
Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

CMPSC 447
Spatial Errors

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 2

Spatial Errors
• Most common errors permit access to memory

outside of the expected region

‣ These are called spatial errors

‣ Access outside the expected “space”

• Most of these errors are permitted by simple
programming flaws

‣ Of the sort that you are not taught to avoid

‣ Let’s see how such errors can be avoided

• Some of the changes are rather simple

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 3

Spatial Errors
• Many of the exploits that we have discussed are

the result of spatial errors

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 4

Spatial Errors
• What were the fundamental causes from these

two example?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 5

Spatial Errors
• Operations that may handle string buffers unsafely

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

What Is Going Wrong?

• Both of these functions process “strings”?
‣ What is a string?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

What Is Going Wrong?

• Both of these functions process “strings”?
‣ What is a string?
• Sequence of bytes terminating with a null byte

• Issues with strings
‣ Sequence may be longer than the memory region (bounds)

‣ Sequence may not be terminated by a null byte (bounds)

‣ Sequence may be terminated before expected (truncate)

• Each of these issues may lead to problems
‣ If undetected

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Obvious Solution in C

• “Obvious” solution when using C is to always enforce
bounds

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Enforcing Bounds

• Two ways to enforce bounds
‣ Check memory bounds

‣ Automatic memory resizing

• Checking bounds
‣ Make sure that a memory operation is limited to the

associated memory region

• Automatic resizing
‣ Resize the memory region to accommodate the memory

required to satisfy the operation safely

• Typical functions do not check bounds or auto resize

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Function w/o Bounds Checks
• gets(3) – reads input without checking. Don’t use it!

• strcpy(3) – strcpy(dest, src) – copies from src to dest

‣ If src longer than dest buffer, keeps writing!

• strcat(3) – strcat(dest, src) – appends src to dest
‣ If src+data-in-dest longer than dest buffer, keeps writing!

• scanf() family of input functions – many options

‣ scanf(3), fscanf(3), sscanf(3), vscanf(3), vsscanf(3), vfscanf(3)

‣ Default options don’t control max length (e.g., bare “%s”)

• Many other dangerous functions, e.g.:
‣ realpath(3), getopt(3), getpass(3)

‣ streadd(3), strecpy(3), and strtrns(3)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Bounds Checking Methods

• For each byte in the operation:
• If oversized option (1) – stop processing input
‣ Reject and try again, or even halt program (may make

DoS)

• If oversized option (2) – truncate data
‣ Common approach, but has issues:

• Terminates text “in the middle” at place of attacker’s choosing

• Way better to truncate than to allow easy buffer overflow attack

• But, still could lead to problems?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Truncation
• Issues with truncation
‣ Terminates text “in the middle” at place of attacker’s

choosing

‣ Can strip off critical data, escapes, etc. at the end

‣ Can break in the middle of multi-byte character
• UTF-8 variable-width character encoding (> one byte sometimes)

• UTF-16 usually 2 bytes/character, but can be 4 bytes/character

‣ Some routines truncate & return indicator so you can stop
processing input

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Automatic Resizing
• For each byte in the operation:

• If oversized – Auto-resize – move string to a new
memory region, if necessary
‣ This is what most languages do automatically

• other than C

• Must deal with “too large” data

• By default, handling auto-resize manually in C can
create issues
‣ More code changes/complexity in existing C code

‣ Dynamic allocation is manual in C, so adds new risks
• Temporal errors – later

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Traditional Solutions
• Depend mostly on strncpy(3), strncat(3), sprintf(3)
‣ Can be hard to use correctly

• char *strncpy(char *DST, const char *SRC, size_t
LENGTH)
‣ Copy bytes from SRC to DST

‣ Up to LENGTH bytes; if less, NULL-fills

• If LENGTH is the size of the DST memory region
‣ Can fill memory region without null-terminator
• Thus, does not guarantee creating a C string

‣ Can truncate “in the middle,” leaving malformed data
• Yet difficult to detect when it happens

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Traditional Solutions
• Depend mostly on strncpy(3), strncat(3), sprintf(3)
‣ Can be hard to use correctly

• char *strncat(char *DST, const char *SRC, size_t
LENGTH)
‣ Find end of string in DST (\0)

‣ Append up to LENGTH characters in SRC there

• If result is the size of the DST memory region
‣ Can fill memory region without null-terminator

• Thus, does not guarantee creating a C string

‣ Can truncate “in the middle,” leaving malformed data
• Yet difficult to detect when it happens

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Strncpy/Strncat

• Fill buffer to length and return reference to result
‣ No termination

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Strncpy/Strncat

• Fill buffer to length and return reference to result
‣ No termination

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Strncpy/Strncat

• Fill buffer to length and return reference to result
‣ No termination

‣ Truncation? How do we check?

