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Spatial Errors S

e Most common errors permit access to memory
outside of the expected region

» These are called spatial errors

» Access outside the expected “space”

e Most of these errors are permitted by simple
programming flaws

»  Of the sort that you are not taught to avoid

» Let’s see how such errors can be avoided

e Some of the changes are rather simple
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Spatial Errors S

e Many of the exploits that we have discussed are
the result of spatial errors
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Spatial Errors S

e What were the fundamental causes from these
two example?

#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h> Y.

_ . char buffer[10];
int function( char xsource ) int (xfnptr)( char *, int );

{ 5
char buffer[10];
int function( char xsource )

sscanf( source, "%s", buffer ); { W Tp—
n . ol n . =9, =9,
gg%gﬁ:(o.buffer address: %p\n\n", buffer ); struct test xa = (struct testk)malloc(sizeof(struct test));
’ printf( "buffer address: %p\n\n", a->buffer );
} a—>fnptr = open;
| _ strcpy( a—>buffer, source );
int main( int argc, char xargv[] ) res = a->fnptr(a->buffer, flags);
{ printf( "fdf] %d\n\n", res );
function( argv[1] ); return 0;
} }
int main( int argc, char xargv[] )
{

int fd = open("stack.c", O_CREAT);
function( argv[1] );

exit(0);
}
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Spatial Errors S

e Operations that may handle string buffers unsafely

#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h> Y.

_ . char buffer[10];
int function( char xsource ) int (xfnptr)( char *, int );

{ 5
char buffer[10];
int function( char xsource )

sscanf( source, "%s", buffer ); . . - .
— —5% " i int res = 0, flags = 0;
gg%gﬁ;(o.buTTer a0dressT %P\, butfer ); struct test xa = (struct testx)malloc(sizeof(struct test));
} ’ printf( "buffer address: %p\n\n", a->buffer );
d ).l‘llptl — UPCII,
. : : strcpy( a—>buffer, source );
int main( int argc, char xargv[] ) res =a=>fnptrta=>buffer;ftags);
print %d\n\n", res );
{ intf( "fdf %d\n\n" )
function( argv([1] ); return 0;
3 }
int main( int argc, char xargv[] )
{
int fd = open("stack.c", O_CREAT);
function( argv[1] );
exit(0);
}
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What Is Going Wrong?? S

e Both of these functions process “strings’?
»  What is a string?
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PENNSTATE

What Is Going Wrong? S

e Both of these functions process “strings’?
»  What is a string?

e Sequence of bytes terminating with a null byte
e Issues with strings
» Sequence may be longer than the memory region (bounds)

» Sequence may not be terminated by a null byte (bounds)

» Sequence may be terminated before expected (truncate)
e Each of these issues may lead to problems

» |f undetected
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Obvious Solution in C =

e “Obvious” solution when using C is to always enforce
bounds
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Enforcing Bounds S

e Two ways to enforce bounds
» Check memory bounds
» Automatic memory resizing

e Checking bounds

» Make sure that a memory operation is limited to the
associated memory region

e Automatic resizing

» Resize the memory region to accommodate the memory
required to satisfy the operation safely

e Typical functions do not check bounds or auto resize
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Function w/o Bounds Checks =

e gets(3) — reads input without checking. Don’t use it!
o strcpy(3) — strcpy(dest, src) — copies from src to dest
» If src longer than dest buffer, keeps writing!
e strcat(3) — strcat(dest, src) — appends src to dest
» If srct+data-in-dest longer than dest buffer, keeps writing!
e scanf() family of input functions — many options
»  scanf(3), fscanf(3), sscanf(3), vscanf(3), vsscanf(3), vfscanf(3)
»  Default options don’t control max length (e.g., bare “%s")
e Many other dangerous functions, e.g.:
» realpath(3), getopt(3), getpass(3)
»  streadd(3), strecpy(3), and strtrns(3)
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Bounds Checking Methods ~ "™"g"

e For each byte in the operation:

e If oversized option (|) — stop processing input

» Reject and try again, or even halt program (may make
DoS)

o If oversized option (2) — truncate data

»  Common approach, but has issues:
e Terminates text “in the middle” at place of attacker’s choosing
e Way better to truncate than to allow easy buffer overflow attack

e But, still could lead to problems?
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Truncation =

e [ssues with truncation

» Terminates text " in the middle” at place of attacker’s
choosing

» Can strip off critical data, escapes, etc. at the end
» Can break in the middle of multi-byte character

e UTF-8 variable-width character encoding (> one byte sometimes)

o UTF-16 usually 2 bytes/character, but can be 4 bytes/character

» Some routines truncate & return indicator so you can stop
processing input
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Automatic Resizing =

e For each byte in the operation:

o If oversized — Auto-resize — move string to a new
memory region, if necessary

»  This is what most languages do automatically
e other than C

e Must deal with “too large” data

e By default, handling auto-resize manually in C can
create issues

» More code changes/complexity in existing C code

» Dynamic allocation is manual in C, so adds new risks

e Temporal errors — later
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Traditional Solutions o

e Depend mostly on strncpy(3), strncat(3), sprintf(3)

