
Systems and Internet Infrastructure Security Laboratory (SIIS) Page 1

CMPSC 447
Software Fault Isolation

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Motivation
• Memory errors may allow unauthorized access to

memory – objects other than the one that a
pointer is assigned

‣ Stack objects

‣ Heap objects

• Recall stack overflow

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Motivation
• Memory errors may allow unauthorized access to

memory – objects other than the one that a
pointer is assigned
‣ Stack objects

‣ Heap objects

• Problem: a process is a single address space where
all memory is accessible all of the time
‣ All data memory is readable

‣ And most data memory is writable

‣ Data memory is not executable, but enables code reuse

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Motivation
• Can we build an infrastructure to limit the memory

accessible to individual instructions within the same
process?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Motivation
• Example: multiple stacks

• Original stack has objects with distinct security
requirements
‣ Distribute objects among multiple stacks

Safe Stack
(OSDI 2014)

Unsafe Stack Original
Stack

Region

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Motivation
• Example: multiple stacks

• Safe Stack: Objects whose accesses are free of
spatial errors – Kaiming: all memory errors
‣ Instructions that use such pointers refer to the safe stack

Safe Stack
(OSDI 2014)

Unsafe Stack Original
Stack

Region

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Motivation
• Example: multiple stacks

• Safe Stack: Objects whose accesses are free of spatial
errors – Kaiming: all memory errors
‣ Memory errors on unsafe stack accesses cannot modify safe

stack objects – Why not?

Safe Stack
(OSDI 2014)

Unsafe Stack Original
Stack

Region

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Software Fault Isolation (SFI)

10

• Use an inlined reference monitor to isolate
components into “logical” address spaces in a
process

‣ Conceptually: check each read, write, & jump to make
sure it is within the component’s logical address
space

• Originally proposed in 1993 for MIPS [Wahbe et al.
SOSP 93]

‣ PittSFIeld extended it to x86 [McCammant & Morrisett 06]

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Fault Domains
• Each domain is a “logical” address space within a

process’s address space

‣ Separate Code and Data Regions (Harvard architecture)

‣ Code region is readable and executable

‣ Data region is readable and writable

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

SFI Policy

Fault Domain

Code Region
(readable,

executable)

Data Region
(readable, writable)

CB

CL

DB

DL
All R/W remain in DR

[DB, DL]

1) All jumps remain in CR
2) Reference monitor not

bypassed by jumps

12

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

One SFI: Interpretation
void interp(int pc, reg[], mem[], code[]) {

while (true) {

if (pc < CB) exit(1);

if (pc > CL) exit(1);

int inst = code[pc], rd = RD(inst), rs1 = RS1(inst),

rs2 = RS2(inst), immed = IMMED(inst);

switch (opcode(inst)) {

case ADD: reg[rd] = reg[rs1] + reg[rs2]; break;

case LD: int addr = reg[rs1] + immed;

if (addr < DB) exit(1);

if (addr > DL) exit(1);

reg[rd] = mem[addr];

break;

case JMP: pc = reg[rd]; continue;

...

}

pc++;

}

}

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Interpretation
• Interpret programs written in a particular language

‣ Execution engine interprets each command, and checks that
each operation is safe before doing it

• Examples

‣ SafeTcl, old Java implementations, Perl (sometimes)

‣ and a lot of scripting languages

‣ …

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Pros & Cons of Interpreter
Pros:

‣ Easy to implement (small TCB)

‣ Works even with binaries (high-level language-
independent)

‣ Easy to enforce other aspects of OS policy

Cons:

‣ Terrible execution overhead (x25? x70?)

‣ But it’s a start.

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Partial Evaluation (PE)
• A technique for speeding up interpreters

‣ Specialize a program with respect to the part of the input
that is statically known

• Example
int f (int x, int i) {

if (x>0) return i;

else return (i+1);

}

… a = f(10, b) …

… a = f(-10, c) …

same as a = b

same as a = c + 1

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Partial Evaluation for Faster SFI

• We know what the code is.

• Specialize the interpreter to the code.

‣ Unroll the loop – one copy for each instruction

‣ Specialize the switch to the instruction

‣ Compile the resulting code

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

IRM via Program Rewriting

• The rewritten program should satisfy the
desired security policy

• Examples:
‣ Source-code level

• CCured [Necula et al. 02]

‣ Java bytecode-level rewriting: PoET [Erlingsson and
Schneider 99]; Naccio [Evans and Twyman 99]

20

RewriteProgram Program
RM

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Enforcing SFI Policy

• Insert monitor code into the target program
before unsafe instructions (reads, writes, jumps,
…)

[r3+12] := r4 //unsafe mem write

r10 := r3 + 12
if r10 < DB then goto error
if r10 > DL then goto error
[r10] := r4

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

SFI: Binary Rewriting
• A hand-written, specialized binary rewriter

‣ Insert monitor code into the target program before dangerous
instructions

0: add r1,r2,r3

1: ld r4,r3(12)

...

add r1,r2,r3

add r5,r3,12

cmp r5,DB

jb _exit

cmp r5,DL

ja _exit

ld r4,r5(0)

...