‣ Only returns a reference to the start of the region
• Telling us nothing about its state

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Traditional Solutions
• Depend mostly on strncpy(3), strncat(3), sprintf(3)
‣ Can be hard to use correctly

• int sprintf(char *STR, const char *FORMAT, ...);
‣ Results put into STR

‣ FORMAT can include length control information

• For example, sprintf(DEST, "%.*s", MAXLEN, SRC);
‣ Like strncpy/strncat, does not guarantee null-termination
• Does return the number of characters “printed”

‣ Don’t forget the “.” – or no bounds checking

‣ Using "*", then you can pass the maximum size (MAXLEN)
as a parameter

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

There Is Help
• There are command APIs and options for existing

commands that provide
‣ Bound checking and notification of truncation

‣ Auto-resizing without truncation

• The ones available now are a bit complex, but others
have been proposed that are not yet widely available

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Traditional Solution – That Works!
• Available now: snprintf(3), vsnprintf(3)
‣ Essentially the same functions, although arg format differs

• int snprintf(char *S, size_t N, const char *FORMAT, ...);
‣ Writes output to buffer S up to N chars (bounds check)

‣ Always writes ‘\0’ at end if N>=1 (terminate)

‣ Returns “length that would have been written” or negative
if error (reports truncation or error)

• Thus, achieves goals of correct bounds checking
‣ Enforces bounds, ensures correct C string, and reports

truncation or error
• len = snprintf(buf, buflen, "%s", original_value);

• if (len < 0 || len >= buflen) … // handle error/truncation

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Traditional Solution – That Works!
• Available now: snprintf(3), vsnprintf(3)
‣ Essentially the same functions, although arg format differs

• int snprintf(char *S, size_t N, const char *FORMAT, ...);
‣ So, you should use this for safe programming today

‣ Replaces strcpy and others directly

‣ How do you use for strcat?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Traditional Solution – That Works!

• Available now: snprintf(3), vsnprintf(3)
‣ Essentially the same functions, although arg format differs

• int snprintf(char *S, size_t N, const char *FORMAT, ...);
‣ So, you should use this for safe programming today

‣ Replaces strcpy and others directly

‣ How do you use for strcat?
• Need to find end of string to concatenate – set to S

• Need to find the remaining size of the buffer – set to N

‣ Do need to compute this correctly

• At least this snprintf/vsnprintf will ensure null-termination at N

• Don’t forget to check whether truncation or an error occurred

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Traditional Solution – That Works!
• Available now: snprintf(3), vsnprintf(3)
‣ Essentially the same functions, although arg format differs

• int snprintf(char *S, size_t N, const char *FORMAT, ...);
‣ Kind of ugly to use

‣ Other options?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Emerging Solutions
• Available in limited systems: strlcpy(3), strlcat(3)
‣ Similar to snprintf in semantics – from *BSD

• Int strlcpy(char *DST, const char *SRC, size_t SIZE);
‣ Looks more like strncpy/strncat; but less error prone

‣ Take SIZE of the buffer DST – rather than a length (bounds)

‣ Ensure null-termination relative to SIZE (terminate)

‣ Return number of bytes that would have been read
(truncate)

• Relatively easy to use
‣ if (strlcpy(dest, src, destsize) >= destsize) … // truncation!

‣ Not universally available

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Emerging Solutions
• Available in limited systems: strcpy_s, strcat_s
‣ Similar to snprintf in semantics – from Microsoft

• errno_t strcpy_s(char *restrict DST, rsize_t SIZE, const
char *restrict SRC);
‣ Looks more like strncpy/strncat; but less error prone

‣ Take SIZE of the buffer DST – rather than a length (bounds)

‣ Checks constraints and returns if they are met (return 0)

‣ Key constraint: all bytes of SRC will fit in DST with \0

• Relatively easy to use
‣ if (strcpy_s(dest, src, destsize) < 0) … // truncation!

