\ Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

CMPSC 447
Static Analysis

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab
Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT
Our Goal =

« One option is to develop automated techniques to
detect vulnerabilities before they can be exploited

» Your program may have flaws that may lead to a
vulnerabilities

» How to find them?

)

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Dynamic Analysis Limits -

« Major advantage
» When we produce a crash, it is a real crash
« Major limitation

» We cannot find all vulnerabilities in a program with
dynamic testing in most cases

* Why not!

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Dynamic Analysis Limits -

« Major advantage
» When we produce a crash, it is a real crash
« Major limitation

» We cannot find all vulnerabilities in a program with
dynamic testing in most cases

* Why not!

» Cannot run all possible inputs in most cases

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

_Zive)

 Can we build a technique that identifies *all*
vulnerabilities?

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

_Zive)

 Can we build a technique that identifies *all* flaws?

» Turns out that we can: static analysis

» Over-approximate all possible executions of a program, so
any flaw that can happen will be found

« And some flaws that are not really possible (false positives)

» But, can be effective when used carefully

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Static Analysis —

 Explore all possible executions of a program
» All possible inputs

» All possible states

Systems and Internet Infrastructure Security Laboratory (SIIS)

A Form of Testing e

« Static analysis is an alternative to dynamic testing
« Dynamic

» Select concrete inputs

» Obtain a sequence of states given those inputs

» Apply many concrete inputs (i.e., run many tests)
« Static

» Select abstract inputs with common properties

» Obtain sets of states created by executing abstract inputs

» One “run”

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Static Analysis —

* Provides an approximation of behavior

+ "Run in the aggregate”
» Rather than executing on ordinary states

» Finite-sized descriptors representing a collection of states

* "Run in non-standard way"
» Run in fragments

» Stitch them together to cover all paths

« Runtime testing is inherently incomplete, but static
analysis can cover all paths

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Static Analysis —

« Consider the following code

int main(int argc, char **argv) {
char *buflRl;
char *buf2Rl;
char *buf2R2;
char *buf3R2;

buflRl
buf2R1

(char *) malloc(BUFSIZER1);
(char *) malloc(BUFSIZER1);

free(buf2Rl);

buf2R2
buf3R2

(char *) malloc(BUFSIZER2);

(char *) malloc(BUFSIZER2);

strncpy(buf2R1l, argv[l], BUFSIZER1-1);
free(buflRl);
free(buf2R2);
free(buf3R2);

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Static Analysis —

 Can we find a use-after-free flaw?

int main(int argc, char **argv) {
char *buflRl;
char *buf2Rl;
char *buf2R2;
char *buf3R2;

buflRl
buf2R1

(char *) malloc(BUFSIZER1);
(char *) malloc(BUFSIZER1);

free(buf2Rl);

buf2R2
buf3R2

(char *) malloc(BUFSIZER2);
(char *) malloc(BUFSIZER2);

strncpy(buf2R1l, argv[l], BUFSIZER1-1);
free(buflRl);
free(buf2R2);
free(buf3R2);

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Static Analysis —

 Various properties of programs can be tracked

Control flow

v

» Constants

» Types

v

Values (sets of values)

» Data flow

« Which ones will expose which vulnerabilities
accurately (and not too many false positives)
requires some finesse

Systems and Internet Infrastructure Security Laboratory (SIIS)

Control Flow Analysis g

« Compute the control flow of a program

» l.e., possible execution paths

« To find an execution path that leads to a use-after-
free for a pointer

» That may be run by the program
« Overapproximates executions
* For just the part of the program of interest

» How do we do this!?

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Intraprocedural CFG =

« Statements

» Nodes

» One successor and one predecessor
« Basic Blocks

» Multiple successors (multiple predecessors)
« Unique Enter and Exit

» All start nodes are successors of enter

» All return nodes are predecessors of exit

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Control Flow for Example S

« What is this example’s control flow

int main(int argc, char **argv) {
char *buflRl;
char *buf2Rl;
char *buf2R2;
char *buf3R2;

buflRl
buf2R1

(char *) malloc(BUFSIZER1);

(char *) malloc(BUFSIZER1);

free(buf2Rl);

buf2R2
buf3R2

(char *) malloc(BUFSIZER2);

(char *) malloc(BUFSIZER2);

strncpy(buf2R1l, argv[l], BUFSIZER1-1);
free(buflRl);
free(buf2R2);
free(buf3R2);

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Control Flow for Example ~

« Ah ha! A “use” after a “free”

int main(int argc, char **argv) {
char *buflRl;
char *buf2Rl;
char *buf2R2;
char *buf3R2;

free

buflRl
buf2R1

(char *) malloc(BUFSIZER1);

