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Temporal Errors S

e Errors that permit access to memory outside of
the object lifetime

» These are called temporal errors

» Access outside the expected “time”

e Most of these errors are permitted by simple
programming flaws

»  Of the sort that you are not taught to avoid

» Let’s see how such errors can be avoided

e Some of the changes are rather simple
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Temporal Errors =

o A few of the exploits that we have discussed are
the result of temporal errors
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Use After Free PENN%

e Flaw: Program frees data on the heap, but then
references that memory as if it were still valid

» E.g., pointer to Obj B (say “b”)

e Accessible: Adversary can control data written
using the freed pointer

» memcpy(b, adv-data, size);

e Target: Obtain a “‘write primitive”

Obj
C

Systems and Internet Infrastructure Security (SIIS) Laboratory



S
Use After Free PENN%

e Flaw: Program frees data on the heap, but then
references that memory as if it were still valid

» E.g., pointer to Obj B (say “b”)

e Accessible: Adversary can control data written using
the freed pointer

» memcpy(b, adv-data, size);

e Target: Obtain a “write primitive” to new object D

Obj
C
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What Is Going Wrong?? S

e We have objects (memory regions) and references
(pointers)

»  What goes wrong in temporal errors!?
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What Is Going Wrong?? S

e We have objects (memory regions) and references
(pointers)

»  What goes wrong in temporal errors!?

e A pointer may reference a memory region that does
not hold a defined (assigned) object

e Normal lifecycle between a pointer and object
»  char *p; I/ declare pointer
»  p = (char *) malloc(size); /I define pointer to object
» len = snprintf(p, size, "%s", original_value); // use pointer

»  free(p); /I deallocate object
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(pointers)

»  What goes wrong in temporal errors!?
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e Normal lifecycle between a pointer and object
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PENNSTAT

What Is Going Wrong?? S

e We have objects (memory regions) and references
(pointers)

»  What goes wrong in temporal errors!?

e A pointer may reference a memory region that does
not hold a defined (assigned) object

e Normal lifecycle between a pointer and object
»  char *p; I/ declare pointer
»  p = (char *) malloc(size); /I define pointer to object
» len = snprintf(p, size, "%s", original_value); // use pointer

» free(p); // deallocate object — release memory for reuse
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PENNSTAT

What Is Going Wrong?? S

e We have objects (memory regions) and references
(pointers)

»  What goes wrong in temporal errors!?

e A pointer may reference a memory region that does
not hold a defined (assigned) object

e What does "’p” reference upon use?
»  char *p; I/ declare pointer
» len = snprintf(p, size, "%s", original _value); // use pointer
» p = (char *) malloc(size); /I define pointer to object

»  free(p); /I deallocate object
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What Is Going Wrong?? S

e A pointer may reference a memory region that does
not hold a defined (assigned) object

e What does "’p” reference upon use?
»  char *p; I/ declare pointer
» len = snprintf(p, size, "%s", original_value); // use pointer
»  p = (char *) malloc(size); /I define pointer to object
»  free(p); /I deallocate object
e Called “use before initialization” (UBI)

» Allows an adversary to use reference value defined at the
location used to declare “p” (not an assignment)

» Could be anywhere
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What Is Going Wrong?? S

e We have objects (memory regions) and references
(pointers)

»  What goes wrong in temporal errors!?

e A pointer may reference a memory region that does
not hold a defined (assigned) object

e What does "’p” reference upon use?
»  char *p; I/ declare pointer
»  p = (char *) malloc(size); /I define pointer to object
» free(p); // deallocate object — release memory for reuse

» len = snprintf(p, size, "%s", original value); // use pointer
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What Is Going Wrong?? S

e A pointer may reference a memory region that does
not hold a defined (assigned) object

e What does "’p” reference upon use?
»  char *p; I/ declare pointer
» p = (char *) malloc(size); /I define pointer to object
» free(p); // deallocate object — release memory for reuse
» len = snprintf(p, size, "%s", original value); // use pointer

e Called “use after free” (UAF)

