
The Taming of the Stack:
Isolating Stack Data from Memory Errors

Kaiming Huang, Yongzhe Huang, Mathias Payer,
Zhiyun Qian, Jack Sampson, Gang Tan, Trent Jaeger

EPFL, UC Riverside, Penn State University

Accepted by NDSS 2022

Vulnerability – Memory Errors
• Still many vulnerabilities being

discovered due to memory errors
• Most famously – buffer overflows
• Recent example à à à à à

• Bad coding style
• Use of unsafe functions

• Allow adversary to write
• Outside of allocated buffer (e.g., buf)
• To write other objects (e.g., mode, *p)
• Other variants of memory errors

• Extensive problem
• “Eternal War in Memory”
• “The Neverending Story: Memory

Corruption 30 Years Later”
• Take full control over the system
• Defeat all protection schemes

• Case Study: CVE-2020-20739

Security via Detecting Attacks
• But, detecting attacks is becoming more difficult

• Adversaries are skilled and have systematic tools
• Nation-state level attacks appear to be increasing

How did we get here?
• Problem: Systems often take risks (i.e., perform unsafe actions)

• Internet: enables parties worldwide to communicate

• Firewalls: must allow many unsafe communications

• Access control: cannot block any functional requirements

• Software (part 1): use of unsafe languages leads to memory errors

• Software (part 2): cannot validate information flows are safe in practice

Example: C programming language
• Popular: Still among the top-3 languages in preference in surveys

• Lots of code: Legacy code abounds

• Useful: Can write high performance code

• Unsafe: Makes no guarantees of memory safety

What Can Go Wrong?
• What are the 3 general categories of memory error?

• What operations are needed for triggering each memory error class?

Spatial Error – Pointer Arithmetic
• Think about how to access an element in a string

• Here is what happens exactly

• Generally, there are 4 kinds of pointer arithmetic.
• Increment/Decrement of a Pointer, e.g., p++
• Addition of integer to a pointer, e.g., p+3
• Subtraction of integer to a pointer, e,g., p-5
• Subtracting two pointers of the same type, e.g., offset=p1-p2

Pointer Arithmetic

What Can Go Wrong?
• Memory safety errors consist of three classes

• Spatial errors: pointer accesses to an object may be outside its memory region
(bounds) – unsafe pointer arithmetic operations.

• Type errors: pointer accesses to an object may interpret the object using multiple
types (casts) – unsafe type cast operations

• Temporal errors: accesses to a pointer may occur before initialization (use-
before-initialization or UBI) or after its target object is deallocated (use-after-free)

II. MOTIVATION

In this section, we motivate the need to protect stack objects
from memory safety violations and show that current defenses
are too limited and/or expensive.

A. Exploiting Memory Errors on Stack Objects

1 void example(int ct, char **buf) {
2 int lct = BUF_SIZE;
3 char lbuf[lct];
4 if (ct < lct){ //(1) ct > buf's size
5 strlcpy(lbuf, *buf, (size_t) ct); //(2) ct < 0
6 }
7 *buf = lbuf; //(3) temporal
8 }

Fig. 1: Example function demonstrates: (1) bounds error that enables overread
of buf; (2) type error due to casting of ct from signed to unsigned; and (3)
temporal error as *buf references local variable lbuf after return.

Figure 1 shows the function example, which demon-
strates the three classes of memory errors that we examine
in this work. Assume that the value assigned at ct may be
controlled by an adversary.

First, line 4 demonstrates a spatial error, which permits
accesses (i.e., reads or writes) outside the memory region of a
stack object. In this case, the spatial error occurs because the
value of the size parameter ct may be larger than the actual
size of the memory region allocated for *buf, whose own size
could also be smaller than the defined constant BUF_SIZE.
Thus, an adversary could read the memory objects following
*buf in the stack segment to exfiltrate sensitive data from
other stack objects. In general, spatial errors may enable access
to memory prior the buffer (i.e., underflows) as well.

Second, line 5 demonstrates one form of a type error,
which causes a stack object to be interpreted in unexpected
ways. In this case, a type error occurs because the value ct
may be negative (as a signed integer), but is cast to positive
value (as size_t is unsigned) at line 5, converting a negative
value to a large positive value that also causes a bounds error
(i.e., a buffer overflow) that may modify sensitive stack data.

Third, line 7 demonstrates one form of a temporal error,
which permits access to a memory object that has been
deallocated. In this case, the pointer *buf is assigned to the
memory location referenced by the local pointer lbuf. Since
*buf may be used after the function example returns (e.g.,
in the function that calls example), this assignment allows
those uses to reference memory that is out of scope, creating a
dangling pointer. Temporal errors may also cause use prior to
initialization as well as or use after deallocation. In addition,
temporal errors on uninitialized data may cause memory errors
if the data is used to compute memory references.

