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Motivation
• Memory errors may allow unauthorized access to 

memory – objects other than the one that a 
pointer is assigned

‣ Stack objects 

‣ Heap objects

• Recall stack overflow
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Motivation
• Memory errors may allow unauthorized access to 

memory – objects other than the one that a 
pointer is assigned
‣ Stack objects 

‣ Heap objects

• Problem: a process is a single address space where 
all memory is accessible all of the time
‣ All data memory is readable

‣ And most data memory is writable

‣ Data memory is not executable, but enables code reuse
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Motivation
• Can we build an infrastructure to limit the memory 

accessible to individual instructions within the same 
process?
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Motivation
• Example: multiple stacks

• Original stack has objects with distinct security 
requirements
‣ Distribute objects among multiple stacks

Safe Stack 
(OSDI 2014)

Unsafe Stack Original
Stack

Region
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Motivation
• Example: multiple stacks

• Safe Stack: Objects whose accesses are free of 
spatial errors – Kaiming: all memory errors
‣ Instructions that use such pointers refer to the safe stack

Safe Stack 
(OSDI 2014)

Unsafe Stack Original
Stack

Region
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Motivation
• Example: multiple stacks

• Safe Stack: Objects whose accesses are free of spatial 
errors – Kaiming: all memory errors
‣ Memory errors on unsafe stack accesses cannot modify safe 

stack objects – Why not?

Safe Stack 
(OSDI 2014)

Unsafe Stack Original
Stack

Region
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Software Fault Isolation (SFI)

10

• Use an inlined reference monitor to isolate 
components into “logical” address spaces in a 
process

‣ Conceptually: check each read, write, & jump to make 
sure it is within the component’s logical address 
space

• Originally proposed in 1993 for MIPS [Wahbe et al. 
SOSP 93]

‣ PittSFIeld extended it to x86 [McCammant & Morrisett 06] 
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Fault Domains
• Each domain is a “logical” address space within a 

process’s address space

‣ Separate Code and Data Regions (Harvard architecture)

‣ Code region is readable and executable

‣ Data region is readable and writable
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SFI Policy

Fault Domain

Code Region
(readable, 

executable)

Data Region
(readable, writable)

CB

CL

DB

DL
All R/W remain in DR

[DB, DL]

1) All jumps remain in CR
2) Reference monitor not 

bypassed by jumps

12
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One SFI: Interpretation
void interp(int pc, reg[], mem[], code[]) {

while (true) {

if (pc < CB) exit(1);

if (pc > CL) exit(1);

int inst = code[pc], rd = RD(inst), rs1 = RS1(inst), 

rs2 = RS2(inst), immed = IMMED(inst);  

switch (opcode(inst)) {

case ADD: reg[rd] = reg[rs1] + reg[rs2]; break;

case LD:  int addr = reg[rs1] + immed;

if (addr < DB) exit(1);

if (addr > DL) exit(1);

reg[rd] = mem[addr];

break;

case JMP: pc = reg[rd]; continue;

...

}

pc++;

}

}
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Interpretation
• Interpret programs written in a particular language

‣ Execution engine interprets each command, and checks that 
each operation is safe before doing it

• Examples

‣ SafeTcl, old Java implementations, Perl (sometimes) 

‣ and a lot of scripting languages

‣ …
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Pros & Cons of Interpreter
Pros:

‣ Easy to implement (small TCB)

‣ Works even with binaries (high-level language-
independent)

‣ Easy to enforce other aspects of OS policy

Cons:

‣ Terrible execution overhead (x25?  x70?)

‣ But it’s a start.
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Partial Evaluation (PE)
• A technique for speeding up interpreters

‣ Specialize a program with respect to the part of the input 
that is statically known

• Example
int f (int x, int i) {

if (x>0) return i;

else return (i+1);

}

… a = f(10, b) …

… a = f(-10, c) …

same as a = b

same as a = c + 1
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Partial Evaluation for Faster SFI

• We know what the code is.

• Specialize the interpreter to the code.

‣ Unroll the loop – one copy for each instruction

‣ Specialize the switch to the instruction

‣ Compile the resulting code
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IRM via Program Rewriting 

• The rewritten program should satisfy the 
desired security policy

• Examples: 
‣ Source-code level

• CCured [Necula et al. 02]

‣ Java bytecode-level rewriting: PoET [Erlingsson and 
Schneider 99]; Naccio [Evans and Twyman 99]

20

RewriteProgram Program
RM
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Enforcing SFI Policy

• Insert monitor code into the target program 
before unsafe instructions (reads, writes, jumps, 
…)

[r3+12] := r4 //unsafe mem write

r10 := r3 + 12
if r10 < DB then goto error
if r10 > DL then goto error
[r10] := r4
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SFI: Binary Rewriting
• A hand-written, specialized binary rewriter

‣ Insert monitor code into the target program before dangerous 
instructions

0: add r1,r2,r3

1: ld r4,r3(12)