» Allows an adversary to use reference to memory region
that may be allocated a different object

» Could be anywhere
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Only on the Heap? S

e Can temporal errors happen for stack objects!?
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Only on the Heap? S

e Can temporal errors happen for stack objects!?
» Yes

e Use before initialization
» Many references are allocated on the stack (like example)
» As variables may be uninitialized

» Do you initialize all variables!?
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Only on the Heap? S

e Can temporal errors happen for stack objects!?
» Yes
e Use after free

» Typically, exploits the deallocation of heap objects

» But, stack objects are deallocated too

e Just automatically by the runtime

» Can you describe a “use after free” flaw for a stack object!?
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Exploiting Temporal Errors S

o Use before initialization

e Questions to explore
»  Where is the pointer allocated in memory?
e Can the adversary control what is written to that location

»  What is the pointer’s value at initialization?

e Can this reference a useful target object to attack?
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Exploiting Temporal Errors -3

e Use before initialization

e Assume function “A” calls functions “B’”’ and “C”
»  When function “B” is called, a new stack frame is created
» Using memory in the stack region

» Suppose there is a string “buffer” built from adversary
input

» Then, function ’B” returns
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Exploiting Temporal Errors =

e Use before initialization

e Assume function “A” calls functions “B’”’ and “C”
»  When function “C” is called, a new stack frame is created
» Using memory in the stack region — used by function “B”

» Suppose there is a local variable pointer “ptr” declared in
function “C”

»  But, "ptr” is not initialized — what is the value of “ptr™?
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Exploiting Temporal Errors =

e Use before initialization

e Assume function “A’” calls functions “B” and “C”

» Suppose there is a local variable pointer “ptr” declared in
“C”

»  But, "ptr” is not initialized — what is the value of “ptr™?
» The value of “ptr” is the value of the bytes of “buffer”

» Suppose “ptr” is used before initialized. Can you exploit
this! How!?
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Exploiting Temporal Errors =

e Use before initialization

e Can you exploit this! How!?

» Use the debugger to determine the relative offset of
“buffer” and “ptr”

» Build filler from the start of the buffer to the start of the
pointer “ptr”

» Then, insert the address of the target object in “ptr”

» Now, you can access the target via “ptr”
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Exploiting Temporal Errors S

o Use after free

Obj
C

e Assume you have a heap as shown
» Focus on object "B”

» You have a reference to “B” — say pointer “b”
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Exploiting Temporal Errors S

o Use after free

Obj
C

e Assume you have a heap as shown
»  Object "B” is deallocated
» And you still have a reference to “B” — pointer “b”

» And, pointer “b” may be have “uses” after the deallocation
of object "B”

»  But, the allocator is free to reuse the memory region
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Exploiting Temporal Errors =

o Use after free

Obj
C

e Assume you have a heap as shown

» The allocator chooses to use the memory region for
object “D”

» So, a “use” of pointer “b” will access the object "D’ instead

» If object “B” and object “D” are of different types, you can
exploit the differences
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Exploiting Temporal Errors =

o Use after free

Obj
C

e How exactly do you exploit this!?

» Create and free an object — object “B” - record its location
using the debugger

»  With a pointer with a use-after-free flaw — pointer “b”
» Cause program to allocate instances of the target object “D”

» Find when a “D” is in the location of the original object “B”
using the debugger

Systems and Internet Infrastructure Security (SIIS) Laboratory




PENNSTAT

Exploiting Temporal Errors S

o Use after free

Obj
C

e How exactly do you exploit this!?
» To get new allocation in the same spot

» Size of Obj “D” <= Obj “B” - Equal only in some cases
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Exploiting Temporal Errors S

o Use after free

Obj
C

e How exactly do you exploit this!?
» To exploit object "D”

» Should be a target field in object “D” that can be modified
or read using the stale pointer ”’b”

» Suppose “D” has a pointer field that is aligned with a data

field in the type of object “B” that can be modified with
(‘b”
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Fundamental Problem?? =

e What is the fundamental problem that causes
temporal errors?
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Fundamental Problem?? =

e What is the fundamental problem that causes
temporal errors?