All three classes of memory errors on stack objects are
still frequently discovered. Recent critical vulnerabilities (i.e.,
a CVSS 3.x severity base score of over 7.5) include those for
spatial errors (e.g., CVE-2021-25178, CVE-2021-3444, CVE-
2020-25624), type errors (e.g., CVE-2021-26825, CVE-2020-
15202, CVE-2020-14147), and temporal errors (e.g., CVE-
2020-25578, CVE-2020-20739, CVE-2020-13899). While his-
torically stack exploits have often targeted code pointers (e.g.,
return addresses), the need to circumvent stack defenses (see
Section II-D) has motivated other attack vectors, such as the

modification of control data (e.g., line 6 of Figure 1) and
exfiltration of sensitive stack data (e.g., line 4 in Figure 1).
We examine how DATAGUARD prevents an exfiltration attack
(CVE-2020-20739) in Section VII-G. As a result, defenses that
protect stack objects from all three classes of memory errors
systematically are a necessary foundation for software security.

B. Current Defenses

A set of stack defenses were proposed to prevent exploits
that modify return addresses, such as Stack Canaries [19] and
Shadow Stacks [15]. These defenses can now be implemented
reasonably efficiently (< 5% overhead [4], [11], [76]), but
stack objects other than return addresses are also prone to
attack. Given that advanced adversaries can launch success-
ful attacks by modifying non-return-address stack objects to
redirect control flow (e.g., non-return-address code pointers or
data used in control-flow decisions) and to exfiltrate sensitive
information, limited stack defenses are now insufficient.

Researchers have long recognized this gap and proposed
runtime defenses to prevent an entire class of memory errors
comprehensively, such as to enforce spatial safety [3], [25],
[49], [73], prevent attacks on type errors [29], [32], [37], and
prevent temporal safety violations [23], [34], [36], [72], [75].
but these defenses individually have significant overheads,
even when applied only to stack objects [25] in some cases.
So researchers have proposed optimizations to remove some
runtime checks for references that cannot violate bounds [3]
or can never become dangling references [24]. An issue is that
the underlying static analysis techniques under-approximate
the number of truly safe objects to avoid misclassifying unsafe
objects as safe, but may miss a significant fraction of truly safe
objects. Ultimately, we want defenses to protect as many stack
objects from these classes of attacks as possible in reasonable
overhead.

An alternative approach focuses on protecting objects that
can be proven safe from memory errors without runtime
checks. For stack objects, such protection can be provided
by using multiple stacks [74], where each with stack objects
satisfying distinct requirements. The Safe Stack defense [35]
applies the multistack [74] approach to protect stack objects
by separating objects whose references are determined safe by
the compiler onto a “safe” stack isolated from other “unsafe”
objects on the “regular” stack. While the focus of the Safe
Stack defense is to protect code pointers (i.e., in addition to
the return addresses), it also protects other stack objects found
to meet its safety criteria, resulting in the ability to protect over
60% of stack objects for the programs assessed in Section VII
without runtime checks. We examine how the safe defense
works and limitations next to motivate the need of providing
a more secure, effective, and efficient defense.

C. Safe Stack Background

The safe stack defense consists of a static analysis pass to
classify safe/unsafe stack objects, an instrumentation pass to
place and reference stack objects on their respective stacks, and
runtime support to ensure the integrity of the safe stack. The
static analysis pass classifies objects as safe if they are only
accessed using a constant (i.e., compiler-determined) offset
from the stack pointer within a single stack frame. While
code pointers, such as the return addresses, often satisfy this

3

Reality
• For memory safety in C: Still only very limited protections, even just

when considering stack objects
• E.g., stack canaries to protect return addresses

• In this work, we explore an opportunity to leverage safety
• Are we almost able to protect most objects from memory errors?

Stack Is Security-Critical

• Control data – e.g., flag variable in conditional branch, return address.
• Non-control data – e.g., user-sensitive data.

Stack saves important data.

• Control flow hijacking – return address, function pointers.
• Data-oriented attack – Direct data manipulation (DDM), DOP.
• Block-oriented programming.
• 500+ CVEs related to stack memory errors in recent 3 years.

Stack suffers from variety kinds of attacks.

Stack-Based Memory Bugs Still Exist
• 500+ CVEs related to stack memory errors in recent 3 years.

• OOB writes: writes data out of the range of the intended buffer.
• 2021-28972, 2021-24276, 2021-25178.

• OOB reads: disclose sensitive stack information.
• 2021-3444, 2020-25624, 2020-16221.

• Type error: reference memory using different type semantics.
• 2021-26825, 2020-15202, 2020-14147.

