The Taming of the Stack:
Isolating Stack Data from Memory Errors

Kaiming Huang, Yongzhe Huang, Mathias Payer,
Zhiyun Qian, Jack Sampson, Gang Tan, Trent Jaeger

EPFL, UC Riverside, Penn State University

Accepted by NDSS 2022

"‘o,’ PennState

Vulnerability — Memory Errors

« Still many vulnerabilities being
discovered due to memory errors

* Most famously — buffer overflows

* Recent example 2> 2 2 2> =2

* Bad coding style
* Use of unsafe functions

* Allow adversary to write
* Outside of allocated buffer (e.g., buf)

» To write other objects (e.g., mode, *p)
* Other variants of memory errors

* Extensive problem
* “Eternal War in Memory”

» “The Neverending Story: Memory
Corruption 30 Years Later”

» Take full control over the system
* Defeat all protection schemes

* Case Study: CVE-2020-20739

®© N N R WD =

e S Y
° N O B W N = O O

int
im_vips2dz (IMAGE xin, const char xfilename) {

char *p, =*qg;

char name [FILENAME_MAX];
char mode [FILENAME_MAX];
char buf [FILENAME_ MAX];

im_strncpy(name, filename, FILENAME_MAX);
if((p = strchr(name, ':'))){

*p = 1\01’.

im_strncpy(mode, p + 1, FILENAME_MAX);
}

strcpy(buf, mode);
p = &buf[0];

"‘o,, PennState

Security via Detecting Attacks

* But, detecting attacks is becoming more difficult

» Adversaries are skilled and have systematic tools
* Nation-state level attacks appear to be increasing

"‘o,, PennState

How did we get here?

* Problem: Systems often take risks (i.e., perform unsafe actions)
 Internet: enables parties worldwide to communicate

» Firewalls: must allow many unsafe communications

» Access control: cannot block any functional requirements

» Software (part 1):use of unsafe languages leads to memory errors

» Software (part 2): cannot validate information flows are safe in practice

"‘o,, PennState

Example: C programming language

* Popular: Still among the top-3 languages in preference in surveys
* Lots of code: Legacy code abounds

* Useful: Can write high performance code

* Unsafe: Makes no guarantees of memory safety

i
“"6

C Program Structure
» An example of simple program in C

#include <stdio.h>

void main(void)

{
printf(“l love programming\n”);
printf(“You will love it too once ”);
printf(“you know the trick\n");

}

"‘o,’ PennState

What Can Go Wrong?

* What are the 3 general categories of memory error?

 What operations are needed for triggering each memory error class?

"‘o,’ PennState

Spatial Error — Pointer Arithmetic

* Think about how to access an element in a string

char string[10];
string[3] = 'A';

* Here is what happens exactly

char string[10];
char xp;

p = string;
[/string 3T = 'A';

p=p+ 3 e Pointer Arithmetic

xp = 'A';

* Generally, there are 4 kinds of pointer arithmetic.
* Increment/Decrement of a Pointer, e.qg., p++
« Addition of integer to a pointer, e.g., p+3
* Subtraction of integer to a pointer, e,g., p-5
» Subtracting two pointers of the same type, e.g., offset=pl-p2

"‘o,’ PennState

What Can Go Wrong?

 Memory safety errors consist of three classes

» Spatial errors: pointer accesses to an object may be outside its memory region
(bounds) — unsafe pointer arithmetic operations.

* Type errors: pointer accesses to an object may interpret the object using multiple
types (casts) — unsafe type cast operations

 Temporal errors: accesses to a pointer may occur before initialization (use-
before-initialization or UBI) or after its target object is deallocated (use-after-free)

void example (int ct, char xxbuf) {

1

2 int lct = BUF_SIZE;

3 char lbuf[lct];

4 if (ct < lct){ // (1) ct > buf's size
5 strlcpy (lbuf, *buf, (size_t) ct); //(2) ct < 0
6 }

7 +rbuf = lbuf; //(3) temporal
8 }

Fig. 1: Example function demonstrates: (1) bounds error that enables overread
of buf; (2) type error due to casting of ct from signed to unsigned; and (3)

temporal error as *buf references local variable 1buf after return.
"‘o,, PennState

Reality

 For memory safety in C: Still only very limited protections, even just
when considering stack objects

* E.g., stack canaries to protect return addresses

* In this work, we explore an opportunity to leverage safety
* Are we almost able to protect most objects from memory errors?

