
Systems and Internet Infrastructure Security Laboratory (SIIS) Page 1

CMPSC 447
Static Analysis

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Our Goal

2

• One option is to develop automated techniques to
detect vulnerabilities before they can be exploited

‣ Your program may have flaws that may lead to a
vulnerabilities

‣ How to find them?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Dynamic Analysis Limits
• Major advantage

‣ When we produce a crash, it is a real crash

• Major limitation

‣ We cannot find all vulnerabilities in a program with
dynamic testing in most cases

• Why not?

4

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Dynamic Analysis Limits
• Major advantage

‣ When we produce a crash, it is a real crash

• Major limitation

‣ We cannot find all vulnerabilities in a program with
dynamic testing in most cases

• Why not?

‣ Cannot run all possible inputs in most cases

5

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Goal
• Can we build a technique that identifies *all*

vulnerabilities?

6

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Goal
• Can we build a technique that identifies *all* flaws?

‣ Turns out that we can: static analysis

‣ Over-approximate all possible executions of a program, so
any flaw that can happen will be found

• And some flaws that are not really possible (false positives)

‣ But, can be effective when used carefully

7

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Static Analysis
• Explore all possible executions of a program

‣ All possible inputs

‣ All possible states

8

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A Form of Testing
• Static analysis is an alternative to dynamic testing

• Dynamic

‣ Select concrete inputs

‣ Obtain a sequence of states given those inputs

‣ Apply many concrete inputs (i.e., run many tests)

• Static

‣ Select abstract inputs with common properties

‣ Obtain sets of states created by executing abstract inputs

‣ One “run”

9

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Static Analysis
• Provides an approximation of behavior

• “Run in the aggregate”
‣ Rather than executing on ordinary states

‣ Finite-sized descriptors representing a collection of states

• “Run in non-standard way”
‣ Run in fragments

‣ Stitch them together to cover all paths

• Runtime testing is inherently incomplete, but static
analysis can cover all paths

10

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Static Analysis
• Consider the following code

int main(int argc, char **argv) {
char *buf1R1;

char *buf2R1;

char *buf2R2;

char *buf3R2;

buf1R1 = (char *) malloc(BUFSIZER1);
buf2R1 = (char *) malloc(BUFSIZER1);

free(buf2R1);

buf2R2 = (char *) malloc(BUFSIZER2);

buf3R2 = (char *) malloc(BUFSIZER2);

strncpy(buf2R1, argv[1], BUFSIZER1-1);

free(buf1R1);
free(buf2R2);

free(buf3R2);

}

11

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Static Analysis
• Can we find a use-after-free flaw?

int main(int argc, char **argv) {
char *buf1R1;

char *buf2R1;

char *buf2R2;

char *buf3R2;

buf1R1 = (char *) malloc(BUFSIZER1);
buf2R1 = (char *) malloc(BUFSIZER1);

free(buf2R1);

buf2R2 = (char *) malloc(BUFSIZER2);

buf3R2 = (char *) malloc(BUFSIZER2);

strncpy(buf2R1, argv[1], BUFSIZER1-1);

free(buf1R1);
free(buf2R2);

free(buf3R2);

}

12

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Static Analysis
• Various properties of programs can be tracked

‣ Control flow

‣ Constants

‣ Types

‣ Values (sets of values)

‣ Data flow

• Which ones will expose which vulnerabilities
accurately (and not too many false positives)
requires some finesse

14

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Control Flow Analysis
• Compute the control flow of a program

‣ I.e., possible execution paths

• To find an execution path that leads to a use-after-
free for a pointer

‣ That may be run by the program

• Overapproximates executions

• For just the part of the program of interest

‣ How do we do this?