» We have pointers (references)

»  We have memory regions (objects)

» We have assignments of pointers to memory regions

e But, the actual relationships may change

» A pointer is assigned to some value when declared that
could be a legal memory region

e Before assignment — permitting use before initialization

» Memory regions may be reused for other objects

e After assignment — permitting use after free
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Obvious Solution in C =

e So, do you see an “obvious” solution to prevent
exploitable temporal errors?
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Obvious Solution in C Rl

PENNSTAT

e So, do you see an “obvious” solution to prevent

exp

» S
a

oitable temporal errors!?

nhouldn’t pointers either reference their assigned and

located objects or be invalid?
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Zeroing Pointers S

e Set every pointer value to zero on initialization
» Assign to zero on the stack
e char *p = NULL;

» Zero memory allocated from the heap (including its
pointers)

e obj = (char *) calloc( size, | );

e As aresult, no pointer will refer to any active
memory object before it is assigned

» Prevents use-before-initialization attacks trivially

» Downside?
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Zeroing Pointers S

e Downside? Cost of doing extra assighments
» Can add up

e On the other hand, crashing the program beats an
exploit, and such a use before initialization is an error

» Deserves a trap

e How can you reduce the number of assignments
necessary to prevent any exploit of use-before-
initialization vulnerabilities?

REDUCE REUSE RECYCLE
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Zeroing Pointers S

e How can you reduce the number of assignments
necessary to prevent any exploit of use-before-
initialization vulnerabilities?

» Determine which pointers “may” be used before
initialization and initialization all of them

» Can figure the answer to questions like this out with
“static analysis”

e Will discuss a static analysis for detecting use-before-initialization
later in the class

REDUCE REUSE RECYCLE
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Obvious Solution in C =

e So, do you see an “obvious” solution to prevent
exploitable temporal errors?

»  Would zeroing pointer values also work to prevent the
exploit of use-after-free vulnerabilities?
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Zeroing Pointers S

e Yes! Set every pointer value to zero on deallocation
» Zero pointers on deallocation from the heap
e free(p), p =0;
» Trickier on the stack

e In theory, no stack reference should outlive its assignment

e But, hard to guarantee since deallocation is implicit

e Also, the cost of zeroing on deallocation can be
worse

» Since not done at all normally
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Other Ideas =

e Can you think of any other ways to prevent use-after-
free exploits!?

» May be a little crazy
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Alternatives 5

e Hypothesis: memory is so cheap and abundant, we
just do not need to deallocate

»  Will be some cases where this is not going to work
»  But, for others, why risk attack!?
e Hypothesis: garbage collection
» Too expensive for C
e Hypothesis: temporal safety like Rust’s “safe” objects
» Harder to program with lifetimes and ownerships
e Hypothesis: use type-specific allocation

» All objects and fields are aligned
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Type-Specific Pools S

e Hypothesis: use type-specific allocation
» All objects and fields are aligned
e Type-specific pools

» Allocate an object of type A from a memory region
containing only objects of type A

» Does not prevent use-after-free vulnerabilities, but limits
the exploit potential by preventing a reference of one type
from exploiting an object of another type
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Take Away =

e Manual (heap) and implicit (stack) memory
management in C permits temporal errors

» So, temporal errors have become common, especially
now that defenses for spatial errors have improved

e Exploiting temporal errors involves controlling the
relationship of a pointer and the object referenced

» Set the pointer value or the object at a location

e Preventing temporal errors is trivial conceptually

» But, a bit more expensive than people will accept yet
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