"‘o,, PennState

Stack Is Security-Critical

Stack saves important data.

« Control data — e.qg., flag variable in conditional branch, return address.
* Non-control data — e.g., user-sensitive data.

Stack suffers from variety kinds of attacks.

Control flow hijacking — return address, function pointers.
Data-oriented attack — Direct data manipulation (DDM), DOP.
Block-oriented programming.

500+ CVEs related to stack memory errors in recent 3 years.

".‘o,’ PennState

Stack-Based Memory Bugs Still Exist

* 500+ CVEs related to stack memory errors in recent 3 years.

 OOB writes: writes data out of the range of the intended buffer.
« 2021-28972,2021-24276,2021-25178.

e OOB reads: disclose sensitive stack information.
« 2021-3444,2020-25624, 2020-16221.

* Type error: reference memory using different type semantics.
« 2021-26825, 2020-15202, 2020-14147.

 Temporal error: reference memory using stale pointers.
» 2020-25578, 2020-20739, 2020-13899.

"‘o,, PennState

Safe Stack
Approach

Introduction

» Protects code pointers against stack buffer overflows
« Multistack with two distinct, isolated regions
« Safe Stack: return addresses, function pointers, safe local variables
» Unsafe Stack: everything else, e.g., buffers, address taken variables
* Isolating Safe Stack from Unsafe Stack
* Ensure attack on unsafe stack object cannot corrupt Safe Stack.

» Security depends on classification of safe objects

» A safe stack object must not perform an operation that violates the
security goal (i.e., no runtime checks on the safe stack)

» Safe Stack classification is incomplete for memory errors
* Does not account for type errors and some temporal errors (e.g., UBI)
» Safe Stack classification is conservative
* Some objects may be safe that are not placed on the safe stack

"‘o,’ PennState

Example of Safe Stack

1 void example(int ct, char *xbuf) {

2 int lct = BUF_SIZE;

3 char safe_lbuf([lct];

4 char unsafe_lbuf[lct];

5 1T (et = Let)d J2{T) et = buf's size
6

74

8

9

stricpy(unsafe_lbuf, xbuf, (size_t) ct); //(2) ct < 0
//Some safe operations on unsafe_lbuf

xbuf = unsafe_lbuf; //(3) temporal
}
10 else{
11 stricpy(safe_lbuf, xbuf, lct-1);
12 st //Some safe operations on safe_lbuf
13 strcpy (xbuf, safe_lbuf)
14 }

15 }
 What are unsafe objects for Safe Stack?
e *buf, unsafe_lbuf, safe_lbuf.

 What are real unsafe objects?
* *buf, unsafe_lbulf, ct.

"‘o,’ PennState

Inspiration

 For memory safety in C: CCured system enables checking of which
pointers are used only in memory-safe ways
» For buffers that can be overflowed, there must be pointer arithmetic operations
For type confusion error, there must be type cast operations
Safe: No pointer arithmetic or casting operations
Results: Estimated 90% of pointers are only used in safe operations
Are we almost able to protect most objects from memory errors?

PennState

Same Example Again...

1 void example(int ct, char *xbuf) {

2 int lct = BUF_SIZE;

3 char safe_lbuf([lct];

4 char unsafe_lbuf[lct];

5 1T (et = Let)d J2{T) et = buf's size
6

74

8

9

stricpy(unsafe_lbuf, xbuf, (size_t) ct); //(2) ct < 0
//Some safe operations on unsafe_lbuf

xbuf = unsafe_lbuf; //(3) temporal
}
10 else{
11 stricpy(safe_lbuf, xbuf, lct-1);
12 st //Some safe operations on safe_lbuf
13 strcpy (xbuf, safe_lbuf)
14 }

15 |}

 What are unsafe objects for CCured?
* *buf, unsafe_lbuf, safe_lbulf, ct

 What are real unsafe objects?
* *buf, unsafe_lbulf, ct.