16

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Intraprocedural CFG

17

• Statements

‣ Nodes

‣ One successor and one predecessor

• Basic Blocks

‣ Multiple successors (multiple predecessors)

• Unique Enter and Exit

‣ All start nodes are successors of enter

‣ All return nodes are predecessors of exit

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Control Flow for Example

18

• What is this example’s control flow

int main(int argc, char **argv) {

char *buf1R1;

char *buf2R1;

char *buf2R2;

char *buf3R2;

buf1R1 = (char *) malloc(BUFSIZER1);

buf2R1 = (char *) malloc(BUFSIZER1);

free(buf2R1);

buf2R2 = (char *) malloc(BUFSIZER2);

buf3R2 = (char *) malloc(BUFSIZER2);

strncpy(buf2R1, argv[1], BUFSIZER1-1);

free(buf1R1);

free(buf2R2);
free(buf3R2);

}

malloc

malloc

free

malloc

malloc

use

free

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Control Flow for Example

19

• Ah ha! A “use” after a “free”

int main(int argc, char **argv) {

char *buf1R1;

char *buf2R1;

char *buf2R2;

char *buf3R2;

buf1R1 = (char *) malloc(BUFSIZER1);

buf2R1 = (char *) malloc(BUFSIZER1);

free(buf2R1);

buf2R2 = (char *) malloc(BUFSIZER2);

buf3R2 = (char *) malloc(BUFSIZER2);

strncpy(buf2R1, argv[1], BUFSIZER1-1);

free(buf1R1);

free(buf2R2);
free(buf3R2);

}

malloc

malloc

free

malloc

malloc

use

free

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Control Flow for Example

20

• Happens to refer to the same pointer

int main(int argc, char **argv) {

char *buf1R1;

char *buf2R1;

char *buf2R2;

char *buf3R2;

buf1R1 = (char *) malloc(BUFSIZER1);

buf2R1 = (char *) malloc(BUFSIZER1);

free(buf2R1);

buf2R2 = (char *) malloc(BUFSIZER2);

buf3R2 = (char *) malloc(BUFSIZER2);

strncpy(buf2R1, argv[1], BUFSIZER1-1);

free(buf1R1);

free(buf2R2);
free(buf3R2);

}

malloc

malloc

free

malloc

malloc

use

free

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Control Flow for Example

21

• Would be a false positive otherwise

int main(int argc, char **argv) {

char *buf1R1;

char *buf2R1;

char *buf2R2;

char *buf3R2;

buf1R1 = (char *) malloc(BUFSIZER1);

buf2R1 = (char *) malloc(BUFSIZER1);

free(buf2R1);

buf2R2 = (char *) malloc(BUFSIZER2);

buf3R2 = (char *) malloc(BUFSIZER2);

strncpy(buf2R2, argv[1], BUFSIZER1-1);

free(buf1R1);

free(buf2R2);
free(buf3R2);

}

malloc

malloc

free

malloc

malloc

use

free

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Control Flow for Example

22

• Reason about possible values (concrete)

int main(int argc, char **argv) {

char *buf1R1;

char *buf2R1;

char *buf2R2;

char *buf3R2;

buf1R1 = (char *) malloc(BUFSIZER1);

buf2R1 = (char *) malloc(BUFSIZER1);

free(buf2R1);

buf2R2 = (char *) malloc(BUFSIZER2);

buf3R2 = (char *) malloc(BUFSIZER2);

strncpy(buf2R1, argv[1], BUFSIZER1-1);

free(buf1R1);

free(buf2R2);
free(buf3R2);

}

malloc(1R1)

malloc (2R1)

free(2R1)

malloc (2R2)

malloc (3R2)

use(2R1)

free

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Control Flow Analysis
• Compute Control Flow

• One function at a time – “intraprocedural”

• Program statements of interest

‣ Sequences – basic blocks

‣ Conditionals – transitions between basic blocks in function

‣ Loops – transitions that connect to prior basic blocks

‣ Calls – transition to another function

‣ Return – transition that completes the function

23

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Control Flow Analysis
• Compute Intraprocedural Control Flow

24

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Constant Propagation
• Substitute the values of known constants in

expressions

• Propagate the values among variables assigned those
constants

• Example assignments resulting from propagation to
detect problems

30

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Detect Buffer Overflow
• What are the constant values below?

1 char text[] = "Foo Bar”;

2 char buffer1[4], buffer2[4];

3

4 int i, n = sizeof(text);

5 for(i=0;i<n;++i)

6 buffer2[i] = text[i];

7 printf("Last char of text is: %c", text[n]);

31

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Detect Buffer Overflow
• Where can they be propagated?

