\ Systems and Internet
‘ Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

CMPSC 447
Spatial Errors

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab
Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Spatial Errors S

e Most common errors permit access to memory
outside of the expected region

» These are called spatial errors

» Access outside the expected “space”

e Most of these errors are permitted by simple
programming flaws

» Of the sort that you are not taught to avoid

» Let’s see how such errors can be avoided

e Some of the changes are rather simple

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 2

PENNSTATE

Spatial Errors S

e Many of the exploits that we have discussed are
the result of spatial errors

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 3

PENNSTAT

Spatial Errors S

e What were the fundamental causes from these
two example?

#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h> Y.

_ . char buffer[10];
int function(char xsource) int (xfnptr)(char *, int);

{ 5
char buffer[10];
int function(char xsource)

sscanf(source, "%s", buffer); { W Tp—
n . ol n . =9, =9,
gg%gﬁ:(o.buffer address: %p\n\n", buffer); struct test xa = (struct testk)malloc(sizeof(struct test));
’ printf("buffer address: %p\n\n", a->buffer);
} a—>fnptr = open;
| _ strcpy(a—>buffer, source);
int main(int argc, char xargv[]) res = a->fnptr(a->buffer, flags);
{ printf("fdf] %d\n\n", res);
function(argv[1]); return 0;
} }
int main(int argc, char xargv[])
{

int fd = open("stack.c", O_CREAT);
function(argv[1]);

exit(0);
}

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 4

PENNSTATE

Spatial Errors S

e Operations that may handle string buffers unsafely

#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h> Y.

_ . char buffer[10];
int function(char xsource) int (xfnptr)(char *, int);

{ 5
char buffer[10];
int function(char xsource)

sscanf(source, "%s", buffer); . . - .
— —5% " i int res = 0, flags = 0;
gg%gﬁ;(o.buTTer a0dressT %P\, butfer); struct test xa = (struct testx)malloc(sizeof(struct test));
} ’ printf("buffer address: %p\n\n", a->buffer);
d).l‘llptl — UPCII,
. : : strcpy(a—>buffer, source);
int main(int argc, char xargv[]) res =a=>fnptrta=>buffer;ftags);
print %d\n\n", res);
{ intf("fdf %d\n\n")
function(argv([1]); return 0;
3 }
int main(int argc, char xargv[])
{
int fd = open("stack.c", O_CREAT);
function(argv[1]);
exit(0);
}

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 5

PENNSTAT

What Is Going Wrong?? S

e Both of these functions process “strings’?
» What is a string?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

What Is Going Wrong? S

e Both of these functions process “strings’?
» What is a string?

e Sequence of bytes terminating with a null byte
e Issues with strings
» Sequence may be longer than the memory region (bounds)

» Sequence may not be terminated by a null byte (bounds)

» Sequence may be terminated before expected (truncate)
e Each of these issues may lead to problems

» |f undetected

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Obvious Solution in C =

e “Obvious” solution when using C is to always enforce
bounds

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Enforcing Bounds S

e Two ways to enforce bounds
» Check memory bounds
» Automatic memory resizing

e Checking bounds

» Make sure that a memory operation is limited to the
associated memory region

e Automatic resizing

» Resize the memory region to accommodate the memory
required to satisfy the operation safely

e Typical functions do not check bounds or auto resize

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Function w/o Bounds Checks =

e gets(3) — reads input without checking. Don’t use it!
o strcpy(3) — strcpy(dest, src) — copies from src to dest
» If src longer than dest buffer, keeps writing!
e strcat(3) — strcat(dest, src) — appends src to dest
» If srct+data-in-dest longer than dest buffer, keeps writing!
e scanf() family of input functions — many options
» scanf(3), fscanf(3), sscanf(3), vscanf(3), vsscanf(3), vfscanf(3)
» Default options don’t control max length (e.g., bare “%s")
e Many other dangerous functions, e.g.:
» realpath(3), getopt(3), getpass(3)
» streadd(3), strecpy(3), and strtrns(3)

Systems and Internet Infrastructure Security (SIIS) Laboratory

Bounds Checking Methods ~ "™"g"

e For each byte in the operation:

e If oversized option (|) — stop processing input

» Reject and try again, or even halt program (may make
DoS)

o If oversized option (2) — truncate data

» Common approach, but has issues:
e Terminates text “in the middle” at place of attacker’s choosing
e Way better to truncate than to allow easy buffer overflow attack

e But, still could lead to problems?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Truncation =

e [ssues with truncation

» Terminates text " in the middle” at place of attacker’s
choosing

» Can strip off critical data, escapes, etc. at the end
» Can break in the middle of multi-byte character

e UTF-8 variable-width character encoding (> one byte sometimes)

o UTF-16 usually 2 bytes/character, but can be 4 bytes/character

» Some routines truncate & return indicator so you can stop
processing input

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Automatic Resizing =

e For each byte in the operation:

o If oversized — Auto-resize — move string to a new
memory region, if necessary

» This is what most languages do automatically
e other than C

e Must deal with “too large” data

e By default, handling auto-resize manually in C can
create issues

» More code changes/complexity in existing C code

» Dynamic allocation is manual in C, so adds new risks

e Temporal errors — later

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Traditional Solutions o

e Depend mostly on strncpy(3), strncat(3), sprintf(3)