"‘o,’ PennState

Our Goals

* Validate the safety of stack objects against all types of memory errors

e Spatial, type, and temporal errors
 Remove all unsafe objects from the safe stack

 Maximize number of stack objects found that are safe from memory errors
comprehensively.
 Add as many safe objects to the safe stack as feasible

* Ensure no unsafe stack object is ever mistakenly classified as safe

* Remove runtime checks on safe stack objects by isolating their accesses
from unsafe objects
* Same as the “safe stack” runtime defense

* Protect more stack objects from memory errors comprehensively
without runtime checks — ultimately, leading to better performance

"‘o,, PennState

N R B s
Ll -
Pl Lo 1S

PennState

Our Approach - DataGuard

-
Step 1: Identify Per-Object | Step 2: Collect Safety Step 3: Verify | Safe Stack Safe Stack
Stack Objects| Error Classes for Classes Safety Constraints Stack Object Objects Runtime
Stack Objects Constraints Safety Enforcement
Section 5.1 Section 5.2 Section 5.3
. J . J . J . J
l__> Safe Stack Objects Unsafe Stack Objects Unsafe Stack Objects
(No Classes) (Constraint Failure) (Validation Failure)
N Compute Safe P Runtime -
Stack Objects Enforcement

"‘o,’ PennState

Step 1 — Identifying Error Classes

 Claim: A stack object is safe unless it may be
accessed by some pointer operation that may
cause a memory error
* May be cases where stack objects are trivially safe
* Reduce validation effort to where needed

* Question: Which classes of memory errors
may be possible for each stack object?

"‘o,’ PennState

Step 1 — Identifying Error Classes

* Find the classes of memory errors possible for each stack object
» Based on the operations performed using its pointers

* Could a pointer operation cause a spatial error?
* CCured: if used in pointer arithmetic operation

* Could a pointer operation cause a type error?
 CCured:if used in type cast operation

* Could a pointer operation cause a temporal error?
 CCured: does not address

 Escape analysis: if used prior to initialization or if escape via call/return or
heap/global

* Pointers that are not used in any such operations are “safe”

 Objects only aliased by safe pointers are ”safe”

"‘o,, PennState

Step 2 — Collecting Safety Constraints

* Question: For pointers used
in unsafe operations, under
what conditions are those
operations safe?

* E.g., a pointer that is
guaranteed to be used
within bounds cannot cause
a spatial memory error

"‘o,’ PennState

Step 2 — Collecting Safety Constraints

» Safety Constraints
» Spatial Constriants
* Type Constraints
* Temporal Constraints

e Declaration: The size from the object’s base must be
declared as a constant value. The initial index 1s O.

e Definition: When a pointer is defined to reference the object,
the reference may be offset to change the index. This offset
must be a constant value.

e Use: When a pointer 1s used in an operation, the pointer may
be further offset to change the index. Each offset in a use must
also be a constant value.

e Validation: For all uses, pointer index < size and index > 0

Step 2 — Collecting Safety Constraints

* Define safety validation requirements for each memory error class
e Spatial, type, and temporal
* Collect constraints for each stack object

* E.g., Stack object size must be declared as a constant
* Constraints may not be found for all stack objects

* Collect constraints for each pointer
* E.g., All pointer arithmetic operations must use constants
* Define constraints for pointer “definitions” and “uses”

» If safety constraints cannot be derived for a stack object or any
pointers that may alias it, then safety validation is not possible and
the object is “unsafe”

"‘o,, PennState

Step 3 - Verifying Stack Object Safety

* Question: w/o running program, can we tell
if all executions satisfy safety constraints?

 Static analysis and Symbolic execution

* Prior work (Baggy Bounds) applied value-range
analysis to reduce the number of pointer
operations that would require bounds checks

* Problem: Static analyses that over-
approximate program executions may find a
pointer “unsafe” that could really be used on
safely

 Hypothesis: A significant number of such
cases exist (due to aliasing), so many stack
objects may be found “unsafe” that can be
proven “safe”

char str[30];
int vl = read_int();
int v2, v3, v4 = 0;

if (vl > 10){
v2 = 10; //v2:[10,10]
v3 = 20; //v3:[20,20]
¥
else{

15 A/ v2eT15,15]
15; //v3:[15,15]

<
N
Innu

v4d = v2+v3-1; //v4:[24,34]
read(0, str, v4);

"‘o,’ PennState

Step 3 - Verifying Stack Object Safety

* Apply the safety constraints to determine whether we can prove a stack
object is only accessed via safe pointer operations