1 char text[] = "Foo Bar”;

2 char buffer1[4], buffer2[4];

3

4 int i, n = sizeof(text);

5 for(i=0;i<n;++i)

6 buffer2[i] = text[i];

7 printf("Last char of text is: %c", text[n]);

32

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Detect Buffer Overflow
• Where are the memory errors?

1 char text[] = "Foo Bar”;

2 char buffer1[4], buffer2[4];

3

4 int i, n = 20;

5 for(i=0;i<20;++i)

6 buffer2[i] = text[i];

7 printf("Last char of text is: %c", text[20]);

33

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Detect Buffer Overflow
• Where are the memory errors?

1 char text[] = "Foo Bar”;

2 char buffer1[4], buffer2[4];

3

4 int i, n = 20;

5 for(i=0;i<20;++i)

6 buffer2[i] = text[i];

7 printf("Last char of text is: %c", text[20]);

34

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Constant Propagation
• Typically, constant propagation is a start, but need

more to detect an error

• For the buffer overflow we need to know that
access to buffer2[4-19] and text[20] are memory
errors

35

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Abstract Interpretation
• Descriptors represent the sign of a value

‣ Positive, negative, zero, unknown

• For an expression, c = a * b

‣ If a has a descriptor pos

‣ And b has a descriptor neg

• What is the descriptor for c after that instruction?

• How might this help?

36

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Abstract Interpretation
• E.g., integer overflows

• Use unknown for signed ints

• And “<constant” for signed after (signed < constant)

• “Cast_unsigned” creates a positive from <constant

• Could we detect a problem here?
if (signed < constant)

strlcpy(dst, src, (cast_unsigned)signed);

37

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Type-based Analysis
• Maybe we want to check for certain properties

about variables in our program

• Can use type information associated with variables
to perform such checks

38

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Type-based Analysis
• Maybe we want to check for certain properties

about variables in our program

• Suppose we want to know if a variable’s value has
been “checked” – such as for input validation

• We can use type-based analysis to do that

39

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Type-based Analysis
• Maybe we want to check for certain properties

about variables in our program

• Suppose we want to know if a variable’s value has
been “checked” – such as for input validation

• We can use type-based analysis to do that

41

U UU U

C
C: $checked
U: $unchecked

CC

C <- U
Security Check

Figure 4: Detecting Security Violations via Type Infer-
encing.

ical depiction of our approach. All controlled objects
are initialized with an unchecked qualifier. The pa-
rameters to controlling functions that are used in con-
trolled operations are specified as requiring checked
qualified objects (as func_a was above). Authoriza-
tions change the qualified type of the object they autho-
rize to checked. Using these qualifiers, CQUAL’s type
inference and analysis will report a type violation if there
is any path from an initializing function (where the ob-
ject is unchecked) to a controlling function (where the
object must be checked) that does not contain an au-
thorization (a cast from unchecked to checked).

There are three requirements for this solution (equivalent
to steps 1, 2, and 3, in the previous section):

1. All controlled objects must be initialized to
unchecked.

2. All function parameters that are used in a controlled
operation must be marked as checked.

3. Authorizations must upgrade the authorized ob-
ject’s qualified type to checked.

If the number of controlled objects and controlling func-
tions was small, we could manually annotate the source
(as was done by Wagner et. al. to detect format string
vulnerabilities using CQUAL [14]). Unfortunately, both
are far too numerous for manual specification to be fea-
sible. Therefore, we use a modified version of GCC and
a set of PERL scripts to automate this process.

In the following subsections we detail our approach to
each of the seven steps outlined in the previous section.

3.2.1 Step 1: Initializing Controlled Objects to
Unchecked

We locate the origin (i.e., declaration) of all controlled
objects and qualify them as unchecked. There are
three different kinds of variables that a function can ac-
cess: global variables, local variables, and parameters.
Currently we do not consider global variables, which ac-
count for less than 2% of controlled objects.