» Can be hard to use correctly

o char *strncpy(char *DST, const char *SRC, size t
LENGTH)

» Copy bytes from SRC to DST
» Up to LENGTH bytes; if less, NULL-fills

e If LENGTH is the size of the DST memory region

» Can fill memory region without null-terminator
e Thus, does not guarantee creating a C string

» Can truncate “in the middle,” leaving malformed data

e Yet difficult to detect when it happens

Systems and Internet Infrastructure Security (SIIS) Laboratory




PENNSTAT

Traditional Solutions o

e Depend mostly on strncpy(3), strncat(3), sprintf(3)

» Can be hard to use correctly

o char *strncat(char *DST, const char *SRC, size t
LENGTH)

» Find end of string in DST (\0)
» Append up to LENGTH characters in SRC there

e If result is the size of the DST memory region
» Can fill memory region without null-terminator
e Thus, does not guarantee creating a C string

» Can truncate “in the middle,” leaving malformed data

e Yet difficult to detect when it happens
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Strncpy/Strncat =

e Fill buffer to length and return reference to result

»  No termination
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Strncpy/Strncat S

e Fill buffer to length and return reference to result

»  No termination
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PENNSTATE

Strncpy/Strncat S

e Fill buffer to length and return reference to result

» No termination

» Truncation! How do we check!?

»  Only returns a reference to the start of the region

e Telling us nothing about its state
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Traditional Solutions o

e Depend mostly on strncpy(3), strncat(3), sprintf(3)

» Can be hard to use correctly

e int sprintf(char *STR, const char *FORMAT, ...);

» Results put into STR
» FORMAT can include length control information

e For example, sprintf(DEST, "%.*s", MAXLEN, SRC);

» Like strncpy/strncat, does not guarantee null-termination

e Does return the number of characters “printed”

€¢I

» Don’t forget the “.” — or no bounds checking

»  Using "*", then you can pass the maximum size (MAXLEN)
as a parameter
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There Is Help =

e There are command APIs and options for existing
commands that provide

» Bound checking and notification of truncation
» Auto-resizing without truncation

e The ones available now are a bit complex, but others
have been proposed that are not yet widely available

“e“’“ I'
\
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Traditional Solution — That Works! =

e Available now: snprintf(3), vsnprintf(3)
» Essentially the same functions, although arg format differs

o int snprintf(char *S, size_t N, const char *FORMAT, ...);
»  Writes output to buffer S up to N chars (bounds check)
»  Always writes \O’ at end if N>=1| (terminate)

» Returns “length that would have been written” or negative
if error (reports truncation or error)

e Thus, achieves goals of correct bounds checking

» Enforces bounds, ensures correct C string, and reports
truncation or error

e len = snprintf(buf, buflen, "%s", original_value);

e if (len <0 || len >= buflen) ... // handle error/truncation
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Traditional Solution — That Works! =

e Available now: snprintf(3), vsnprintf(3)
» Essentially the same functions, although arg format differs

o int snprintf(char *S, size_t N, const char *FORMAT, ...);
» So, you should use this for safe programming today
» Replaces strcpy and others directly

» How do you use for strcat!?
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Traditional Solution — That Works! S

e Available now: snprintf(3), vsnprintf(3)
» Essentially the same functions, although arg format differs

e int snprintf(char *S, size_t N, const char *FORMAT, ...);

» So, you should use this for safe programming today
» Replaces strcpy and others directly

» How do you use for strcat!?
e Need to find end of string to concatenate — set to S

e Need to find the remaining size of the buffer — set to N
» Do need to compute this correctly
o At least this snprintf/vsnprintf will ensure null-termination at N

e Don’t forget to check whether truncation or an error occurred
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Traditional Solution — That Works! =

e Available now: snprintf(3), vsnprintf(3)
» Essentially the same functions, although arg format differs

e int snprintf(char *S, size_t N, const char *FORMAT, ...);

» Kind of ugly to use
» Other options?

-

|

< N\ _OPTION 7™ il
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Emerging Solutions 5

e Available in limited systems: stricpy(3), stricat(3)

»  Similar to snprintf in semantics — from *BSD

o Int stricpy(char *DST, const char *SRC, size_t SIZE);
» Looks more like strncpy/strncat; but less error prone
» Take SIZE of the buffer DST — rather than a length (bounds)
» Ensure null-termination relative to SIZE (terminate)

» Return number of bytes that would have been read
(truncate)

e Relatively easy to use
» if (strlcpy(dest, src, destsize) >= destsize) ... // truncation!

