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Our Goal =

« One option is to develop automated techniques to
detect vulnerabilities before they can be exploited

» Your program may have flaws that may lead to a
vulnerabilities

» How to find them?

)
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Dynamic Analysis Limits -

« Major advantage
» When we produce a crash, it is a real crash
« Major limitation

» We cannot find all vulnerabilities in a program with
dynamic testing in most cases

* Why not!

Systems and Internet Infrastructure Security Laboratory (SIIS)




PENNSTAT

Dynamic Analysis Limits -

« Major advantage
» When we produce a crash, it is a real crash
« Major limitation

» We cannot find all vulnerabilities in a program with
dynamic testing in most cases

* Why not!

» Cannot run all possible inputs in most cases

Systems and Internet Infrastructure Security Laboratory (SIIS)
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_Zive)

 Can we build a technique that identifies *all*
vulnerabilities?

Systems and Internet Infrastructure Security Laboratory (SIIS)
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_Zive)

 Can we build a technique that identifies *all* flaws?

» Turns out that we can: static analysis

» Over-approximate all possible executions of a program, so
any flaw that can happen will be found

« And some flaws that are not really possible (false positives)

» But, can be effective when used carefully

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Static Analysis —

 Explore all possible executions of a program
» All possible inputs

» All possible states

Systems and Internet Infrastructure Security Laboratory (SIIS)



A Form of Testing e

« Static analysis is an alternative to dynamic testing
« Dynamic

» Select concrete inputs

» Obtain a sequence of states given those inputs

» Apply many concrete inputs (i.e., run many tests)
« Static

» Select abstract inputs with common properties

» Obtain sets of states created by executing abstract inputs

» One “run”

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Static Analysis —

* Provides an approximation of behavior

+ "Run in the aggregate”
» Rather than executing on ordinary states

» Finite-sized descriptors representing a collection of states

* "Run in non-standard way"
» Run in fragments

» Stitch them together to cover all paths

« Runtime testing is inherently incomplete, but static
analysis can cover all paths
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Static Analysis —

« Consider the following code

int main(int argc, char **argv) {
char *buflRl;
char *buf2Rl;
char *buf2R2;
char *buf3R2;

buflRl
buf2R1

(char *) malloc(BUFSIZER1);
(char *) malloc(BUFSIZER1);

free(buf2Rl);

buf2R2
buf3R2

(char *) malloc(BUFSIZER2);

(char *) malloc(BUFSIZER2);

strncpy(buf2R1l, argv[l], BUFSIZER1-1);
free(buflRl);
free(buf2R2);
free(buf3R2);

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Static Analysis —

 Can we find a use-after-free flaw?

int main(int argc, char **argv) {
char *buflRl;
char *buf2Rl;
char *buf2R2;
char *buf3R2;

buflRl
buf2R1

(char *) malloc(BUFSIZER1);
(char *) malloc(BUFSIZER1);

free(buf2Rl);

buf2R2
buf3R2

(char *) malloc(BUFSIZER2);
(char *) malloc(BUFSIZER2);

strncpy(buf2R1l, argv[l], BUFSIZER1-1);
free(buflRl);
free(buf2R2);
free(buf3R2);

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Static Analysis —

 Various properties of programs can be tracked

Control flow

v

» Constants

» Types

v

Values (sets of values)

» Data flow

« Which ones will expose which vulnerabilities
accurately (and not too many false positives)
requires some finesse
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Control Flow Analysis g

« Compute the control flow of a program

» l.e., possible execution paths

« To find an execution path that leads to a use-after-
free for a pointer

» That may be run by the program
« Overapproximates executions
* For just the part of the program of interest

» How do we do this!?
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Intraprocedural CFG =

« Statements

» Nodes

» One successor and one predecessor
« Basic Blocks

» Multiple successors (multiple predecessors)
« Unique Enter and Exit

» All start nodes are successors of enter

» All return nodes are predecessors of exit

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Control Flow for Example S

« What is this example’s control flow

int main(int argc, char **argv) {
char *buflRl;
char *buf2Rl;
char *buf2R2;
char *buf3R2;

buflRl
buf2R1

(char *) malloc(BUFSIZER1);

(char *) malloc(BUFSIZER1);

free(buf2Rl);

buf2R2
buf3R2

(char *) malloc(BUFSIZER2);

(char *) malloc(BUFSIZER2);

strncpy(buf2R1l, argv[l], BUFSIZER1-1);
free(buflRl);
free(buf2R2);
free(buf3R2);
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Control Flow for Example ~

« Ah ha! A “use” after a “free”

int main(int argc, char **argv) {
char *buflRl;
char *buf2Rl;
char *buf2R2;
char *buf3R2;

free

buflRl
buf2R1

(char *) malloc(BUFSIZER1);