All locally declared variables of a controlled type are
qualified as unchecked. A special case of this is
when reference to a structure member of a controlled
data type is passed as a parameter to a function (e.g.
f(dentry->d_inode), where field d_inode
is of controlled type). It should also be qualified as
unchecked, because it is equivalent to declaring a
local variable, initializing it to be a reference to the
structure member, and then passing the variable to the
function. To qualify such cases, we explicitly cast the
parameter to unchecked at the function call (e.g.
f((struct inode * $unchecked)dentry-
> d_inode)).

The task of marking local variables of controlled types
is automated using two tools: one for controlled local
variables and one for the passing of structure member
references to functions. First, we modified GCC to out-
put the location (file and line number) of any local vari-
able declaration with a controlled type. To achieve this,
we inserted code that traverses the abstract syntax tree
(AST) for each function as it is compiled. The code
scans the AST for local declarations (VAR_DECL nodes)
and prints the location details if the type (TREE_TYPE)
of the declaration is a controlled type (independent of
the level of indirection). In the case of structure member
references, our GCC code scans the AST for function
calls (CALL_EXPR nodes). If any parameter is a refer-
ence to structure member (COMPONENT_REF node, see
Section 3.2.2 for more discussion), and the type of the
referenced field is one of the controlled types, then GCC
prints out detailed location and type information about
the parameter. Next, this information is input to a PERL
script that inserts appropriate annotations into the source
code.

For parameters in function declarations, we leave their
types unqualified. CQUAL then automatically infers
their type during the analysis process. There are a few
exceptions to this rule, where we manually annotate
function prototypes (in two header files) that we know
expect checked type parameters.

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Type-based Analysis
• Maybe we want to check for certain properties

about variables in our program

• Suppose we want to know if a variable’s value has
been “checked” – such as for input validation

• Using type qualifiers, can extend basic types

42

analysis tool [6] enables determination of the authoriza-
tion requirements of controlled operations, so rather than
developing a new analysis tool, we use our runtime re-
sults to find the authorization requirements.

2.3 Summary

When we first examined this problem, it appeared that an
extensive static analysis tool with inter-procedural data-
flow analysis capability was needed. Such tools either
are not available to the public, do not work on Linux ker-
nel (due to scalability issues or C coding style issues),
or are too complicated to customize for our problem.
A closer look at the nature of the verification problem,
however, reveals that a less-powerful static analysis tool
might be sufficient. For verification purposes, we do not
care about the exact value of the controlled object. We
only care about its authorization state (i.e., authorized or
non-authorized) and that its variable is not re-assigned.
Some limited source analysis may be necessary to ver-
ify that the expected conditions apply, but this should be
quite simple in most cases.

3 Approach

3.1 CQUAL Background

CQUAL is a type-based static analysis tool that as-
sists programmers in searching for bugs in C programs.
CQUAL supports user-defined type qualifiers which are
used in the same way as the standard C type qualifiers
such as const.

The following code segment shows an example of a user-
defined type qualifier: unchecked. We use this quali-
fier to denote a controlled object that has not been autho-
rized. This declaration states that the file object (filp)
has not been checked.

struct file * $unchecked filp;

Typically, programmers specify a type qualifier lattice
which defines the sub-type relationships between quali-
fiers and annotate the program with the appropriate type
qualifiers. A lattice is a partially ordered set in which
all nonempty finite subsets have a least upper bound and
a greatest lower bound. For example, Figure 3 shows a

partial order {
$checked < $unchecked

}

Figure 3: A lattice of type qualifiers.

lattice with two elements, checked and unchecked,
and the subtype relation as the partial order. Here it
means checked is a subtype of unchecked.

CQUAL has a few built-in inference rules that extend the
subtype relation to qualified types. For example, one of
the rules states that if Q1 < Q2 (meaning qualifier Q1
is a subtype of qualifier Q2) then type Q1 T is a sub-
type of Q2 T for any given type T. Replacing Q1 and
Q2 with checked and unchecked respectively, we
have that checked T is a subtype of unchecked T.
From an object-oriented programming point of view,
this means that a checked type can be used wher-
ever an unchecked type is expected, but using an
unchecked type where a checked type is expected
results in a type violation. The following code seg-
ment shows a violation of the type hierarchy. Function
func_a expects a checked file pointer as its parame-
ter, but the parameter passed is of type unchecked file
pointer.

void func_a(struct file * $checked filp);

void func_b(void)
{

struct file * $unchecked filp;
...
func_a(filp);
...