* Performed in two steps:
* (1) Static analysis: Find all pointers that may-alias the stack object can only
perform operations that comply with the safety constraints
* Spatial: Value-range analysis
» Type:Value-range analysis to validate that integer type casts never change value

 Temporal: Live-range analysis to find that def and use of all aliases are within the live
range

* A stack object is “safe” if all pointers that may-alias it are safe

* I.e., all may-alias pointers are only used in safe operations relative to the safety
constraints

"‘o,, PennState

Step 3 - Verifying Stack Object Safety

* Apply the safety constraints to determine whether we can prove a stack
object is only accessed via safe pointer operations

* Performed in two steps:

* (2) Concolic execution: Determine whether a complete execution of all
operations that access the stack object only consists of safe operations

* Only performed for stack objects with any aliases found to be “unsafe” from the static analysis

* Problem: Path explosion of symbolic execution
» Utilize def-use chain already computed to guide symbolic execution

* Perform a limited symbolic execution for all stack objects not found safe via static analysis (e.g.,
limit the context depth)

* A stack object is “safe” if all operations that access it comply with
safety constraints
» If a complete symbolic execution cannot be performed, the object is “unsafe”

"‘o,, PennState

Soundness

Must ensure that no stack object ever used in an unsafe operation may be
classified as “safe”

* Our analyses must overapproximate the program executions (i.e., be “sound”)

Challenge: DataGuard leverages a variety of static analyses [1,2]
e Some claim soundness, some prove soundness

We show that DataGuard achieves relative soundness
» DataGuard’s analysis is sound if all utilized analyses are sound

By default, SE 1s a sound form of analysis because it follows all execution
paths of a program [4]
* However, for performance, SE analyses often make choices that render it unsound
* DataGuard avoids such choices in SE, limiting [3]

[1] SVF: interprocedural static value-flow analysis in LLVM.Y. Sui et al, CC ‘06
[2] PtrSplit: Supporting general pointers in automatic program partitioning. S. Liu et al, CCS ‘17
[3] S2E: A Platform for In-vivo Multi-path Analysis of Software Systems, V. Chipounov et al, ASPLOS ‘11

4] A Survey of Symbolic Execution Techniques. R. Baldoni et al, 2018. .
L4] yOrsy 4 "‘o,, PennState

Evaluation

"‘o,, PennState

How Does DataGuard Impact the Security of Safe Stack Object

Compared with Previous Work?

CCured-default

CCured-min

Safe Stack-default

Safe Stack-min

DataGuard

Total

nginx
httpd
proftpd
openvpn
opensshd
perlbench
bzip2

gcc

mcf
gobmk
hmmer
sjeng
libquantum
h264ref
Ibm
sphinx3
milc
omnetpp
soplex
namd
astar

14,573 (79.52%)
61,915 (73.06%)
14,521 (81.66%)
48,379 (76.58%)
20,238 (79.45%)
52,738 (91.61%)
1,293 (92.29%)
123,427 (73.34%)
580 (90.34%)
34,376 (85.53%)
20,133 (75.84%)
3,461 (85.62%)
2,576 (66.80%)
19,525 (87.70%)
448 (82.96%)
2,744 (72.90%)
4,325 (81.50%)
20,572 (83.44%)
14,253 (72.80%)
21,676 (85.17%)
4,016 (87.36%)

14,496 (79.10%)
60,526 (71.42%)
14,189 (79.79%)
47,662 (75.45%)
20,062 (78.75%)
51,165 (88.57%)
1,162 (82.94%)
120,856 (71.82%)
569 (88.63%)
33,969 (84.52%)
19,874 (74.87%)
3,415 (84.49%)
2,521 (65.38%)
19,283 (86.61%)
442 (81.85%)
2,713 (72.10%)
4,233 (79.76%)
20,264 (82.19%)
14,072 (71.87%)
21,352 (83.90%)
3,977 (86.51%)

13,047 (71.20%)
49,523 (58.44%)
12,837 (72.19%)
40,627 (64.31%)
18,176 (71.35%)
42,398 (73.65%)
1,057 (75.44%)
96,796 (57.52%)
441 (68.69%)
26,229 (65.26%)
13,873 (52.26%)
2,798 (69.22%)
2,036 (52.80%)
14,418 (64.76%)
376 (69.63%)
2,058 (54.67%)
3,887 (73.24%)
16,967 (68.82%)
11,044 (56.41%)
18,389 (72.26%)
3,606 (78.44%)

