
Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

CMPSC 447
Temporal Errors

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 2

Temporal Errors
• Errors that permit access to memory outside of 

the object lifetime

‣ These are called temporal errors

‣ Access outside the expected “time”

• Most of these errors are permitted by simple 
programming flaws

‣ Of the sort that you are not taught to avoid

‣ Let’s see how such errors can be avoided 

• Some of the changes are rather simple



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 3

Temporal Errors
• A few of the exploits that we have discussed are 

the result of temporal errors



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 4

Use After Free
• Flaw: Program frees data on the heap, but then 

references that memory as if it were still valid

‣ E.g., pointer to Obj B (say “b”)

• Accessible: Adversary can control data written 
using the freed pointer

‣ memcpy(b, adv-data, size);

• Target: Obtain a “write primitive”

Obj
A

Obj 
B

Obj 
C



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 5

Use After Free
• Flaw: Program frees data on the heap, but then 

references that memory as if it were still valid

‣ E.g., pointer to Obj B (say “b”)

• Accessible: Adversary can control data written using 
the freed pointer

‣ memcpy(b, adv-data, size);

• Target: Obtain a “write primitive” to new object D

Obj
A

Obj 
D

Obj 
C



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

What Is Going Wrong?

• We have objects (memory regions) and references 
(pointers) 
‣ What goes wrong in temporal errors?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

What Is Going Wrong?
• We have objects (memory regions) and references

(pointers) 
‣ What goes wrong in temporal errors?

• A pointer may reference a memory region that does 
not hold a defined (assigned) object

• Normal lifecycle between a pointer and object
‣ char *p;                                // declare pointer

‣ p = (char *) malloc(size);       // define pointer to object

‣ len = snprintf(p, size, "%s", original_value);   // use pointer

‣ free(p);                                 // deallocate object



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

What Is Going Wrong?
• We have objects (memory regions) and references

(pointers) 
‣ What goes wrong in temporal errors?

• A pointer may reference a memory region that does 
not hold a defined (assigned) object

• Normal lifecycle between a pointer and object
‣ char *p;                                // declare pointer

‣ p = (char *) malloc(size);       // define pointer to object

‣ len = snprintf(p, size, "%s", original_value);   // use pointer

‣ free(p);                                 // deallocate object



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

What Is Going Wrong?
• We have objects (memory regions) and references

(pointers) 
‣ What goes wrong in temporal errors?

• A pointer may reference a memory region that does 
not hold a defined (assigned) object

• Normal lifecycle between a pointer and object
‣ char *p;                                // declare pointer

‣ p = (char *) malloc(size);       // define pointer to object

‣ len = snprintf(p, size, "%s", original_value);   // use pointer

‣ free(p);      // deallocate object – release memory for reuse



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

What Is Going Wrong?
• We have objects (memory regions) and references

(pointers) 
‣ What goes wrong in temporal errors?

• A pointer may reference a memory region that does 
not hold a defined (assigned) object

• What does ”p” reference upon use?
‣ char *p;                                // declare pointer

‣ len = snprintf(p, size, "%s", original_value);   // use pointer

‣ p = (char *) malloc(size);       // define pointer to object

‣ free(p);                                 // deallocate object



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

What Is Going Wrong?
• A pointer may reference a memory region that does 

not hold a defined (assigned) object
• What does ”p” reference upon use?
‣ char *p;                                // declare pointer

‣ len = snprintf(p, size, "%s", original_value);   // use pointer

‣ p = (char *) malloc(size);       // define pointer to object

‣ free(p);                                 // deallocate object

• Called “use before initialization” (UBI)
‣ Allows an adversary to use reference value defined at the 

location used to declare “p” (not an assignment)

‣ Could be anywhere



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

What Is Going Wrong?
• We have objects (memory regions) and references

(pointers) 
‣ What goes wrong in temporal errors?