» Can be hard to use correctly

o char *strncpy(char *DST, const char *SRC, size t
LENGTH)

» Copy bytes from SRC to DST
» Up to LENGTH bytes; if less, NULL-fills

e If LENGTH is the size of the DST memory region

» Can fill memory region without null-terminator
e Thus, does not guarantee creating a C string

» Can truncate “in the middle,” leaving malformed data

e Yet difficult to detect when it happens

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Traditional Solutions o

e Depend mostly on strncpy(3), strncat(3), sprintf(3)

» Can be hard to use correctly

o char *strncat(char *DST, const char *SRC, size t
LENGTH)

» Find end of string in DST (\0)
» Append up to LENGTH characters in SRC there

e If result is the size of the DST memory region
» Can fill memory region without null-terminator
e Thus, does not guarantee creating a C string

» Can truncate “in the middle,” leaving malformed data

e Yet difficult to detect when it happens

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Strncpy/Strncat =

e Fill buffer to length and return reference to result

» No termination

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Strncpy/Strncat S

e Fill buffer to length and return reference to result

» No termination

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Strncpy/Strncat S

e Fill buffer to length and return reference to result

» No termination

» Truncation! How do we check!?

» Only returns a reference to the start of the region

e Telling us nothing about its state

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Traditional Solutions o

e Depend mostly on strncpy(3), strncat(3), sprintf(3)

» Can be hard to use correctly

e int sprintf(char *STR, const char *FORMAT, ...);

» Results put into STR
» FORMAT can include length control information

e For example, sprintf(DEST, "%.*s", MAXLEN, SRC);

» Like strncpy/strncat, does not guarantee null-termination

e Does return the number of characters “printed”

€¢I

» Don’t forget the “.” — or no bounds checking

» Using "*", then you can pass the maximum size (MAXLEN)
as a parameter

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

There Is Help =

e There are command APIs and options for existing
commands that provide

» Bound checking and notification of truncation
» Auto-resizing without truncation

e The ones available now are a bit complex, but others
have been proposed that are not yet widely available

“e“’“ I'
\

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Traditional Solution — That Works! =

e Available now: snprintf(3), vsnprintf(3)
» Essentially the same functions, although arg format differs

o int snprintf(char *S, size_t N, const char *FORMAT, ...);
» Writes output to buffer S up to N chars (bounds check)
» Always writes \O’ at end if N>=1| (terminate)

» Returns “length that would have been written” or negative
if error (reports truncation or error)

e Thus, achieves goals of correct bounds checking

» Enforces bounds, ensures correct C string, and reports
truncation or error

e len = snprintf(buf, buflen, "%s", original_value);

e if (len <0 || len >= buflen) ... // handle error/truncation

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Traditional Solution — That Works! =

e Available now: snprintf(3), vsnprintf(3)
» Essentially the same functions, although arg format differs

o int snprintf(char *S, size_t N, const char *FORMAT, ...);
» So, you should use this for safe programming today
» Replaces strcpy and others directly

» How do you use for strcat!?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Traditional Solution — That Works! S

e Available now: snprintf(3), vsnprintf(3)
» Essentially the same functions, although arg format differs

e int snprintf(char *S, size_t N, const char *FORMAT, ...);

» So, you should use this for safe programming today
» Replaces strcpy and others directly

» How do you use for strcat!?
e Need to find end of string to concatenate — set to S

e Need to find the remaining size of the buffer — set to N
» Do need to compute this correctly
o At least this snprintf/vsnprintf will ensure null-termination at N

e Don’t forget to check whether truncation or an error occurred

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Traditional Solution — That Works! =

e Available now: snprintf(3), vsnprintf(3)
» Essentially the same functions, although arg format differs

e int snprintf(char *S, size_t N, const char *FORMAT, ...);

» Kind of ugly to use
» Other options?

-

|

< N\ _OPTION 7™ il

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Emerging Solutions 5

e Available in limited systems: stricpy(3), stricat(3)

» Similar to snprintf in semantics — from *BSD

o Int stricpy(char *DST, const char *SRC, size_t SIZE);
» Looks more like strncpy/strncat; but less error prone
» Take SIZE of the buffer DST — rather than a length (bounds)
» Ensure null-termination relative to SIZE (terminate)

» Return number of bytes that would have been read
(truncate)

e Relatively easy to use
» if (strlcpy(dest, src, destsize) >= destsize) ... // truncation!