}

Using the extended inference rules, CQUAL performs
qualifier inference to detect violations against the type
relations defined by the lattice. For a more detailed de-
scription of CQUAL, please refer to the original paper
on CQUAL [9].

3.2 Approach

CQUAL is employed to perform the central task of stat-
ically verifying that all inter-procedural paths from any
initializing function to any controlling function, contain
an authorization of the controlled object (steps 6 and 7
from Section 2). This is achieved using the lattice con-
figuration shown in Figure 3. Figure 4 shows a graph-

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Type-based Analysis
• Maybe we want to check for certain properties

about variables in our program

• Suppose we want to know if a variable’s value has
been “checked” – such as for input validation

• To find missing mediation (e.g., input validation)

‣ Initialize untrusted inputs to “unchecked”

‣ Initialize security-sensitive operation to use “checked”

‣ Identify mediation (create “checked” version)

‣ Detect type error – from “unchecked” to “checked”

43

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

/* from fs/fcntl.c */
long sys_fcntl(unsigned int fd,

unsigned int cmd,
unsigned long arg)

{
struct file * filp;
...
filp = fget(fd);
...

err = security ops->file ops
->fcntl(filp, cmd, arg);

...
err = do fcntl(fd, cmd, arg, filp);

...
}

static long
do_fcntl(unsigned int fd,

unsigned int cmd,
unsigned long arg,
struct file * filp) {

...
switch(cmd){
...
case F_SETLK:

err = fcntl setlk(fd, ...);

...
}
...

}

/* from fs/locks.c */
fcntl_getlk(fd, ...) {

struct file * filp;
...

filp = fget(fd);

/* operate on filp */
...

}

Figure 8: Code path from Linux 2.4.9 containing an ex-
ploitable type error.

THREAD-A:
(1) fd1 = open("myfile", O_RDWR);
(2) fd2 = open("target_file", O_RDONLY);
(3) fcntl(fd1, F_SETLK, F_WRLOCK);

KERNEL-A (do_fcntl):
(4) filp = fget(fd1);
(5) security_ops->file_ops

->fcntl (fd1);
(6) fcntl_setlk(fd1,cmd)

THREAD-B:
/* this closes fd1, dups fd2,
* and assigns it to fd1.
*/

(7) dup2(fd2, fd1);

KERNEL-A (fcntl_setlk)
/* this filp is for the target
* file due to (7).
*/

(8) filp = fget (fd1)
(9) lock file

Figure 9: An example exploit.

chance of race conditions when the data structures are
not properly synchronized, which may result in poten-
tial exploits.

Here we present a type error of this kind. Many se-
curity checks that intend to protect the inode structure
are performed on the dentry data structure. For exam-
ple, the following code does the permission check on the
dentry structure, but does the “set attribute” operation
on the inode structure.

/* from fs/attr.c */
...
security_ops->inode_ops

->setattr(dentry, attr);
...
inode = dentry->d_inode;
inode_setattr(inode, attr);
...

It is also quite common in Linux to check on the file
data structure and operate on the inode data structure.

Type-based Analysis
• Vulnerability in the

code to the right

‣ Can you see it?

44

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Type-based Analysis
• Vulnerability in the

code to the right

‣ fd is unchecked as is filp
initially in sys_fnctl

‣ However, filp would be
reassigned to a checked
variable after security_op

• So what’s the problem?

45

/* from fs/fcntl.c */
long sys_fcntl(unsigned int fd,

unsigned int cmd,
unsigned long arg)

{
struct file * filp;
...
filp = fget(fd);
...

err = security ops->file ops
->fcntl(filp, cmd, arg);

...
err = do fcntl(fd, cmd, arg, filp);

...
}

static long
do_fcntl(unsigned int fd,

unsigned int cmd,
unsigned long arg,
struct file * filp) {

...
switch(cmd){
...
case F_SETLK:

err = fcntl setlk(fd, ...);

...
}
...

}

/* from fs/locks.c */
fcntl_getlk(fd, ...) {

struct file * filp;
...

filp = fget(fd);

/* operate on filp */
...