12,375 (67.53%)
46,833 (55.27%)
12.513 (70.37%)
39,145 (61.97%)
17,712 (69.53%)
42,014 (72.98%)
1,049 (74.87%)
91,344 (54.28%)
436 (67.91%)
26,013 (64.72%)
13,629 (51.34%)
2,712 (67.10%)
1,878 (48.70%)
14,339 (64.40%)
369 (68.33%)
1,962 (52.13%)
3,794 (71.49%)
16,283 (66.04%)
9,513 (50.12%)
18,213 (78.34%)
3,524 (76.66%)

16,684 (91.05%)
78,266 (92.36%)
16,190 (91.04%)
57,693 (91.33%)
23,871 (93.71%)
52,324 (90.89%)
1,238 (88.39%)
152,452 (90.59%)
602 (93.77%)
38,552 (95.92%)
25,674 (96.71%)
3,741 (92.55%)
3,214 (83.35%)
20,177 (90.63%)
506 (93.70%)
3,398 (90.28%)
4,680 (88.19%)
22,091 (89.60%)
16,368 (83.60%)
23,249 (91.36%)
4,206 (91.49%)

18,324
84,741
17,782
63,171
25,474
57,567
1,401
168,283
642
40,191
26,546
4,042
3,856
22,264
540
3,764
5,307
24,655
19,579
25,448
4,597

91.45% of stack objects are shown to be safe soundly by DataGuard w.r.t. spatial, type and
temporal errors.

79.54% and 64.48% of stack objects classified as safe by CCured and Safe Stack, respectively.
50% and 70% unsafe stack objects by CCured and Safe Stack are found safe by DataGuard.
3% and 6.3% safe stack objects by CCured and Safe Stack are found unsafe by DataGuard.

"‘o,, PennState

How Frequently are Pointers Used in Unsafe Operations for

Each Error Class?

Total Spatial Type Temporal Safe
nginx 11,679 1,555 (13.31%) 555 (4.75%) 1,401 (11.99%) 8,785 (75.22%)
httpd 58,572 12,116 (20.69%) 2,905 (4.96%) 16,232 (27.71%) || 37,899 (64.70%)
proftpd 10,354 1,332 (12.86%) 488 (4.71%) 1,156 (11.16%) 8,155 (78.76%)
openvpn 38,065 7,061 (18.55%) 2,326 (6.11%) 8,734 (22.93%) || 26,020 (68.36%)
opensshd 15,067 2,185 (14.50%) 479 (3.18%) 1,924 (12.77%) 11,798 (78.30%)
perlbench 33,241 2,255 (6.78%) 454 (1.37%) 5,571(16.76%) || 27,345 (82.30%)
bzip2 778 52 (6.68%) 9 (1.16%) 146 (18.76%) 616 (79.17%)
gcee 103,285 || 22,661 (21.94%) 6,012 (5.82%) 19.476 (18.85%) || 69.863 (67.64%)
mcf 384 28 (7.29%) 7 (1.82%) 57 (14.84%) 303 (78.90%)
gobmk 22,363 2,959 (13.23%) 170 (0.76%) 5,302 (23.71%) 15,522 (69.40%)
hmmer 16,257 3,759 (23.12%) 203 (1.25%) 2,803 (17.24%) 11,126 (68.43%)
sjeng 2,449 348 (14.20%) 74 (3.02%) 420 (17.14%) 1,768 (72.19%)
libquantum 2,182 524 (24.01%) 162 (7.42%) 343 (15.72%) 1,387 (63.57%)
h264ref 13,246 1,535 (11.59%) 91 (0.69%) 2,192 (16.55%) 10,109 (76.32%)
lbm 307 35 (11.40%) 8 (2.61%) 56 (18.24%) 226 (73.62%)
sphinx3 2,143 478 (22.30%) 135 (6.30%) 509 (23.75%) 1,320 (61.60%)
milc 2,943 338 (11.48%) 117 (3.98%) 314 (10.67%) 2,326 (79.03%)
omnetpp 13,780 1,247 (9.05%) 848 (6.15%) 1,832 (13.29%) 10,636 (77.18%)
soplex 11,941 1,910 (16.00%) 1,482 (12.41%) 2,453 (20.54%) 7,107 (59.51%)
namd 14,026 1,780 (12.69%) 154 (1.10%) 2,325 (16.58%) 10,852 (77.37%)
astar 2,571 193 (7.51%) 71 (2.76%) 414 (16.10%) 1,925 (74.87%)

* 14.24% spatial, 3.92% type, 17.39% temporal.