(char *) malloc(BUFSIZER1);

free(buf2Rl);

buf2R2
buf3R2

(char *) malloc(BUFSIZER2);

(char *) malloc(BUFSIZER2);

strncpy(buf2R1l, argv[l], BUFSIZER1-1);
free(buflRl);

free(buf2R2); use
free(buf3R2);

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Control Flow for Example ~

« Happens to refer to the same pointer

int main(int argc, char **argv) {
char *buflRl;
char *buf2Rl;
char *buf2R2;
char *buf3R2;

free

buflRl
buf2R1

(char *) malloc(BUFSIZER1);
(char *) malloc(BUFSIZER1);

free(buf2Rl);

buf2R2
buf3R2

(char *) malloc(BUFSIZER2);
(char *) malloc(BUFSIZER2);

strncpy(buf2R1l, argv[l], BUFSIZER1-1);
free(buflRl);

free(buf2R2); use
free(buf3R2);

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Control Flow for Example ~

* Would be a false positive otherwise

int main(int argc, char **argv) {
char *buflRl;
char *buf2Rl;
char *buf2R2;
char *buf3R2;

free

buflRl
buf2R1

(char *) malloc(BUFSIZER1);
(char *) malloc(BUFSIZER1);

free(buf2Rl);

buf2R2
buf3R2

(char *) malloc(BUFSIZER2);
(char *) malloc(BUFSIZER2);

strncpy(buf2R2, argv[l], BUFSIZER1-1);
free(buflRl);

free(buf2R2); use
free(buf3R2);

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Control Flow for Example ~

« Reason about possible values (concrete)

int main(int argc, char **argv) {
char *buflRl;
char *buf2Rl;
char *buf2R2;

char *buf3R2; free(2R |)

buflRl
buf2R1

(char *) malloc(BUFSIZER1);
(char *) malloc(BUFSIZER1);

free(buf2Rl);

buf2R2
buf3R2

(char *) malloc(BUFSIZER2);
(char *) malloc(BUFSIZER2);

strncpy(buf2R1l, argv[l], BUFSIZER1-1);
free(buflRl);
free(buf2R2);
free(buf3R2);

use(2R1)

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Control Flow Analysis =

« Compute Control Flow
« One function at a time — “intraprocedural”

* Program statements of interest
» Sequences — basic blocks
» Conditionals — transitions between basic blocks in function
» Loops — transitions that connect to prior basic blocks
» Calls — transition to another function

» Return — transition that completes the function

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Control Flow Analysis =

« Compute Intraprocedural Control Flow

From Last Time: BB and CFG
Basic block — a sequence of

consecutive operations in which

flow of control enters at the X =y+l; BB1
beginning and leaves at the end if (¢
without halt or possibility of (Xﬂ)L oo —
branching except at the end , ’ Lo Ll
else i
Control Flow Graph — Directed X==5 BB4
graph, G = (V.E) where each Y=+ 1; # P
vertex V is a basic block and if (a) o o
thereis an edge E, vl (BB1) = y++;
v2 (BB2) if BB2 can immediately aleo T
follow BB1 in some execution BB7

sequence B
Ztr; @

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Constant Propagation -

o Substitute the values of known constants in
expressions

* Propagate the values among variables assigned those
constants

« Example assignments resulting from propagation to
detect problems

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Detect Buffer Overflow —

« What are the constant values below?

1 char text[] = "Foo Bar"”;

2 char bufferl[4], buffer2[4];

4 int i, n = sizeof(text);
5 for(i=0;i<n;++1)
6 buffer2[i] = text[i];

7 printf("Last char of text is: %c", text[n]);

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Detect Buffer Overflow —

* Where can they be propagated!?

1 char text[] = "Foo Bar"”;

2 char bufferl[4], buffer2[4];

4 int i, n = sizeof(text);
5 for(i=0;i<n;++1)
6 buffer2[i] = text[i];

7 printf("Last char of text is: %c", text[n]);

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Detect Buffer Overflow =

* Where are the memory errors!

1 char text[] = "Foo Bar"”;

2 char bufferl[4], buffer2[4];

4 int i, n = 20;
5 for(i=0;i<20;++1i)
6 buffer2[i] = text[i];

7 printf("Last char of text is: %c", text[20]);

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Detect Buffer Overflow =

* Where are the memory errors!

1 char text[] = "Foo Bar"”;

2 char bufferl[4], buffer2[4];

4 int i, n = 20;
5 for(i=0;i<20;++1i)
6 buffer2[i] = text[i];

7 printf("Last char of text is: %c", text[20]);

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Constant Propagation -

 Typically, constant propagation is a start, but need
more to detect an error

« For the buffer overflow we need to know that
access to buffer2[4-19] and text[20] are memory
errors

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Abstract Interpretation o

Descriptors represent the sign of a value

» Positive, negative, zero, unknown
 For an expression, c =a *b
» If a has a descriptor pos

» And b has a descriptor neg
« What is the descriptor for c after that instruction!?