‣ Not universally available – multithreading limitations

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Safe Bounds Checking

• Take the size of the buffer
‣ Limit length based on buffer size with termination

‣ Truncation: detect happens and how much truncation

‣ Return value enables determination whether any and ho
much truncation occurred to assess security

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Auto Resize Solutions
• Available in limited systems: asprintf(3), vasprintf(3)
‣ Auto-resize versions of sprint and vsprintf (are unsafe)

• int asprintf(char **S, const char *FORMAT, ...);
‣ Pass a pointer to a reference to a string buffer

‣ Memory for the buffer and its reference are assigned to S

‣ The memory allocated is sufficient to hold a proper C string
of the value resulting from the processing of FORMAT

‣ Returns # of bytes “printed”; -1 if error

• Simple to use; no termination, but need to “free”
‣ char *result = NULL;

‣ asprintf(&result, “x=%s and y=%s\n", x, y);

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Scanf and Friends
• What about other functions like scanf?
‣ scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf – all unsafe by

default

‣ Why?
• char buffer[10];

• scanf(buffer, “%s”);

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Scanf and Friends
• What about other functions like scanf?
‣ scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf – all unsafe by

default

‣ Why?
• char buffer[10];

• scanf(buffer, “%s”);

‣ Fortunately, these can be made safe quite easily
• By leveraging auto-resizing option

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Scanf and Friends
• What about other functions like scanf?
‣ scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf – all unsafe by

default

‣ Instead, use “%ms” to auto-resize
• char *buffer = NULL; // Must be set to NULL

• scanf(buffer, “%ms”);

‣ Allocates memory for the buffer dynamically to hold input
safely – null-terminated, no truncation required

• Note: also, can use for other functions that process
input like getline
‣ Should check whether the function you use supports this

option

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Scanf in a Loop
• What happens when…
‣ Use “%ms” to auto-resize, but the function (scanf) is in a

loop?
• char *buffer = NULL; // Must be set to NULL

• while (TRUE) {

• scanf(buffer, “%ms”);

• }

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Scanf in a Loop

• What happens when…
‣ Use “%ms” to auto-resize, but the function (scanf) is in a

loop?
• char *buffer = NULL; // Must be set to NULL

• while (TRUE) {

• scanf(buffer, “%ms”);

• }

• Good news: The library knows and will keep resizing!
‣ If necessary – when the input is too big for the current

buffer

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Memory Object Copying
• What about just copying memory buffers?
‣ That are not strings (i.e., no termination)

‣ E.g., structure

• What would you normally do to copy a structure of an
object of type A to a memory region of size N?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Traditional Solution
• Usual: memcpy(3)
‣ Basic copying of memory values to a new region

• void *memcpy(void *restrict DST, const void *restrict
SRC, size_t N);

• Copies N bytes from memory area SRC to memory
area DST
‣ Provides bounds checking

‣ Does not consider null-termination
• No null-terminator in this case, so that is OK

‣ Does not consider truncation

• Need to check for that

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Memory and Strings
• POSIX now includes memccpy:

• void* memccpy(void* restrict DST, const void* restrict
SRC, int C, size_t N);
‣ Copies up to N bytes from SRC to DST until C is found,

which is copied (e.g., C =‘\0’, so can use for strings),

‣ Returns a pointer to just past the copy of the specified
character C

‣ or NULL if C was not found in the first N characters of SRC

‣ So, can detect whether truncation occurred

• Note: You still have to calculate N (# bytes to copy)

• Adopted by C standard committee in 2019

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 37

Take Away
• The original versions of C string and memory

functions did not consider spatial errors

‣ So, spatial errors have become common

• To ensure correct operation, we need to enforce
memory region bounds

‣ Check bounds or automatically resize

• There are now several function APIs that enforce
bounds

‣ Check bounds, ensure null-termination (if required),
and report whether truncation occurred (to assess)