• Temporal error: reference memory using stale pointers.
• 2020-25578, 2020-20739, 2020-13899.

Safe Stack
Approach

• Protects code pointers against stack buffer overflows
• Multistack with two distinct, isolated regions

• Safe Stack: return addresses, function pointers, safe local variables
• Unsafe Stack: everything else, e.g., buffers, address taken variables

• Isolating Safe Stack from Unsafe Stack
• Ensure attack on unsafe stack object cannot corrupt Safe Stack.

Introduction

• Security depends on classification of safe objects
• A safe stack object must not perform an operation that violates the

security goal (i.e., no runtime checks on the safe stack)
• Safe Stack classification is incomplete for memory errors

• Does not account for type errors and some temporal errors (e.g., UBI)
• Safe Stack classification is conservative

• Some objects may be safe that are not placed on the safe stack

Limitations

Example of Safe Stack

• What are unsafe objects for Safe Stack?
• *buf, unsafe_lbuf, safe_lbuf.

• What are real unsafe objects?
• *buf, unsafe_lbuf, ct.

Inspiration
• For memory safety in C: CCured system enables checking of which

pointers are used only in memory-safe ways
• For buffers that can be overflowed, there must be pointer arithmetic operations
• For type confusion error, there must be type cast operations
• Safe: No pointer arithmetic or casting operations
• Results: Estimated 90% of pointers are only used in safe operations
• Are we almost able to protect most objects from memory errors?

Same Example Again…

• What are unsafe objects for CCured?
• *buf, unsafe_lbuf, safe_lbuf, ct

• What are real unsafe objects?
• *buf, unsafe_lbuf, ct.

Our Goals
• Validate the safety of stack objects against all types of memory errors

• Spatial, type, and temporal errors
• Remove all unsafe objects from the safe stack

• Maximize number of stack objects found that are safe from memory errors
comprehensively.
• Add as many safe objects to the safe stack as feasible

• Ensure no unsafe stack object is ever mistakenly classified as safe

• Remove runtime checks on safe stack objects by isolating their accesses
from unsafe objects
• Same as the “safe stack” runtime defense

• Protect more stack objects from memory errors comprehensively
without runtime checks – ultimately, leading to better performance

Design

Our Approach - DataGuard

Step 1 – Identifying Error Classes
• Claim: A stack object is safe unless it may be

accessed by some pointer operation that may
cause a memory error
• May be cases where stack objects are trivially safe
• Reduce validation effort to where needed

• Question: Which classes of memory errors
may be possible for each stack object?

Step 1 – Identifying Error Classes
• Find the classes of memory errors possible for each stack object

• Based on the operations performed using its pointers

• Could a pointer operation cause a spatial error?
• CCured: if used in pointer arithmetic operation

• Could a pointer operation cause a type error?
• CCured: if used in type cast operation

• Could a pointer operation cause a temporal error?
• CCured: does not address
• Escape analysis: if used prior to initialization or if escape via call/return or

heap/global

• Pointers that are not used in any such operations are “safe”
• Objects only aliased by safe pointers are ”safe”

Step 2 – Collecting Safety Constraints
• Question: For pointers used

in unsafe operations, under
what conditions are those
operations safe?

• E.g., a pointer that is
guaranteed to be used
within bounds cannot cause
a spatial memory error

Step 2 – Collecting Safety Constraints

• Safety Constraints
• Spatial Constriants
• Type Constraints
• Temporal Constraints

Step 2 – Collecting Safety Constraints
• Define safety validation requirements for each memory error class

• Spatial, type, and temporal

• Collect constraints for each stack object
• E.g., Stack object size must be declared as a constant
• Constraints may not be found for all stack objects

• Collect constraints for each pointer
• E.g., All pointer arithmetic operations must use constants
• Define constraints for pointer “definitions” and “uses”

• If safety constraints cannot be derived for a stack object or any
pointers that may alias it, then safety validation is not possible and
the object is “unsafe”

Step 3 - Verifying Stack Object Safety
• Question: w/o running program, can we tell

if all executions satisfy safety constraints?
• Static analysis and Symbolic execution
• Prior work (Baggy Bounds) applied value-range

analysis to reduce the number of pointer
operations that would require bounds checks

• Problem: Static analyses that over-
approximate program executions may find a
pointer ”unsafe” that could really be used on
safely

• Hypothesis: A significant number of such
cases exist (due to aliasing), so many stack
objects may be found “unsafe” that can be
proven “safe”