(char *) malloc(BUFSIZER1);

free(buf2Rl);

buf2R2
buf3R2

(char *) malloc(BUFSIZER2);

(char *) malloc(BUFSIZER2);

strncpy(buf2R1l, argv[l], BUFSIZER1-1);
free(buflRl);

free(buf2R2); use
free(buf3R2);
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Control Flow for Example ~

« Happens to refer to the same pointer

int main(int argc, char **argv) {
char *buflRl;
char *buf2Rl;
char *buf2R2;
char *buf3R2;

free

buflRl
buf2R1

(char *) malloc(BUFSIZER1);
(char *) malloc(BUFSIZER1);

free(buf2Rl);

buf2R2
buf3R2

(char *) malloc(BUFSIZER2);
(char *) malloc(BUFSIZER2);

strncpy(buf2R1l, argv[l], BUFSIZER1-1);
free(buflRl);

free(buf2R2); use
free(buf3R2);
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Control Flow for Example ~

* Would be a false positive otherwise

int main(int argc, char **argv) {
char *buflRl;
char *buf2Rl;
char *buf2R2;
char *buf3R2;

free

buflRl
buf2R1

(char *) malloc(BUFSIZER1);
(char *) malloc(BUFSIZER1);

free(buf2Rl);

buf2R2
buf3R2

(char *) malloc(BUFSIZER2);
(char *) malloc(BUFSIZER2);

strncpy(buf2R2, argv[l], BUFSIZER1-1);
free(buflRl);

free(buf2R2); use
free(buf3R2);
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Control Flow for Example ~

« Reason about possible values (concrete)

int main(int argc, char **argv) {
char *buflRl;
char *buf2Rl;
char *buf2R2;

char *buf3R2; free(2R | )

buflRl
buf2R1

(char *) malloc(BUFSIZER1);
(char *) malloc(BUFSIZER1);

free(buf2Rl);

buf2R2
buf3R2

(char *) malloc(BUFSIZER2);
(char *) malloc(BUFSIZER2);

strncpy(buf2R1l, argv[l], BUFSIZER1-1);
free(buflRl);
free(buf2R2);
free(buf3R2);

use(2R1)
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Control Flow Analysis =

« Compute Control Flow
« One function at a time — “intraprocedural”

* Program statements of interest
» Sequences — basic blocks
» Conditionals — transitions between basic blocks in function
» Loops — transitions that connect to prior basic blocks
» Calls — transition to another function

» Return — transition that completes the function

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Control Flow Analysis =

« Compute Intraprocedural Control Flow

From Last Time: BB and CFG
Basic block — a sequence of

consecutive operations in which

flow of control enters at the X =y+l; BB1
beginning and leaves at the end if (¢
without halt or possibility of (Xﬂ)L oo —
branching except at the end , ’ Lo Ll
else i
Control Flow Graph — Directed X==5 BB4
graph, G = (V.E) where each Y=+ 1; # P
vertex V is a basic block and if (a) o o
thereis an edge E, vl (BB1) = y++;
v2 (BB2) if BB2 can immediately aleo T
follow BB1 in some execution BB7

sequence B
Ztr; @
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Constant Propagation -

o Substitute the values of known constants in
expressions

* Propagate the values among variables assigned those
constants

« Example assignments resulting from propagation to
detect problems

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Detect Buffer Overflow —

« What are the constant values below?

1 char text[] = "Foo Bar"”;

2 char bufferl[4], buffer2[4];

4 int i, n = sizeof(text);
5 for(i=0;i<n;++1)
6 buffer2[i] = text[i];

7 printf("Last char of text is: %c", text[n]);

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Detect Buffer Overflow —

* Where can they be propagated!?

1 char text[] = "Foo Bar"”;

2 char bufferl[4], buffer2[4];

4 int i, n = sizeof(text);
5 for(i=0;i<n;++1)
6 buffer2[i] = text[i];

7 printf("Last char of text is: %c", text[n]);

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Detect Buffer Overflow =

* Where are the memory errors!

1 char text[] = "Foo Bar"”;

2 char bufferl[4], buffer2[4];

4 int i, n = 20;
5 for(i=0;i<20;++1i)
6 buffer2[i] = text[i];

7 printf("Last char of text is: %c", text[20]);

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Detect Buffer Overflow =

* Where are the memory errors!

1 char text[] = "Foo Bar"”;

2 char bufferl[4], buffer2[4];

4 int i, n = 20;
5 for(i=0;i<20;++1i)
6 buffer2[i] = text[i];

7 printf("Last char of text is: %c", text[20]);

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Constant Propagation -

 Typically, constant propagation is a start, but need
more to detect an error

« For the buffer overflow we need to know that
access to buffer2[4-19] and text[20] are memory
errors

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Abstract Interpretation o

Descriptors represent the sign of a value

» Positive, negative, zero, unknown
 For an expression, c =a *b
» If a has a descriptor pos

» And b has a descriptor neg
« What is the descriptor for c after that instruction!?

