, no pointer will refer to any active
memory object before it is assigned

» Prevents use-before-initialization attacks trivially

» Downside?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Zeroing Pointers S

e Downside? Cost of doing extra assighments
» Can add up

e On the other hand, crashing the program beats an
exploit, and such a use before initialization is an error

» Deserves a trap

e How can you reduce the number of assignments
necessary to prevent any exploit of use-before-
initialization vulnerabilities?

REDUCE REUSE RECYCLE

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Zeroing Pointers S

e How can you reduce the number of assignments
necessary to prevent any exploit of use-before-
initialization vulnerabilities?

» Determine which pointers “may” be used before
initialization and initialization all of them

» Can figure the answer to questions like this out with
“static analysis”

e Will discuss a static analysis for detecting use-before-initialization
later in the class

REDUCE REUSE RECYCLE

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Obvious Solution in C =

e So, do you see an “obvious” solution to prevent
exploitable temporal errors?

» Would zeroing pointer values also work to prevent the
exploit of use-after-free vulnerabilities?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Zeroing Pointers S

e Yes! Set every pointer value to zero on deallocation
» Zero pointers on deallocation from the heap
e free(p), p =0;
» Trickier on the stack

e In theory, no stack reference should outlive its assignment

e But, hard to guarantee since deallocation is implicit

e Also, the cost of zeroing on deallocation can be
worse

» Since not done at all normally

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Other Ideas =

e Can you think of any other ways to prevent use-after-
free exploits!?

» May be a little crazy

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Alternatives 5

e Hypothesis: memory is so cheap and abundant, we
just do not need to deallocate

» Will be some cases where this is not going to work
» But, for others, why risk attack!?
e Hypothesis: garbage collection
» Too expensive for C
e Hypothesis: temporal safety like Rust’s “safe” objects
» Harder to program with lifetimes and ownerships
e Hypothesis: use type-specific allocation

» All objects and fields are aligned

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Type-Specific Pools S

e Hypothesis: use type-specific allocation
» All objects and fields are aligned
e Type-specific pools

» Allocate an object of type A from a memory region
containing only objects of type A

» Does not prevent use-after-free vulnerabilities, but limits
the exploit potential by preventing a reference of one type
from exploiting an object of another type

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Take Away =

e Manual (heap) and implicit (stack) memory
management in C permits temporal errors

» So, temporal errors have become common, especially
now that defenses for spatial errors have improved

e Exploiting temporal errors involves controlling the
relationship of a pointer and the object referenced

» Set the pointer value or the object at a location

e Preventing temporal errors is trivial conceptually

» But, a bit more expensive than people will accept yet

Systems and Internet Infrastructure Security (SIIS) Laboratory