• A pointer may reference a memory region that does 
not hold a defined (assigned) object

• What does ”p” reference upon use?
‣ char *p;                                // declare pointer

‣ p = (char *) malloc(size);       // define pointer to object

‣ free(p);     // deallocate object – release memory for reuse

‣ len = snprintf(p, size, "%s", original_value);   // use pointer



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

What Is Going Wrong?
• A pointer may reference a memory region that does 

not hold a defined (assigned) object
• What does ”p” reference upon use?
‣ char *p;                                // declare pointer

‣ p = (char *) malloc(size);       // define pointer to object

‣ free(p);     // deallocate object – release memory for reuse

‣ len = snprintf(p, size, "%s", original_value);   // use pointer

• Called “use after free” (UAF)
‣ Allows an adversary to use reference to memory region 

that may be allocated a different object

‣ Could be anywhere



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Only on the Heap?

• Can temporal errors happen for stack objects?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Only on the Heap?

• Can temporal errors happen for stack objects?
‣ Yes

• Use before initialization
‣ Many references are allocated on the stack (like example)

‣ As variables may be uninitialized

‣ Do you initialize all variables?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Only on the Heap?

• Can temporal errors happen for stack objects?
‣ Yes

• Use after free
‣ Typically, exploits the deallocation of heap objects

‣ But, stack objects are deallocated too
• Just automatically by the runtime

‣ Can you describe a “use after free” flaw for a stack object?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Exploiting Temporal Errors

• Use before initialization

• Questions to explore
‣ Where is the pointer allocated in memory?

• Can the adversary control what is written to that location

‣ What is the pointer’s value at initialization?
• Can this reference a useful target object to attack?

Ptr



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Exploiting Temporal Errors

• Use before initialization

• Assume function “A” calls functions “B” and “C”
‣ When function “B” is called, a new stack frame is created

‣ Using memory in the stack region

‣ Suppose there is a string “buffer” built from adversary 
input

‣ Then, function ”B” returns

Buffer



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Exploiting Temporal Errors

• Use before initialization

• Assume function “A” calls functions “B” and “C”
‣ When function “C” is called, a new stack frame is created

‣ Using memory in the stack region – used by function “B”

‣ Suppose there is a local variable pointer “ptr” declared in 
function “C”

‣ But, ”ptr” is not initialized – what is the value of “ptr”?

Buffer ptr



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Exploiting Temporal Errors
• Use before initialization

• Assume function “A” calls functions “B” and “C”
‣ Suppose there is a local variable pointer “ptr” declared in 

“C”

‣ But, ”ptr” is not initialized – what is the value of “ptr”?

‣ The value of “ptr” is the value of the bytes of “buffer” 

‣ Suppose “ptr” is used before initialized.  Can you exploit 
this?  How?

Buffer ptr



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Exploiting Temporal Errors
• Use before initialization

• Can you exploit this?  How?
‣ Use the debugger to determine the relative offset of 

“buffer” and “ptr”

‣ Build filler from the start of the buffer to the start of the 
pointer “ptr”

‣ Then, insert the address of the target object in “ptr”

‣ Now, you can access the target via “ptr”

Buffer ptr



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Exploiting Temporal Errors

• Use after free

• Assume you have a heap as shown
‣ Focus on object ”B”

‣ You have a reference to “B” – say pointer “b”

Obj
A

Obj 
B

Obj 
C



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Exploiting Temporal Errors

• Use after free

• Assume you have a heap as shown
‣ Object ”B” is deallocated

‣ And you still have a reference to “B” – pointer “b” 

‣ And, pointer “b” may be have “uses” after the deallocation 
of object ”B”

‣ But, the allocator is free to reuse the memory region

Obj
A

Obj 
C



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Exploiting Temporal Errors

• Use after free

• Assume you have a heap as shown
‣ The allocator chooses to use the memory region for 

object “D”

‣ So, a “use” of pointer “b” will access the object ”D” instead

‣ If object “B” and object “D” are of different types, you can 
exploit the differences

Obj
A

Obj 
C

Obj
D



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Exploiting Temporal Errors

• Use after free

• How exactly do you exploit this?
‣ Create and free an object – object “B” - record its location 

using the debugger

‣ With a pointer with a use-after-free flaw – pointer “b”

‣ Cause program to allocate instances of the target object “D”

‣ Find when a “D” is in the location of the original object “B” 
using the debugger

Obj
A

Obj 
C

Obj
D



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Exploiting Temporal Errors

• Use after free

• How exactly do you exploit this?
‣ To get new allocation in the same spot

‣ Size of Obj “D” <= Obj “B”  - Equal only in some cases

Obj
A

Obj 
C

Obj
D



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Exploiting Temporal Errors

• Use after free

• How exactly do you exploit this?
‣ To exploit object ”D”

‣ Should be a target field in object “D” that can be modified 
or read using the stale pointer ”b”

‣ Suppose “D” has a pointer field that is aligned with a data 
field in the type of object “B” that can be modified with 
“b”

Obj
A

Obj 
C

Obj
D



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Fundamental Problem?