Step 3 - Verifying Stack Object Safety
• Apply the safety constraints to determine whether we can prove a stack

object is only accessed via safe pointer operations

• Performed in two steps:
• (1) Static analysis: Find all pointers that may-alias the stack object can only

perform operations that comply with the safety constraints
• Spatial: Value-range analysis
• Type: Value-range analysis to validate that integer type casts never change value
• Temporal: Live-range analysis to find that def and use of all aliases are within the live

range

• A stack object is “safe” if all pointers that may-alias it are safe
• I.e., all may-alias pointers are only used in safe operations relative to the safety

constraints

Step 3 - Verifying Stack Object Safety
• Apply the safety constraints to determine whether we can prove a stack

object is only accessed via safe pointer operations

• Performed in two steps:
• (2) Concolic execution: Determine whether a complete execution of all

operations that access the stack object only consists of safe operations
• Only performed for stack objects with any aliases found to be “unsafe” from the static analysis

• Problem: Path explosion of symbolic execution
• Utilize def-use chain already computed to guide symbolic execution
• Perform a limited symbolic execution for all stack objects not found safe via static analysis (e.g.,

limit the context depth)

• A stack object is “safe” if all operations that access it comply with
safety constraints
• If a complete symbolic execution cannot be performed, the object is “unsafe”

Soundness
• Must ensure that no stack object ever used in an unsafe operation may be

classified as “safe”
• Our analyses must overapproximate the program executions (i.e., be “sound”)

• Challenge: DataGuard leverages a variety of static analyses [1,2]
• Some claim soundness, some prove soundness

• We show that DataGuard achieves relative soundness
• DataGuard’s analysis is sound if all utilized analyses are sound

• By default, SE is a sound form of analysis because it follows all execution
paths of a program [4]
• However, for performance, SE analyses often make choices that render it unsound
• DataGuard avoids such choices in SE, limiting [3]

[1] SVF: interprocedural static value-flow analysis in LLVM. Y. Sui et al, CC ‘06
[2] PtrSplit: Supporting general pointers in automatic program partitioning. S. Liu et al, CCS ‘17
[3] S2E: A Platform for In-vivo Multi-path Analysis of Software Systems, V. Chipounov et al, ASPLOS ‘11
[4] A Survey of Symbolic Execution Techniques. R. Baldoni et al, 2018.

Evaluation

How Does DataGuard Impact the Security of Safe Stack Object
Compared with Previous Work?

• 91.45% of stack objects are shown to be safe soundly by DataGuard w.r.t. spatial, type and
temporal errors.

• 79.54% and 64.48% of stack objects classified as safe by CCured and Safe Stack, respectively.

• 50% and 70% unsafe stack objects by CCured and Safe Stack are found safe by DataGuard.

• 3% and 6.3% safe stack objects by CCured and Safe Stack are found unsafe by DataGuard.

How Frequently are Pointers Used in Unsafe Operations for
Each Error Class?

• 14.24% spatial, 3.92% type, 17.39% temporal.

• 72.70% of stack pointers are free from any class of memory errors.

How Much Does the Two-Stage Validation Improve the Ability to
Identify Safe Stack Objects over Prior Work?

• For Nginx

• 88.36% of pointers classified as unsafe for spatial errors by CCured are found as safe by
DataGuard.
• DataGuard’s use of “Value range+SE” finds more (413) safe pointers than “SE alone” (377).

• 93.36% of pointers classified as unsafe for temporal errors by Safe Stack are found as safe
by DataGuard.

How Does the Increase in Safe Stack Objects Impact Performance?

• DataGuard finds 76.12% of functions have only safe stack objects, whereas CCured
and Safe Stack find 41.52% and 31.33% respectively.

• Runtime performance: 4.3% for DataGuard, 8.6% for CCured, 11.3% for Safe Stack.
• All using the same safe stack defense implementation

Does DataGuard Enhance the Security of Programs and
Prevents Real-World Exploits?
• Attack Mitigation

• Exploit objects are classified as unsafe.
• Target object are classified as safe.

• CGC Binaries
• 87 binaries have stack-related memory bugs.
• Directly mitigates 95 of 118 exploits.
• Successfully classifies all targets objects of the

steppingstone objects for the remaining 23.

• Impact on Control Data

• 92.68% of control data on stack are safe.
• Much more than Safe Stack approach.

• Case Study: CVE-2020-20739

Conclusion
• Hypothesis

• We can improve security enforcement if we focus on validating safety accurately

• DataGuard
• Validated >90% of stack objects are from safe spatial, type and temporal errors
• More complete definition of memory safety than prior work, improving security
• More accurate analysis finds as safe 70% of the objects classified as unsafe by Safe Stack
• Average overhead reduced from 11.3% to 4.3% for SPEC 2006 benchmarks.
• Applicable to real-world programs and prevents real exploits.
• Will be available open source soon

• DataGuard shows that a comprehensive and accurate analysis can both
increase the scope of stack data protection and reduce overheads.
• Safety validation gets us more security for lower cost!

