
Systems and Internet Infrastructure Security Laboratory (SIIS) Page 2

CMPSC 447
Symbolic Execution

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Our Goal

2

•  In this course, we want to develop techniques to
detect vulnerabilities before they are exploited
automatically

‣  What’s a vulnerability?

‣  How to find them?

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Static vs. Dynamic

•  Dynamic

‣  Depends on concrete inputs

‣  Must run the program

‣  Impractical to run all possible executions in most cases

•  Static

‣  Overapproximates possible input values (sound)

‣  Assesses all possible runs of the program at once

‣  Setting up static analysis is somewhat of an art form

•  Is there something that combines best of both?

3

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Best of Both?

•  What would be the best of both?

4

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Best of Both?

•  What would be the best of both?

‣  Run over lots of inputs at once (static)

‣  Easy to setup (dynamic)

‣  Run all paths (static)

‣  Identify concrete values that lead to problems (dynamic)
•  Can’t quite achieve all these, but can come closer

5

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Symbolic Execution

•  Symbolic execution is a method for emulating the

execution of a program to learn constraints

‣  Assign variables to symbolic values instead of concrete
values

‣  Symbolic execution tells you what values are possible for
symbolic variables at any particular point in your program

•  Like dynamic analysis (fuzzing) in that the program is
executed in a way – albeit on symbolic inputs

•  Like static analysis in that one start of the program
tells you what values may reach a particular state

6

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Symbolic Execution

•  What’s a symbolic value?

•  Remember in AFL fuzzing, you provide a candidate
concrete input to identify the format

‣  And the fuzzer produces lots of variants of this input

•  In symbolic execution, you don’t provide a concrete
input, but rather identify which value(s) you want to
assess – just say an input is “symbolic”

‣  Then the symbolic execution tells you the possible values of
that input to reach particular points in the program

7

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Automatic Generation of
Inputs of Death  
and High-Coverage Tests

Slides by Yoni Leibowitz

EXE & KLEE

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

int main(void) {
unsigned int i, t, a[4] = { 1, 3, 5, 2 };

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

Example

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

int main(void) {
unsigned int i, t, a[4] = { 1, 3, 5, 2 };

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

Marking Symbolic Data

make_symbolic(&i);
Marks the 4 bytes
associated with
32-bit variable ‘i’
as symbolic

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Compiling...

example.c

EXE compiler

Inserts checks around every assignment, expression & branch,
to determine if its operands are concrete or symbolic

example.out

Executable

unsigned	int	a[4]	=	{1,3,5,2}	 if	(i	>=	4)	

int main(void) {
unsigned int i, t, a[4] =

{ 1, 3, 5, 2 };

make_symbolic(&i);

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Compiling...

example.c

EXE compiler

Inserts checks around every assignment, expression & branch,
to determine if its operands are concrete or symbolic

example.out

Executable

int main(void) {
unsigned int i, t, a[4] =

{ 1, 3, 5, 2 };

make_symbolic(&i);

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

If any operand is symbolic, the operation is not performed, but is
added as a constraint for the current path

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Compiling...

example.c

EXE compiler

example.out

Executable

int main(void) {
unsigned int i, t, a[4] =

{ 1, 3, 5, 2 };

make_symbolic(&i);

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

Inserts code to fork program execution when it reaches a symbolic
branch point, so that it can explore each possibility

if (i >= 4)

(i ≥ 4) (i < 4)

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Compiling...

example.c

EXE compiler

example.out

Executable

int main(void) {
unsigned int i, t, a[4] =

{ 1, 3, 5, 2 };

make_symbolic(&i);

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

Inserts code to fork program execution when it reaches a symbolic
branch point, so that it can explore each possibility

For each branch constraint, queries constraint solver for existence
of at least one solution for the current path. If not – stops

executing path

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Compiling...

example.c

EXE compiler

example.out

Executable

int main(void) {
unsigned int i, t, a[4] =

{ 1, 3, 5, 2 };

make_symbolic(&i);

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

Inserts code for checking if a symbolic expression could have any
possible value that could cause errors

t = t /
a[i]

Division by Zero?