* How might this help!?

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Abstract Interpretation S

 E.g., integer overflows
« Use unknown for signed ints

« And “<constant” for signed after (signed < constant)

“Cast_unsigned” creates a positive from <constant

« Could we detect a problem here!

if (signed < constant)

strlcpy(dst, src, (cast unsigned)signed);

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Type-based Analysis S

« Maybe we want to check for certain properties
about variables in our program

« Can use type information associated with variables
to perform such checks

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Type-based Analysis S

« Maybe we want to check for certain properties
about variables in our program

« Suppose we want to know if a variable’s value has
been “checked” — such as for input validation

« We can use type-based analysis to do that

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Type-based Analysis S

« Maybe we want to check for certain properties
about variables in our program

« Suppose we want to know if a variable’s value has
been “checked” — such as for input validation

« We can use type-based analysis to do that

N sl

Sec rity Check
C<-U

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Type-based Analysis S

« Maybe we want to check for certain properties
about variables in our program

« Suppose we want to know if a variable’s value has
been “checked” — such as for input validation

« Using type qualifiers, can extend basic types

void func a(struct file * $checked filp);
void func b(void)
{

struct file * Sunchecked filp;

func a(filp);

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Type-based Analysis S

« Maybe we want to check for certain properties
about variables in our program

« Suppose we want to know if a variable’s value has
been “checked” — such as for input validation

 To find missing mediation (e.g., input validation)
» Initialize untrusted inputs to “unchecked”

» Initialize security-sensitive operation to use “checked”

v

|dentify mediation (create “checked” version)

v

Detect type error — from “unchecked” to “checked”

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Type-based Ana S

° ° L]
* Vulnerability in the Lo
long sys_fcntl(unsigned int f£d,
unsigned int cmd,
unsigned long arg)

code to the right

filp = fget(£fd);

» Can you see it!

->fcentl(filp, cmd, arg);

err do fcntl(fd, cmd, arg, filp);

}

static long

do_fcntl(unsigned int fd,
unsigned int cmd,
unsigned long arg,
struct file * filp) {

switch(cmd) {

case F_SETLK:

err = fcntl setlk(fd, ...);

}

/* from fs/locks.c */
fentl _getlk(fd, ...) {
struct file * filp;

filp = fget(fd);

/* operate on filp */

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Type-based Analysis b

 Vulnerability in the Sl)
code to the right e i s

filp = fget(£fd);

» fd is unchecked as is filp

->fcentl(filp, cmd, arg);

initial Iy in Sys_fnCtI err = do fcntl(fd, cmd, arg, filp);

» However, filp would be e LS e

do_ fcntl(gned int fd,
. uns:!.gned int cmd,
reassigned to a checked AT

variable after security_op

ase F_SETLK:

err = fcntl setlk(fd, ...);

« So what’s the problem!? o

3
Hh
[
~
=
[o]
Q
~
)
Q

*/
o) 4
ruct file * filp;

o o
—
Q
[0
ol
i
~
Hh
o,

filp = fget(fd);

/* operate on filp */

Systems and Internet Infrastructure Security Laboratory (SIIS)

Type-based Analysis

PENNSTAT
[i)

 Vulnerability in the code
to the right

» fd and filp are unchecked
initially
» filp is checked in sys fnctl

» However, filp is reassigned
from an unchecked fd
variable in fnctl_getlk/setlk

* fd, not the checked filp
is passed to do_fentl
and to fentl_getlk/setlk

Systems and Internet Infrastructure Security Laboratory (SIIS)

struct file * filp;

filp = fget(£fd);

err = security ops->file aps
->fcentl(filp, cmd, arg);

ic
do_fcntl(unsigrfed int £d,

err = do fcntl(fd, cmd, arg, filp);

uns i grieg=—tre—cm,—
unsigned long arg,
struct file * filp) {

switch(cmd) {

ase F_SETLK:

err = fcntl setlf(fd, ...);

*/
o) 4
ruct file * filp;

o o b
—
Q 3
()
t Fh
= n
F NS
—~
Hh O
Q. Q
-~)

0
Q

filp = fget(fd);

/* operate on filp */

PENNSTAT

Take Away =

« Static analysis evaluates all the ways that a program
may execute in one pass

» Can be “sound” (no false negatives — find all flaws)

» But, then will likely produce some false positives

« Examined some building blocks of static analysis and
how they could be used

» Constant propagation, control flow, type analysis

« There is much more to the application of static
analysis to security problems — a key for software
security

Systems and Internet Infrastructure Security Laboratory (SIIS)

