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Our Goal
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•  In this course, we want to develop techniques to 
detect vulnerabilities before they are exploited 
automatically

‣  What’s a vulnerability?

‣  How to find them?
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Static vs. Dynamic

•  Dynamic 

‣  Depends on concrete inputs

‣  Must run the program

‣  Impractical to run all possible executions in most cases

•  Static

‣  Overapproximates possible input values (sound)

‣  Assesses all possible runs of the program at once

‣  Setting up static analysis is somewhat of an art form

•  Is there something that combines best of both?

3
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Best of Both?

•  What would be the best of both?

4
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Best of Both?

•  What would be the best of both?

‣  Run over lots of inputs at once (static)

‣  Easy to setup (dynamic)

‣  Run all paths (static)

‣  Identify concrete values that lead to problems (dynamic) 
•  Can’t quite achieve all these, but can come closer

5
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Symbolic Execution

•  Symbolic execution is a method for emulating the 

execution of a program to learn constraints

‣  Assign variables to symbolic values instead of concrete 
values 

‣  Symbolic execution tells you what values are possible for 
symbolic variables at any particular point in your program

•  Like dynamic analysis (fuzzing) in that the program is 
executed in a way – albeit on symbolic inputs

•  Like static analysis in that one start of the program 
tells you what values may reach a particular state

6
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Symbolic Execution

•  What’s a symbolic value?

•  Remember in AFL fuzzing, you provide a candidate 
concrete input to identify the format

‣  And the fuzzer produces lots of variants of this input

•  In symbolic execution, you don’t provide a concrete 
input, but rather identify which value(s) you want to 
assess – just say an input is “symbolic”

‣  Then the symbolic execution tells you the possible values of 
that input to reach particular points in the program

7
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Automatic Generation of 
Inputs of Death  
and High-Coverage Tests


Slides by Yoni Leibowitz

EXE & KLEE
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int main(void) {
unsigned int i, t, a[4] = { 1, 3, 5, 2 };

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

Example
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int main(void) {
unsigned int i, t, a[4] = { 1, 3, 5, 2 };

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

Marking Symbolic Data


make_symbolic(&i);
Marks the 4 bytes 
associated with 
32-bit variable ‘i’ 
as symbolic
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Compiling...

example.c

EXE compiler


Inserts checks around every assignment, expression & branch, 
to determine if its operands are concrete or symbolic

example.out

Executable


unsigned	int	a[4]	=	{1,3,5,2}	 if	(i	>=	4)	

int main(void) {
unsigned int i, t, a[4] = 

{ 1, 3, 5, 2 };

make_symbolic(&i);

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}
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Compiling...

example.c

EXE compiler


Inserts checks around every assignment, expression & branch, 
to determine if its operands are concrete or symbolic

example.out

Executable


int main(void) {
unsigned int i, t, a[4] = 

{ 1, 3, 5, 2 };

make_symbolic(&i);

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

If any operand is symbolic, the operation is not performed, but is 
added as a constraint for the current path
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Compiling...

example.c

EXE compiler

example.out

Executable


int main(void) {
unsigned int i, t, a[4] = 

{ 1, 3, 5, 2 };

make_symbolic(&i);

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

Inserts code to fork program execution when it reaches a symbolic 
branch point, so that it can explore each possibility

if (i >= 4)

(i ≥ 4) (i < 4)
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Compiling...

example.c

EXE compiler

example.out

Executable


int main(void) {
unsigned int i, t, a[4] = 

{ 1, 3, 5, 2 };

make_symbolic(&i);

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

Inserts code to fork program execution when it reaches a symbolic 
branch point, so that it can explore each possibility

For each branch constraint, queries constraint solver for existence 
of at least one solution for the current path. If not – stops 

executing path
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Compiling...

example.c

EXE compiler

example.out

Executable


int main(void) {
unsigned int i, t, a[4] = 

{ 1, 3, 5, 2 };

make_symbolic(&i);

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

Inserts code for checking if a symbolic expression could have any 
possible value that could cause errors

t = t / 
a[i]

Division by Zero? 
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Compiling...

example.c

EXE compiler

example.out

Executable


int main(void) {
unsigned int i, t, a[4] = 

{ 1, 3, 5, 2 };

make_symbolic(&i);

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

Inserts code for checking if a symbolic expression could have any 
possible value that could cause errors

If the check passes – the path has been verified as safe under all 
possible input values (relative to those checks)
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int main(void) {
unsigned int i, t, a[4] = { 1, 3, 5, 2 };

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

Running...


make_symbolic(&i);

e.g.   i = 8

4 ≤ i

EXE generates a 
test case
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int main(void) {
unsigned int i, t, a[4] = { 1, 3, 5, 2 };

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

Running...


make_symbolic(&i);

e.g.			i	=	2	

p	→	a[2]	=	5	

a[2]	=	5	–	1	=	4	

t	=	a[4]	

EXE generates a 
test case

Out of bounds

0	≤	i	≤	4	
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int main(void) {
unsigned int i, t, a[4] = { 1, 3, 5, 2 };

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

Running...


make_symbolic(&i); e.g.			i	=	0	

p	→	a[0]	=	1	

a[0]	=	1	–	1	=	0	

t	=	a[0]	

EXE generates a 
test case

Division by 0

0≤	i	≤	4			,			i	≠	2	

t	=	t	/	0		
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int main(void) {
unsigned int i, t, a[4] = { 1, 3, 5, 2 };

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

Running...


make_symbolic(&i); i	=	1	

p	→	a[1]	

a[1]	=	2	

t	=	a[2]	

EXE determines 
neither ‘assert’ fails

0≤	i	≤	4			,		i	≠	2		,			i	≠	0	

t	=	2		

i	=	3	

p	→	a[3]	

a[3]	=	1	

t	=	a[1]	

t	≠	2		

2 valid test cases
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Output


test3.out

test3.forks

test3.err

# concrete byte values:
0 # i[0], 0 # i[1], 0 # i[2], 0 # i[3]

ERROR: simple.c:16 Division/modulo by zero!