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Compiling...

example.c

EXE compiler

example.out

Executable

int main(void) {
unsigned int i, t, a[4] =

{ 1, 3, 5, 2 };

make_symbolic(&i);

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

Inserts code for checking if a symbolic expression could have any
possible value that could cause errors

If the check passes – the path has been verified as safe under all
possible input values (relative to those checks)

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

int main(void) {
unsigned int i, t, a[4] = { 1, 3, 5, 2 };

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

Running...

make_symbolic(&i);

e.g. i = 8

4 ≤ i

EXE generates a
test case

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

int main(void) {
unsigned int i, t, a[4] = { 1, 3, 5, 2 };

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

Running...

make_symbolic(&i);

e.g.			i	=	2	

p	→	a[2]	=	5	

a[2]	=	5	–	1	=	4	

t	=	a[4]	

EXE generates a
test case

Out of bounds

0	≤	i	≤	4	

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

int main(void) {
unsigned int i, t, a[4] = { 1, 3, 5, 2 };

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

Running...

make_symbolic(&i); e.g.			i	=	0	

p	→	a[0]	=	1	

a[0]	=	1	–	1	=	0	

t	=	a[0]	

EXE generates a
test case

Division by 0

0≤	i	≤	4			,			i	≠	2	

t	=	t	/	0		

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

int main(void) {
unsigned int i, t, a[4] = { 1, 3, 5, 2 };

if (i >= 4)
exit(0);

char *p = (char *)a + i * 4;
*p = *p − 1
t = a[*p];
t = t / a[i];
if (t == 2)

assert(i == 1);
else

assert(i == 3);
return 0;

}

Running...

make_symbolic(&i); i	=	1	

p	→	a[1]	

a[1]	=	2	

t	=	a[2]	

EXE determines
neither ‘assert’ fails

0≤	i	≤	4			,		i	≠	2		,			i	≠	0	

t	=	2		

i	=	3	

p	→	a[3]	

a[3]	=	1	

t	=	a[1]	

t	≠	2		

2 valid test cases

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Output

test3.out

test3.forks

test3.err

concrete byte values:
0 # i[0], 0 # i[1], 0 # i[2], 0 # i[3]

ERROR: simple.c:16 Division/modulo by zero!

take these choices to follow path
0 # false branch (line 5)
0 # false (implicit: pointer overflow check on line 9)
1 # true (implicit: div−by−0 check on line 16)

i	=	0	

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Symbolic Execution

•  Tracks constraints on symbolic inputs that lead to

an execution point

‣  Collected from conditionals executed so far

‣  And other statements that restrict values of variable

•  Executes all paths (it can in a reasonable time)

‣  Assesses whether a path is legal given concrete inputs and
constraints collected on symbolic inputs

‣  If so, forks a new analysis at each conditional

•  Generate test cases at security-sensitive operations
to detect flaws

22

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Challenges

•  Exponential number of paths in a program, so still

intractable to achieve full coverage

‣  Even to ensure that the symbolic executor reaches a
particular statement in the program may require some
assistance (e.g., from static analysis)

‣  Problem: Loops and floating point numbers

•  Can be expensive

‣  Need to call a constraint solver to produce test cases

•  Constraint satisfaction problems are intractable, but significant
advancements in this area have improved effectiveness in practice

23

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Challenges

•  What types of flaws do you want to find?

‣  Checks must be generate to look for those flaws

•  Focus was initially on basic types of errors

‣  Division by zero

‣  Overflow

‣  Out-of-bounds memory reference

•  There are lots of different types of flaws that are
possible, including more types of memory errors

24

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Challenges

•  Environment

‣  If the program interacts with environment, need some way
to gather information resulting from such interactions

‣  System calls – what are the return values from the
operating system from a system?

•  Could vary depending on the state of the OS, which is not
modeled by the symbolic executor

‣  Multi-threaded programs

•  Another thread may impact variables concurrently, which is not
modeled by the executor

25

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Utility

•  Nonetheless, symbolic execution finds many flaws

•  Used to find bugs in many programs including

‣  2 packet filters (FreeBSD & Linux)

‣  Filesystems

‣  DHCP server (udhcpd)

‣  Perl compatible regular expressions library (pcre)

‣  XML parser library (expat)

•  Like dynamic analysis, detects real flaws

‣  No false positives!

26

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Results – Bugs found

•  10 memory error crashes in GNU COREUTILS

‣  More than found in previous 3 years combined

‣  Generates actual command lines exposing crashes

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Results – Line Coverage

0%

20%

40%

60%

80%

100%

1 12 23 34 45 56 67 78 89

GNU	COREUTILS	
Overall:	84%,	Average	91%,	Median	95%	

16	at	100%	

Apps	sorted	by	KLEE	coverage	

Co
ve
ra
ge
	(E

LO
C	
%
)	

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Mixing Concrete and Symbolic

30

•  This is called “concolic execution”

‣  Used to deal with the environmental limitations

•  From concrete to symbolic and back

‣  Run program concretely until call Function A

‣  Run Function A symbolically in full (all paths)

‣  Then, produce one or more return values for Function A to
continue to run program concretely

•  From symbolic to concrete and back

‣  Run symbolically until it reaches an external component
(e.g., system call) and then run concretely on that

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Static Analysis Can Help

31

•  Address/mitigate limitations of symbolic execution

‣  Limitation: exponential number of paths

•  How do we enable the analysis to check for flaws at a particular
statement if the control flow is complex?