...

add r1,r2,r3

add r5,r3,12

cmp r5,DB

jb _exit

cmp r5,DL

ja _exit

ld r4,r5(0)

...
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Optimizations

• Naïve SFI is OK for security

‣ But the runtime overhead is too high

• Performance can be improved through a set 
of optimizations

23
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Special Address Patterns

24

• Both code and data regions form contiguous segments
‣ Upper bits are all the same and form a region ID

‣ Address validity checking: only one check is necessary

• Example: DB = 0x12340000; DL = 0x1234FFFF
‣ The region ID is 0x1234

‣ “[r3+12]:= r4” becomes

r10 := r3 + 12
r11 := r10 >> 16 // right shift 16 bits to get the region ID
if r11 <> 0x1234 then goto error
[r10] := r4
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Ensure, So No Check
• Force the upper bits in the address to be the region 

ID
‣ Called masking

‣ No branch penalty

• Example: DB = 0x12340000 ; DL = 0x1234FFFF
‣ “[r3+12]:= r4” becomes

r10 := r3 + 12
r10 := r10 & 0x0000FFFF
r10 := r10 | 0x12340000
[r10] := r4

Force the address to 
be in data region
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Wait! Program Semantics?

26

• “Good” programs won’t get affected

‣ For bad programs, we do not care about whether its 
semantics are destroyed

• PittSField reported 12% performance gain for 
this optimization

• Cons: does not pinpoint the policy-violating 
instruction
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One-Instruction Masking 
• Idea

‣ Make the region ID to have only a single bit on

‣ Make the zero-tag region unmapped in the virtual address space

• Benefit: cut down one instruction for masking

• Example: DB = 0x20000000 ; DL = 0x2000FFFF

‣ Region ID is 0x2000

‣ “[r3+12]:= r4” becomes

‣ Result is an address in DR or in the (unmapped) zero-tag region

• PittSField reported 10% performance gain for this optimization

r10 := r3 + 12
r10 := r10 & 0x2000FFFF
[r10] := r4
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Fault Isolation vs. Protection

• Protection is fail stop
‣ Control (“Sandbox”) reads, writes, and jumps

‣ Guarantee integrity and confidentiality

‣ 20% overhead on 1993 RISC machines

‣ XFI JPEG decoder: 70-80% 

• Fault isolation: covers only writes and jumps
‣ Guarantee integrity, but not confidentiality

‣ 5% overhead on 1993 RISC machines

‣ XFI JPEG decoder: Writes only: 15-18%

• As a result, most SFI systems do not sandbox reads
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Jumping Outside of Domain

• Sometimes need to invoke code outside of the 
domain

‣ For system calls; for communication with other domains

‣ Danger: Cannot allow untrusted code to invoke code 
outside of the fault domain arbitrarily

• Idea:

‣ Insert a jump table into the (immutable) code region

‣ Each entry is a control transfer instruction whose target 
address is a legal entry point outside of the domain
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A Fixed Jumptable (Trampoline)

• For example

‣ Trampolines for system 
calls: fopen; fread; …

‣ Trampolines for 
communication with 
other fault domains

stubs to trusted routines

Fault Domain

Code Region

Data Region

Trampolines
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Trusted Stubs

• Stubs are outside of the fault domain

‣ Why?

• Stubs can implement security checks

‣ E.g., can restrict fopen to open files only in a particular 
directory

‣ Or can disallow fopen completely

• Just not install a jump table entry for it

‣ It can implement system call interposition
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Google Native Client (NaCl)
• SFI service in Chrome

‣ [Yee et al. Oakland 09]

• Goal: Download native code 
and run it safely in the 
Chrome browser

‣ Much safer than ActiveX controls

‣ Much better performance than 
JavaScript, Java, etc. 
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NaCl: Code Verification

• Code is verified before running

‣ Allow restricted subset of x86 instructions

• No unsafe instructions: memory-dependent jmp and call, 
privileged instructions, modifications of segment state …

‣ Ensure SFI checks are correctly implemented for 
memory safety
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NaCl Sandboxing

• x86-32 sandboxing based on hardware segments

‣ Sandboxing reads and writes for free

‣ 5% overhead for SPEC2000

• However, hardware segments not available in 
x86-64 or ARM

‣ Still need masking instructions [Sehr et al. 10]

‣ x86-64/ARM: 20% for sandboxing memory writes and 
computed jumps
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NaCl SDK

• Modified GCC tool-chain

‣ Inserts appropriates masks, alignment requirements

• Trampolines allow restricted system-call 
interface and also interaction with the browser

‣ Pepper API: access to the browser, DOM, 3D 
acceleration, etc.
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Questions for SFI
• Binary rewriting on off-the-shelf binaries

‣ All current SFI implementations require the cooperation 
of the code producer

• What happens with discontiguous hunks of 
memory?  

• Does this really scale to secure systems?
‣ So that we can partition a large system into domains of 

least privileges 