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Optimizations

• Naïve SFI is OK for security

‣ But the runtime overhead is too high

• Performance can be improved through a set
of optimizations

23

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Special Address Patterns

24

• Both code and data regions form contiguous segments
‣ Upper bits are all the same and form a region ID

‣ Address validity checking: only one check is necessary

• Example: DB = 0x12340000; DL = 0x1234FFFF
‣ The region ID is 0x1234

‣ “[r3+12]:= r4” becomes

r10 := r3 + 12
r11 := r10 >> 16 // right shift 16 bits to get the region ID
if r11 <> 0x1234 then goto error
[r10] := r4

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Ensure, So No Check
• Force the upper bits in the address to be the region

ID
‣ Called masking

‣ No branch penalty

• Example: DB = 0x12340000 ; DL = 0x1234FFFF
‣ “[r3+12]:= r4” becomes

r10 := r3 + 12
r10 := r10 & 0x0000FFFF
r10 := r10 | 0x12340000
[r10] := r4

Force the address to
be in data region

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Wait! Program Semantics?

26

• “Good” programs won’t get affected

‣ For bad programs, we do not care about whether its
semantics are destroyed

• PittSField reported 12% performance gain for
this optimization

• Cons: does not pinpoint the policy-violating
instruction

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

One-Instruction Masking
• Idea

‣ Make the region ID to have only a single bit on

‣ Make the zero-tag region unmapped in the virtual address space

• Benefit: cut down one instruction for masking

• Example: DB = 0x20000000 ; DL = 0x2000FFFF

‣ Region ID is 0x2000

‣ “[r3+12]:= r4” becomes

‣ Result is an address in DR or in the (unmapped) zero-tag region

• PittSField reported 10% performance gain for this optimization

r10 := r3 + 12
r10 := r10 & 0x2000FFFF
[r10] := r4

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Fault Isolation vs. Protection

• Protection is fail stop
‣ Control (“Sandbox”) reads, writes, and jumps

‣ Guarantee integrity and confidentiality

‣ 20% overhead on 1993 RISC machines

‣ XFI JPEG decoder: 70-80%

• Fault isolation: covers only writes and jumps
‣ Guarantee integrity, but not confidentiality

‣ 5% overhead on 1993 RISC machines

‣ XFI JPEG decoder: Writes only: 15-18%

• As a result, most SFI systems do not sandbox reads

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Jumping Outside of Domain

• Sometimes need to invoke code outside of the
domain

‣ For system calls; for communication with other domains

‣ Danger: Cannot allow untrusted code to invoke code
outside of the fault domain arbitrarily

• Idea:

‣ Insert a jump table into the (immutable) code region

‣ Each entry is a control transfer instruction whose target
address is a legal entry point outside of the domain

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A Fixed Jumptable (Trampoline)

• For example

‣ Trampolines for system
calls: fopen; fread; …

‣ Trampolines for
communication with
other fault domains

stubs to trusted routines

Fault Domain

Code Region

Data Region

Trampolines

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Trusted Stubs

• Stubs are outside of the fault domain

‣ Why?

• Stubs can implement security checks

‣ E.g., can restrict fopen to open files only in a particular
directory

‣ Or can disallow fopen completely

• Just not install a jump table entry for it

‣ It can implement system call interposition

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Google Native Client (NaCl)
• SFI service in Chrome

‣ [Yee et al. Oakland 09]

• Goal: Download native code
and run it safely in the
Chrome browser

‣ Much safer than ActiveX controls

‣ Much better performance than
JavaScript, Java, etc.

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

NaCl: Code Verification

• Code is verified before running

‣ Allow restricted subset of x86 instructions

• No unsafe instructions: memory-dependent jmp and call,
privileged instructions, modifications of segment state …

‣ Ensure SFI checks are correctly implemented for
memory safety

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

NaCl Sandboxing

• x86-32 sandboxing based on hardware segments

‣ Sandboxing reads and writes for free

‣ 5% overhead for SPEC2000

• However, hardware segments not available in
x86-64 or ARM

‣ Still need masking instructions [Sehr et al. 10]

‣ x86-64/ARM: 20% for sandboxing memory writes and
computed jumps

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

NaCl SDK

• Modified GCC tool-chain

‣ Inserts appropriates masks, alignment requirements

• Trampolines allow restricted system-call
interface and also interaction with the browser

‣ Pepper API: access to the browser, DOM, 3D
acceleration, etc.

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Questions for SFI
• Binary rewriting on off-the-shelf binaries

‣ All current SFI implementations require the cooperation
of the code producer

• What happens with discontiguous hunks of
memory?

• Does this really scale to secure systems?
‣ So that we can partition a large system into domains of

least privileges