» Not universally available
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Emerging Solutions 5

e Available in limited systems: strcpy s, strcat_s

»  Similar to snprintf in semantics — from Microsoft

e errno_t strcpy_s(char *restrict DST, rsize_t SIZE, const
char *restrict SRC);

» Looks more like strncpy/strncat; but less error prone
» Take SIZE of the buffer DST — rather than a length (bounds)
» Checks constraints and returns if they are met (return 0)
» Key constraint: all bytes of SRC will fit in DST with \0
e Relatively easy to use
» if (strcpy_s(dest, src, destsize) < 0) ... // truncation!

» Not universally available — multithreading limitations
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Safe Bounds Checking S

e Take the size of the buffer

» Limit length based on buffer size with termination

» Truncation: detect happens and how much truncation

» Return value enables determination whether any and ho
much truncation occurred to assess security
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Auto Resize Solutions S

e Available in limited systems: asprintf(3), vasprintf(3)
» Auto-resize versions of sprint and vsprintf (are unsafe)

e int asprintf(char **S, const char *FORMAT, ...);

» Pass a pointer to a reference to a string buffer
» Memory for the buffer and its reference are assigned to S

» The memory allocated is sufficient to hold a proper C string
of the value resulting from the processing of FORMAT

» Returns # of bytes “printed”; -1 if error
e Simple to use; no termination, but need to “free”
» char *result = NULL;

» asprintf(&result, “x=%s and y=%s\n", x, y);
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Scanf and Friends S

e VWhat about other functions like scanf?

» scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf — all unsafe by
default

»  Why!?
e char buffer[10];

o scanf(buffer, “%s”);
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Scanf and Friends S

e VWhat about other functions like scanf?

» scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf — all unsafe by
default

»  Why!?
e char buffer[10];
o scanf(buffer, “%s”);

» Fortunately, these can be made safe quite easily

e By leveraging auto-resizing option
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Scanf and Friends S

e What about other functions like scanf?

» scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf — all unsafe by
default

» Instead, use “%ms”’ to auto-resize
o char *buffer = NULL; // Must be set to NULL
o scanf(buffer, “%ms”);

» Allocates memory for the buffer dynamically to hold input
safely — null-terminated, no truncation required

e Note: also, can use for other functions that process
input like getline

» Should check whether the function you use supports this
option
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Scanf in a Loop S

e What happens when...

»  Use “%ms” to auto-resize, but the function (scanf) is in a
loop!?

e char *buffer = NULL; // Must be set to NULL
e while (TRUE) {

. scanf(buffer, “%ms”);

¢ }
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Scanf in a Loop S

e What happens when...

»  Use “%ms” to auto-resize, but the function (scanf) is in a
loop!?

e char *buffer = NULL; // Must be set to NULL
e while (TRUE) {
. scanf(buffer, “7%ms”);
¢ }
e Good news: The library knows and will keep resizing!

» If necessary — when the input is too big for the current
buffer
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Memory Object Copying 8

e What about just copying memory buffers!?
» That are not strings (i.e., no termination)

» E.g., structure

e What would you normally do to copy a structure of an
object of type A to a memory region of size N?

How to Copy
Any Object
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Traditional Solution =

e Usual: memcpy(3)

» Basic copying of memory values to a new region

o void *memcpy(void *restrict DST, const void *restrict
SRC, size_t N);

e Copies N bytes from memory area SRC to memory
area DST

» Provides bounds checking
» Does not consider null-termination

e No null-terminator in this case, so that is OK
» Does not consider truncation

e Need to check for that
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Memory and Strings =

e POSIX now includes memccpy:

e void* memccpy(void* restrict DST, const void™ restrict
SRC, int C, size_t N);

» Copies up to N bytes from SRC to DST until C is found,
which is copied (e.g., C =\0’, so can use for strings),

» Returns a pointer to just past the copy of the specified
character C

» or NULL if C was not found in the first N characters of SRC

» So, can detect whether truncation occurred
e Note: You still have to calculate N (# bytes to copy)
e Adopted by C standard committee in 2019
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Take Away =

e The original versions of C string and memory
functions did not consider spatial errors

» So, spatial errors have become common

e To ensure correct operation, we need to enforce
memory region bounds

» Check bounds or automatically resize

e [here are now several function APIls that enforce
bounds

» Check bounds, ensure null-termination (if required),
and report whether truncation occurred (to assess)
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