# take these choices to follow path
0 # false branch (line 5)
0 # false (implicit: pointer overflow check on line 9)
1 # true (implicit: div−by−0 check on line 16)

i	=	0	
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Symbolic Execution

•  Tracks constraints on symbolic inputs that lead to 

an execution point

‣  Collected from conditionals executed so far

‣  And other statements that restrict values of variable

•  Executes all paths (it can in a reasonable time)

‣  Assesses whether a path is legal given concrete inputs and 
constraints collected on symbolic inputs

‣  If so, forks a new analysis at each conditional

•  Generate test cases at security-sensitive operations 
to detect flaws 

22
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Challenges

•  Exponential number of paths in a program, so still 

intractable to achieve full coverage

‣  Even to ensure that the symbolic executor reaches a 
particular statement in the program may require some 
assistance (e.g., from static analysis)

‣  Problem: Loops and floating point numbers

•  Can be expensive

‣  Need to call a constraint solver to produce test cases

•  Constraint satisfaction problems are intractable, but significant 
advancements in this area have improved effectiveness in practice

23
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Challenges

•  What types of flaws do you want to find?

‣  Checks must be generate to look for those flaws

•  Focus was initially on basic types of errors

‣  Division by zero

‣  Overflow

‣  Out-of-bounds memory reference

•  There are lots of different types of flaws that are 
possible, including more types of memory errors

24
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Challenges

•  Environment

‣  If the program interacts with environment, need some way 
to gather information resulting from such interactions

‣  System calls – what are the return values from the 
operating system from a system?

•  Could vary depending on the state of the OS, which is not 
modeled by the symbolic executor

‣  Multi-threaded programs

•  Another thread may impact variables concurrently, which is not 
modeled by the executor

25
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Utility

•  Nonetheless, symbolic execution finds many flaws

•  Used to find bugs in many programs including

‣  2 packet filters (FreeBSD & Linux)

‣  Filesystems

‣  DHCP server (udhcpd)

‣  Perl compatible regular expressions library (pcre)

‣  XML parser library (expat)

•  Like dynamic analysis, detects real flaws

‣  No false positives!

26
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Results – Bugs found

•  10 memory error crashes in GNU COREUTILS

‣  More than found in previous 3 years combined

‣  Generates actual command lines exposing crashes



Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page


Results – Line Coverage 


0%

20%

40%

60%

80%

100%

1 12 23 34 45 56 67 78 89

GNU	COREUTILS	
Overall:	84%,	Average	91%,	Median	95%	

16	at	100%	

Apps	sorted	by	KLEE	coverage	

Co
ve
ra
ge
	(E

LO
C	
%
)	



Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page


Mixing Concrete and Symbolic
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•  This is called “concolic execution”

‣  Used to deal with the environmental limitations

•  From concrete to symbolic and back

‣  Run program concretely until call Function A

‣  Run Function A symbolically in full (all paths)

‣  Then, produce one or more return values for Function A to 
continue to run program concretely

•  From symbolic to concrete and back

‣  Run symbolically until it reaches an external component 
(e.g., system call) and then run concretely on that 
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Static Analysis Can Help
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•  Address/mitigate limitations of symbolic execution

‣  Limitation: exponential number of paths

•  How do we enable the analysis to check for flaws at a particular 
statement if the control flow is complex?

•  I.e., Symbolic execution may take a long time to reach that 
statement
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Static Analysis Can Help


32


•  Address/mitigate limitations of symbolic execution

‣  Taint analysis: can determine what statements use data 
tainted by interesting inputs

•  Some statements may be security-sensitive, so we want to test 
what values interesting inputs may be assigned at such statements

‣  Symbolic execution would make such inputs symbolic, but it 
may be difficult or slow for the symbolic execution to reach 
these security-sensitive statements

•  A static taint analysis would identify the control flows that lead 
from the statements receiving the interesting inputs to the 
security-sensitive statement

•  Direct the control flow of the symbolic analysis along that path
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Helping Fuzzing


33


•  One problem in fuzzing is to generate inputs to 
cover all paths

‣  Can symbolic execution help with this?
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Helping Fuzzing


34


•  One problem in fuzzing is to generate inputs to 
cover all paths

‣  Can symbolic execution help with this?

‣  Driller: Augmenting Fuzzing through Symbolic Execution

•  Slides from Nick Stephens at NDSS 2016
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Helping Fuzzing
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Helping Fuzzing
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With Symbolic Execution
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With Symbolic Execution
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Different Approaches
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Fuzzing vs. Symbolic Exec
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Combining the Two


41
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Combining the Two


42
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Combining the Two
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Combining the Two
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Combining the Two
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Combining the Two
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Take Away


47


•  Symbolic Execution is a method for detecting 
software flaws that emulates execution of the 
program under (some) symbolic inputs

‣  Like dynamic analysis (fuzzing)

•  On each conditional, collect constraints implied by conditional 
over the symbolic variables

‣  Like static analysis

•  Collected constraints can be solved to determine a specific input 
values to reach a specific program statement

•  Can be combined with fuzzing to enhance program 
coverage and can be supplemented by static analysis