» 12.70% of stack pointers are free from any class of memory errors.

"‘o,, PennState

How Much Does the Two-Stage Validation Improve the Ability to
Identify Safe Stack Objects over Prior Work?

Safe Pointer Diff. from CCured Safe Pointer Safe Address-Taken
CCured 10,124 (86.68%) 0 (00.00%) Safe Stack 10,278 (88.00%) 0 (00.00%)
Symbolic Exec (SE) | 10,501 (89.91%) 377 (24.24%) Error Class (EC) 11,244 (96.27%) 966 (68.95%)
Value Range 11,085 (94.91%) 961 (61.80%) Liveness (LV) + EC | 11,463 (98.15%) 1,185 (84.58%)
Value Range+SE 11,498 (98.45%) 1,374 (88.36%) SE+LV+EC 11,586 (99.20%) 1,308 (93.36%)

* For Nginx

» 88.36% of pointers classified as unsafe for spatial errors by CCured are found as safe by
DataGuard.

* DataGuard’s use of “Value range+SE” finds more (413) safe pointers than “SE alone” (377).

* 93.36% of pointers classified as unsafe for temporal errors by Safe Stack are found as safe
by DataGuard.

"‘o,, PennState

How Does the Increase in Safe Stack Objects Impact Performance?

—

bzip2 —
peribench

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00%

m Safe Stack mCCured mDataGuard

* DataGuard finds 76.12% of functions have only safe stack objects, whereas CCured
and Safe Stack find 41.52% and 31.33% respectively.

* Runtime performance: 4.3% for DataGuard, 8.6% for CCured, 11.3% for Safe Stack.

« All using the same safe stack defense implementation

"‘o,, PennState

Does DataGuard Enhance the Security of Programs and

Prevents Real-World Exploits?
» Attack Mitigation

» Exploit objects are classified as unsafe.
» Target object are classified as safe.

e CGC Binaries

* 87 binaries have stack-related memory bugs.
* Directly mitigates 95 of 118 exploits.

* Successfully classifies all targets objects of the
steppingstone objects for the remaining 23.

* Impact on Control Data

Control Data | Safe-Stack-Safe | DataGuard-Safe
nginx 1,023 632 (61.78%) 946 (92.47%)
httpd 2,276 1,431 (62.87%) 2,108 (92.62%)
proftpd 1,214 576 (47.45%) 1,128 (92.92%)
openvpn 3,482 1,965 (56.43%) 3.289 (94.46%)
opensshd 1,458 862 (59.12%) 1,326 (90.95%)

 92.68% of control data on stack are safe.

* Much more than Safe Stack approach.

* Case Study: CVE-2020-20739

ol = N R S S

T S
0 N N R W N = O

int
im_vips2dz (IMAGE xin, const char xfilename) {

char *p, =x*qg;

char name [FILENAME_MAX] ;
char mode [FILENAME_MAX];
char buf [FILENAME_MAX];

im_strncpy(name, filename, FILENAME_MAX);
if((p = strchr(name, ':'))){

*p = I\Ol,.

im_strncpy(mode, p + 1, FILENAME_ MAX);
}

strcpy(buf, mode);
p = &buf[0];

"‘o,’ PennState

Conclusion
* Hypothesis

 We can improve security enforcement if we focus on validating safety accurately

 DataGuard
» Validated >90% of stack objects are from safe spatial, type and temporal errors
* More complete definition of memory safety than prior work, improving security
* More accurate analysis finds as safe 70% of the objects classified as unsafe by Safe Stack
» Average overhead reduced from 11.3% to 4.3% for SPEC 2006 benchmarks.
» Applicable to real-world programs and prevents real exploits.
* Will be available open source soon

* DataGuard shows that a comprehensive and accurate analysis can both
increase the scope of stack data protection and reduce overheads.

» Safety validation gets us more security for lower cost!

"‘o,, PennState