• What is the fundamental problem that causes 
temporal errors?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Fundamental Problem?
• What is the fundamental problem that causes 

temporal errors?
‣ We have pointers (references)

‣ We have memory regions (objects)

‣ We have assignments of pointers to memory regions

• But, the actual relationships may change
‣ A pointer is assigned to some value when declared that 

could be a legal memory region

• Before assignment – permitting use before initialization

‣ Memory regions may be reused for other objects
• After assignment – permitting use after free



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Obvious Solution in C

• So, do you see an “obvious” solution to prevent 
exploitable temporal errors?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Obvious Solution in C

• So, do you see an “obvious” solution to prevent 
exploitable temporal errors?

‣ Shouldn’t pointers either reference their assigned and 
allocated objects or be invalid?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Zeroing Pointers

• Set every pointer value to zero on initialization
‣ Assign to zero on the stack
• char *p = NULL;

‣ Zero memory allocated from the heap (including its 
pointers)

• obj = (char *) calloc( size, 1 );

• As a result, no pointer will refer to any active 
memory object before it is assigned
‣ Prevents use-before-initialization attacks trivially

‣ Downside?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Zeroing Pointers
• Downside? Cost of doing extra assignments
‣ Can add up

• On the other hand, crashing the program beats an 
exploit, and such a use before initialization is an error 
‣ Deserves a trap

• How can you reduce the number of assignments 
necessary to prevent any exploit of use-before-
initialization vulnerabilities?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Zeroing Pointers

• How can you reduce the number of assignments 
necessary to prevent any exploit of use-before-
initialization vulnerabilities?
‣ Determine which pointers “may” be used before 

initialization and initialization all of them

‣ Can figure the answer to questions like this out with 
“static analysis”
• Will discuss a static analysis for detecting use-before-initialization 

later in the class



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Obvious Solution in C

• So, do you see an “obvious” solution to prevent 
exploitable temporal errors?

‣ Would zeroing pointer values also work to prevent the 
exploit of use-after-free vulnerabilities?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Zeroing Pointers

• Yes!  Set every pointer value to zero on deallocation
‣ Zero pointers on deallocation from the heap
• free(p), p = 0; 

‣ Trickier on the stack
• In theory, no stack reference should outlive its assignment

• But, hard to guarantee since deallocation is implicit

• Also, the cost of zeroing on deallocation can be 
worse
‣ Since not done at all normally



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Other Ideas

• Can you think of any other ways to prevent use-after-
free exploits?
‣ May be a little crazy



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Alternatives
• Hypothesis: memory is so cheap and abundant, we 

just do not need to deallocate 
‣ Will be some cases where this is not going to work

‣ But, for others, why risk attack?

• Hypothesis: garbage collection
‣ Too expensive for C

• Hypothesis: temporal safety like Rust’s “safe” objects
‣ Harder to program with lifetimes and ownerships

• Hypothesis: use type-specific allocation
‣ All objects and fields are aligned



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Type-Specific Pools

• Hypothesis: use type-specific allocation
‣ All objects and fields are aligned

• Type-specific pools
‣ Allocate an object of type A from a memory region 

containing only objects of type A

‣ Does not prevent use-after-free vulnerabilities, but limits 
the exploit potential by preventing a reference of one type 
from exploiting an object of another type

Obj 
A

Obj 
A

Obj 
A



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 41

Take Away
• Manual (heap) and implicit (stack) memory 

management in C permits temporal errors

‣ So, temporal errors have become common, especially 
now that defenses for spatial errors have improved

• Exploiting temporal errors involves controlling the 
relationship of a pointer and the object referenced 

‣ Set the pointer value or the object at a location

• Preventing temporal errors is trivial conceptually

‣ But, a bit more expensive than people will accept yet