» Not universally available

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Emerging Solutions 5

e Available in limited systems: strcpy s, strcat_s

» Similar to snprintf in semantics — from Microsoft

e errno_t strcpy_s(char *restrict DST, rsize_t SIZE, const
char *restrict SRC);

» Looks more like strncpy/strncat; but less error prone
» Take SIZE of the buffer DST — rather than a length (bounds)
» Checks constraints and returns if they are met (return 0)
» Key constraint: all bytes of SRC will fit in DST with \0
e Relatively easy to use
» if (strcpy_s(dest, src, destsize) < 0) ... // truncation!

» Not universally available — multithreading limitations

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Safe Bounds Checking S

e Take the size of the buffer

» Limit length based on buffer size with termination

» Truncation: detect happens and how much truncation

» Return value enables determination whether any and ho
much truncation occurred to assess security

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Auto Resize Solutions S

e Available in limited systems: asprintf(3), vasprintf(3)
» Auto-resize versions of sprint and vsprintf (are unsafe)

e int asprintf(char **S, const char *FORMAT, ...);

» Pass a pointer to a reference to a string buffer
» Memory for the buffer and its reference are assigned to S

» The memory allocated is sufficient to hold a proper C string
of the value resulting from the processing of FORMAT

» Returns # of bytes “printed”; -1 if error
e Simple to use; no termination, but need to “free”
» char *result = NULL;

» asprintf(&result, “x=%s and y=%s\n", x, y);

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Scanf and Friends S

e VWhat about other functions like scanf?

» scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf — all unsafe by
default

» Why!?
e char buffer[10];

o scanf(buffer, “%s”);

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Scanf and Friends S

e VWhat about other functions like scanf?

» scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf — all unsafe by
default

» Why!?
e char buffer[10];
o scanf(buffer, “%s”);

» Fortunately, these can be made safe quite easily

e By leveraging auto-resizing option

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Scanf and Friends S

e What about other functions like scanf?

» scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf — all unsafe by
default

» Instead, use “%ms”’ to auto-resize
o char *buffer = NULL; // Must be set to NULL
o scanf(buffer, “%ms”);

» Allocates memory for the buffer dynamically to hold input
safely — null-terminated, no truncation required

e Note: also, can use for other functions that process
input like getline

» Should check whether the function you use supports this
option

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Scanf in a Loop S

e What happens when...

» Use “%ms” to auto-resize, but the function (scanf) is in a
loop!?

e char *buffer = NULL; // Must be set to NULL
e while (TRUE) {

. scanf(buffer, “%ms”);

¢ }

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Scanf in a Loop S

e What happens when...

» Use “%ms” to auto-resize, but the function (scanf) is in a
loop!?

e char *buffer = NULL; // Must be set to NULL
e while (TRUE) {
. scanf(buffer, “7%ms”);
¢ }
e Good news: The library knows and will keep resizing!

» If necessary — when the input is too big for the current
buffer

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Memory Object Copying 8

e What about just copying memory buffers!?
» That are not strings (i.e., no termination)

» E.g., structure

e What would you normally do to copy a structure of an
object of type A to a memory region of size N?

How to Copy
Any Object

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Traditional Solution =

e Usual: memcpy(3)

» Basic copying of memory values to a new region

o void *memcpy(void *restrict DST, const void *restrict
SRC, size_t N);

e Copies N bytes from memory area SRC to memory
area DST

» Provides bounds checking
» Does not consider null-termination

e No null-terminator in this case, so that is OK
» Does not consider truncation

e Need to check for that

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Memory and Strings =

e POSIX now includes memccpy:

e void* memccpy(void* restrict DST, const void™ restrict
SRC, int C, size_t N);

» Copies up to N bytes from SRC to DST until C is found,
which is copied (e.g., C =\0’, so can use for strings),

» Returns a pointer to just past the copy of the specified
character C

» or NULL if C was not found in the first N characters of SRC

» So, can detect whether truncation occurred
e Note: You still have to calculate N (# bytes to copy)
e Adopted by C standard committee in 2019

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Take Away =

e The original versions of C string and memory
functions did not consider spatial errors

» So, spatial errors have become common

e To ensure correct operation, we need to enforce
memory region bounds

» Check bounds or automatically resize

e [here are now several function APIls that enforce
bounds

» Check bounds, ensure null-termination (if required),
and report whether truncation occurred (to assess)

Systems and Internet Infrastructure Security (SIIS) Laboratory