* How might this help!?

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Abstract Interpretation S

 E.g., integer overflows
« Use unknown for signed ints

« And “<constant” for signed after (signed < constant)

“Cast_unsigned” creates a positive from <constant

« Could we detect a problem here!

if (signed < constant)

strlcpy(dst, src, (cast unsigned)signed);
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Type-based Analysis S

« Maybe we want to check for certain properties
about variables in our program

« Can use type information associated with variables
to perform such checks

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Type-based Analysis S

« Maybe we want to check for certain properties
about variables in our program

« Suppose we want to know if a variable’s value has
been “checked” — such as for input validation

« We can use type-based analysis to do that

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Type-based Analysis S

« Maybe we want to check for certain properties
about variables in our program

« Suppose we want to know if a variable’s value has
been “checked” — such as for input validation

« We can use type-based analysis to do that

N sl

Sec rity Check
C<-U

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Type-based Analysis S

« Maybe we want to check for certain properties
about variables in our program

« Suppose we want to know if a variable’s value has
been “checked” — such as for input validation

« Using type qualifiers, can extend basic types

void func a(struct file * $checked filp);
void func b( void )
{

struct file * Sunchecked filp;

func a(filp);

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Type-based Analysis S

« Maybe we want to check for certain properties
about variables in our program

« Suppose we want to know if a variable’s value has
been “checked” — such as for input validation

 To find missing mediation (e.g., input validation)
» Initialize untrusted inputs to “unchecked”

» Initialize security-sensitive operation to use “checked”

v

|dentify mediation (create “checked” version)

v

Detect type error — from “unchecked” to “checked”

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Type-based Ana S

° ° L]
* Vulnerability in the Lo
long sys_fcntl(unsigned int f£d,
unsigned int cmd,
unsigned long arg)

code to the right

filp = fget(£fd);

» Can you see it!

->fcentl(filp, cmd, arg);

err do fcntl(fd, cmd, arg, filp);

}

static long

do_fcntl(unsigned int fd,
unsigned int cmd,
unsigned long arg,
struct file * filp) {

switch(cmd) {

case F_SETLK:

err = fcntl setlk(fd, ...);

}

/* from fs/locks.c */
fentl _getlk(fd, ...) {
struct file * filp;

filp = fget(fd);

/* operate on filp */

Systems and Internet Infrastructure Security Laboratory (SIIS)
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Type-based Analysis b

 Vulnerability in the Sl )
code to the right e i s

filp = fget(£fd);

» fd is unchecked as is filp

->fcentl(filp, cmd, arg);

initial Iy in Sys_fnCtI err = do fcntl(fd, cmd, arg, filp);

» However, filp would be e LS e

do_ fcntl( gned int fd,
. uns:!.gned int cmd,
reassigned to a checked AT

variable after security_op

ase F_SETLK:

err = fcntl setlk(fd, ...);

« So what’s the problem!? o

3
Hh
[
~
=
[o]
Q
~
)
Q

*/
o) 4
ruct file * filp;

o o
—
Q
[0
ol
i
~
Hh
o,

filp = fget(fd);

/* operate on filp */
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Type-based Analysis

PENNSTAT
[ i)

 Vulnerability in the code
to the right

» fd and filp are unchecked
initially
» filp is checked in sys fnctl

» However, filp is reassigned
from an unchecked fd
variable in fnctl_getlk/setlk

* fd, not the checked filp
is passed to do_fentl
and to fentl_getlk/setlk

Systems and Internet Infrastructure Security Laboratory (SIIS)

struct file * filp;

filp = fget(£fd);

err = security ops->file aps
->fcentl(filp, cmd, arg);

ic
do_fcntl(unsigrfed int £d,

err = do fcntl(fd, cmd, arg, filp);

uns i grieg=—tre—cm,—
unsigned long arg,
struct file * filp) {

switch(cmd) {

ase F_SETLK:

err = fcntl setlf(fd, ...);

*/
o) 4
ruct file * filp;

o o b
—
Q 3
()
t Fh
= n
F NS
—~
Hh O
Q. Q
-~ )

0
Q

filp = fget(fd);

/* operate on filp */
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Take Away =

« Static analysis evaluates all the ways that a program
may execute in one pass

» Can be “sound” (no false negatives — find all flaws)

» But, then will likely produce some false positives

« Examined some building blocks of static analysis and
how they could be used

» Constant propagation, control flow, type analysis

« There is much more to the application of static
analysis to security problems — a key for software
security

Systems and Internet Infrastructure Security Laboratory (SIIS)