}

Figure 8: Code path from Linux 2.4.9 containing an ex-
ploitable type error.

THREAD-A:
(1) fd1 = open("myfile", O_RDWR);
(2) fd2 = open("target_file", O_RDONLY);
(3) fcntl(fd1, F_SETLK, F_WRLOCK);

KERNEL-A (do_fcntl):
(4) filp = fget(fd1);
(5) security_ops->file_ops

->fcntl (fd1);
(6) fcntl_setlk(fd1,cmd)

THREAD-B:
/* this closes fd1, dups fd2,
* and assigns it to fd1.
*/

(7) dup2(fd2, fd1);

KERNEL-A (fcntl_setlk)
/* this filp is for the target
* file due to (7).
*/

(8) filp = fget (fd1)
(9) lock file

Figure 9: An example exploit.

chance of race conditions when the data structures are
not properly synchronized, which may result in poten-
tial exploits.

Here we present a type error of this kind. Many se-
curity checks that intend to protect the inode structure
are performed on the dentry data structure. For exam-
ple, the following code does the permission check on the
dentry structure, but does the “set attribute” operation
on the inode structure.

/* from fs/attr.c */
...
security_ops->inode_ops

->setattr(dentry, attr);
...
inode = dentry->d_inode;
inode_setattr(inode, attr);
...

It is also quite common in Linux to check on the file
data structure and operate on the inode data structure.

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Type-based Analysis
• Vulnerability in the code

to the right

‣ fd and filp are unchecked
initially

‣ filp is checked in sys_fnctl

‣ However, filp is reassigned
from an unchecked fd
variable in fnctl_getlk/setlk

• fd, not the checked filp
is passed to do_fcntl
and to fcntl_getlk/setlk

46

/* from fs/fcntl.c */
long sys_fcntl(unsigned int fd,

unsigned int cmd,
unsigned long arg)

{
struct file * filp;
...
filp = fget(fd);
...

err = security ops->file ops
->fcntl(filp, cmd, arg);

...
err = do fcntl(fd, cmd, arg, filp);

...
}

static long
do_fcntl(unsigned int fd,

unsigned int cmd,
unsigned long arg,
struct file * filp) {

...
switch(cmd){
...
case F_SETLK:

err = fcntl setlk(fd, ...);

...
}
...

}

/* from fs/locks.c */
fcntl_getlk(fd, ...) {

struct file * filp;
...

filp = fget(fd);

/* operate on filp */
...

}

Figure 8: Code path from Linux 2.4.9 containing an ex-
ploitable type error.

THREAD-A:
(1) fd1 = open("myfile", O_RDWR);
(2) fd2 = open("target_file", O_RDONLY);
(3) fcntl(fd1, F_SETLK, F_WRLOCK);

KERNEL-A (do_fcntl):
(4) filp = fget(fd1);
(5) security_ops->file_ops

->fcntl (fd1);
(6) fcntl_setlk(fd1,cmd)

THREAD-B:
/* this closes fd1, dups fd2,
* and assigns it to fd1.
*/

(7) dup2(fd2, fd1);

KERNEL-A (fcntl_setlk)
/* this filp is for the target
* file due to (7).
*/

(8) filp = fget (fd1)
(9) lock file

Figure 9: An example exploit.

chance of race conditions when the data structures are
not properly synchronized, which may result in poten-
tial exploits.

Here we present a type error of this kind. Many se-
curity checks that intend to protect the inode structure
are performed on the dentry data structure. For exam-
ple, the following code does the permission check on the
dentry structure, but does the “set attribute” operation
on the inode structure.

/* from fs/attr.c */
...
security_ops->inode_ops

->setattr(dentry, attr);
...
inode = dentry->d_inode;
inode_setattr(inode, attr);
...

It is also quite common in Linux to check on the file
data structure and operate on the inode data structure.

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Take Away
• Static analysis evaluates all the ways that a program

may execute in one pass

‣ Can be “sound” (no false negatives – find all flaws)

‣ But, then will likely produce some false positives

• Examined some building blocks of static analysis and
how they could be used

‣ Constant propagation, control flow, type analysis

• There is much more to the application of static
analysis to security problems – a key for software
security

52