•  I.e., Symbolic execution may take a long time to reach that
statement

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Static Analysis Can Help

32

•  Address/mitigate limitations of symbolic execution

‣  Taint analysis: can determine what statements use data
tainted by interesting inputs

•  Some statements may be security-sensitive, so we want to test
what values interesting inputs may be assigned at such statements

‣  Symbolic execution would make such inputs symbolic, but it
may be difficult or slow for the symbolic execution to reach
these security-sensitive statements

•  A static taint analysis would identify the control flows that lead
from the statements receiving the interesting inputs to the
security-sensitive statement

•  Direct the control flow of the symbolic analysis along that path

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Helping Fuzzing

33

•  One problem in fuzzing is to generate inputs to
cover all paths

‣  Can symbolic execution help with this?

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Helping Fuzzing

34

•  One problem in fuzzing is to generate inputs to
cover all paths

‣  Can symbolic execution help with this?

‣  Driller: Augmenting Fuzzing through Symbolic Execution

•  Slides from Nick Stephens at NDSS 2016

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Helping Fuzzing

35

[� �LQW�LQSXW���
LI�[�!����

LI�[�������
SULQW��<RX�ZLQ��

HOVH�
SULQW��<RX�ORVH��

HOVH�
SULQW��<RX�ORVH��

 Ij°h�Nkvv�Qj�

Â�䋻�±9]k�Y]hI�±

ÆÊÄ�䋻�±9]k�Y]hI�±

ÂÉÄ�䋻�±9]k�Y]hI�±

Å�䋻�±9]k�Y]hI�±

ÅÊÉ�䋻�±9]k�Y]hI�±

�

ÅÉ�䋻�±9]k�qQ[�±

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Helping Fuzzing

36

[� �LQW�LQSXW���
LI�[�!����

LI�[A�� �����������
SULQW��<RX�ZLQ��

HOVH�
SULQW��<RX�ORVH��

HOVH�
SULQW��<RX�ORVH��

 Ij°h�Nkvv�Qj�

Â�䋻�±9]k�Y]hI�±

ÆÊÄ�䋻�±9]k�Y]hI�±

ÂÉÄ�䋻�±9]k�Y]hI�±

Å�䋻�±9]k�Y]hI�±

ÅÊÉ�䋻�±9]k�Y]hI�±

ÅÃ�䋻�±9]k�Y]hI�±

Ä�䋻�±9]k�Y]hI�±

�

«««�

ÆÈ�䋻�±9]k�Y]hI�±

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

With Symbolic Execution

37

[� �LQSXW��
LI�[�! ����

LI�[�������� ���
SULQW��<RX�ZLQ��

HOVH�
SULQW��<RX�ORVH��

HOVH�
SULQW��<RX�ORVH��

���

r�ß�ÂÁ r�àÞ�ÂÁ

r�àÞ�ÂÁ
r�Ú�ÂÄÄÈ��Þ�Á

r�àÞ�ÂÁ
r�Ú�ÂÄÄÈ�ÞÞ�Á

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

With Symbolic Execution

38

[� �LQSXW��
LI�[�! ����

LI�[�������� ���
SULQW��<RX�ZLQ��

HOVH�
SULQW��<RX�ORVH��

HOVH�
SULQW��<RX�ORVH��

���

r�ß�ÂÁ r�àÞ�ÂÁ

r�àÞ�ÂÁ
r�Ú�ÂÄÄÈ��Þ�Á

r�àÞ�ÂÁ
r�Ú�ÂÄÄÈ�ÞÞ�Á

ÂÄÄÈ

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Different Approaches

39

�QNNIgI[j��ddg]<EPIh

�kvvQ[O
� �]]G�<j�NQ[GQ[O�h]YkjQ][h�

N]g�OI[Ig<Y�E][GQjQ][h

� �<G�<j�NQ[GQ[O�h]YkjQ][h�N]g�
hdIEQNQE�E][GQjQ][h

/sZD]YQE��rIEkjQ][
� �]]G�<j�NQ[GQ[O�h]YkjQ][h�

N]g�hdIEQNQE�E][GQjQ][h

� /dI[Gh�j]]�ZkEP�jQZI�
QjIg<jQ[O�]pIg�OI[Ig<Y�
E][GQjQ][h

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Fuzzing vs. Symbolic Exec

40

�kvvQ[O�ph��/sZD]YQE��rIEkjQ][

�kvvQ[O�7Q[h /sZD]YQE��rIEkjQ][�7Q[h

[� �LQSXW��

GHI�UHFXUVH�[��GHSWK��
��LI�GHSWK� �����
����UHWXUQ��
��HOVH�^
����U� ���
����LI�[>GHSWK@� �Ȋ%ȋ�
������U� ��
����UHWXUQ�U���UHFXUVH�[
>GHSWK@��GHSWK�

LI�UHFXUVH�[����� ���
��SULQW�Ȋ<RX�ZLQ�ȋ

[� �LQW�LQSXW���
LI�[�! ����

LI�[A�� �����������
SULQW��<RX�ZLQ��

HOVH�
SULQW��<RX�ORVH��

HOVH�
SULQW��<RX�ORVH��

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Combining the Two

41

]ZDQ[Q[O�jPI�0q]�¥�QOP�YIpIY¦
0Ihj�
<hIh

&RQWURO�)ORZ�*UDSK

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Combining the Two

42

]ZDQ[Q[O�jPI�0q]

�9�

�8�

0Ihj�
<hIh

�
PI<d��NkvvQ[O�E]pIg<OI

&RQWURO�)ORZ�*UDSK

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Combining the Two

43

]ZDQ[Q[O�jPI�0q]

�9�

�8�

0Ihj�
<hIh

�
PI<d��NkvvQ[O�E]pIg<OI

0g<EQ[O�pQ<�/sZD]YQE�
�rIEkjQ][

�

&RQWURO�)ORZ�*UDSK

.I<EP<DYI�

]ZDQ[Q[O�jPI�0q]

�9�

�8�

0Ihj�
<hIh

�
PI<d��NkvvQ[O�E]pIg<OI

0g<EQ[O�pQ<�/sZD]YQE�
�rIEkjQ][

�

&RQWURO�)ORZ�*UDSK

.I<EP<DYI�

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Combining the Two

44

]ZDQ[Q[O�jPI�0q]

�9�

�8�

0Ihj�
<hIh

�
PI<d��NkvvQ[O�E]pIg<OI

0g<EQ[O�pQ<�/sZD]YQE�
�rIEkjQ][

�!���
�

"Iq�jIhj�E<hIh�OI[Ig<jIG

&RQWURO�)ORZ�*UDSK

/s[jPIhQvIG�

]ZDQ[Q[O�jPI�0q]

�9�

�8�

0Ihj�
<hIh

�
PI<d��NkvvQ[O�E]pIg<OI

0g<EQ[O�pQ<�/sZD]YQE�
�rIEkjQ][

�!���
�

"Iq�jIhj�E<hIh�OI[Ig<jIG

&RQWURO�)ORZ�*UDSK

/s[jPIhQvIG�

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Combining the Two

45

]ZDQ[Q[O�jPI�0q]

�9�

�8�

0Ihj�
<hIh

�
PI<d��NkvvQ[O�E]pIg<OI

0g<EQ[O�pQ<�/sZD]YQE�
�rIEkjQ][

�!���
�

"Iq�jIhj�E<hIh�OI[Ig<jIG
�!���
9�

&RQWURO�)ORZ�*UDSK

0]q<gGh�E]ZdYIjIg�E]GI�E]pIg<OI�

]ZDQ[Q[O�jPI�0q]

�9�

�8�

0Ihj�
<hIh

�
PI<d��NkvvQ[O�E]pIg<OI

0g<EQ[O�pQ<�/sZD]YQE�
�rIEkjQ][

�!���
�

"Iq�jIhj�E<hIh�OI[Ig<jIG
�!���
9�

&RQWURO�)ORZ�*UDSK

0]q<gGh�E]ZdYIjIg�E]GI�E]pIg<OI�

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Combining the Two

46

]ZDQ[Q[O�jPI�0q]

�9�

�8�

0Ihj�
<hIh

�
PI<d��NkvvQ[O�E]pIg<OI

0g<EQ[O�pQ<�/sZD]YQE�
�rIEkjQ][

�!���
�

"Iq�jIhj�E<hIh�OI[Ig<jIG
�!���
9�

&RQWURO�)ORZ�*UDSK

0]q<gGh�E]ZdYIjIg�E]GI�E]pIg<OI�

]ZDQ[Q[O�jPI�0q]

�9�

�8�

0Ihj�
<hIh

�
PI<d��NkvvQ[O�E]pIg<OI

0g<EQ[O�pQ<�/sZD]YQE�
�rIEkjQ][

�!���
�

"Iq�jIhj�E<hIh�OI[Ig<jIG
�!���
9�

&RQWURO�)ORZ�*UDSK

0]q<gGh�E]ZdYIjIg�E]GI�E]pIg<OI�

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Take Away

47

•  Symbolic Execution is a method for detecting
software flaws that emulates execution of the
program under (some) symbolic inputs

‣  Like dynamic analysis (fuzzing)

•  On each conditional, collect constraints implied by conditional
over the symbolic variables

‣  Like static analysis

•  Collected constraints can be solved to determine a specific input
values to reach a specific program statement

•  Can be combined with fuzzing to enhance program
coverage and can be supplemented by static analysis

