
Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

CMPSC 447
Return-oriented

Programming

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory Page
2

Code Injection

stack frame
for main

2
1

ret

execve
(“/bin/sh”)

• Remember this exploit

• The adversary’s goal is
to get execve to run to
generate a command
shell

• To do this the adversary
uses execve from libc –
i.e., reuses code that is
already there

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 3

Injection Requirements
• What is required for a code injection attack?

‣ Appreciated by the adversary…

‣ That is not expected in practice?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 4

Injection Requirements
• What is required for a code injection attack?

‣ Appreciated by the adversary…

‣ That is not expected in practice?

• Answer: Execute stack memory

‣ Code is injected in stack memory

‣ So, we must be able to execute stack memory

• Must all memory be executable?

‣ Recall page permissions

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 5

Prevent Injection
• An available defense can prevent injection

‣ DEP or W xor X: Stack memory is not executable

• Set the program memory regions to be either
writable or executable, but not both

‣ Writable: Stack and heap and global data

‣ Executable: Code

‣ Of course, some can be read-only and not executable

• Bottom line is that we can remove the execute
permission from stack and heap memory pages

‣ And prevent writing of code pages

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 24

Bypass DEP
• Can we invoke execve without code injection?

• If so, how?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

• How can we invoke execve without code injection?

‣ Use the code directly

• The difference is subtle, but significant

25

Return-to-execve

stack frame
for main

“/sh”
“/bin”

ret

execve@plt
ptr to “/bin/sh”

stack frame
for main

execve@plt

“/bin/sh”

ptr to “/bin/sh”
0

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 26

Return-to-execve
• How can we invoke execve without code injection?

‣ Call execve directly from return value

• The difference is subtle, but significant

‣ In the original exploit, we wrote the address of execve
into buffer on the stack and modified return address to
start executing at buffer

• I.e., we are executing in the stack memory region

‣ Instead, we can modify the return address to point to
execve directly, so we continue to execute code

• Key: Point return address (function pointer) to code memory
(PLT to invoke libc function) rather than stack memory

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 27

Return-to-Libc
• Can we invoke any Libc functon without code

injection?

‣ Well, any that the program uses explicitly from the PLT

‣ And any other from Libc code – if you know where it is

• Called “Return-to-Libc” in general

‣ Change the return address to refer to a Libc function

‣ Gives you access to a lot of valuable code for attacks

• Can you invoke other code like this?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 28

Return-to-X in General
• Return-to-Libc attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

• by Hovav Shacham and his colleagues

• Next few slides are Prof Shacham’s

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 29

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

CSE543 - Introduction to Computer and Network Security Page

Return-Oriented Programming

�X

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 30

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

CSE543 - Introduction to Computer and Network Security Page

ROP Thesis

�X

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 31

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

CSE543 - Introduction to Computer and Network Security Page

ROP vs return-to-libc

�X

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 32

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

CSE543 - Introduction to Computer and Network Security Page

Machine Instructions

�X

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 33

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

CSE543 - Introduction to Computer and Network Security Page

ROP Execution

�X

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 34

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

ROP	Example
• Use	ESP	as	program	counter	
– E.g.,	Store	5	at	address	0x8048000	(without	introducing	
new	code)

%eax	=
%ebx	=

0x8048000	=

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop	%eax	
ret

pop	%ebx	
ret

movl	%eax,	(%ebx)	
ret

G2: G2

G3

G1:

G3:

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 35

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

ROP	Example
• Use	ESP	as	program	counter	
– E.g.,	Store	5	at	address	0x8048000	(without	introducing	
new	code)

%eax	=
%ebx	=

0x8048000	=

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop	%eax	
ret

pop	%ebx	
ret

movl	%eax,	(%ebx)	
ret

G2: G2

G3

G1:

G3:

5

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 36

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

ROP	Example
• Use	ESP	as	program	counter	
– E.g.,	Store	5	at	address	0x8048000	(without	introducing	
new	code)

%eax	=
%ebx	=

0x8048000	=

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop	%eax	
ret

pop	%ebx	
ret

movl	%eax,	(%ebx)	
ret

G2: G2

G3

G1:

G3:

5

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 37

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

ROP	Example
• Use	ESP	as	program	counter	
– E.g.,	Store	5	at	address	0x8048000	(without	introducing	
new	code)

%eax	=
%ebx	=

0x8048000	=

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop	%eax	
ret

pop	%ebx	
ret

movl	%eax,	(%ebx)	
ret

G2: G2

G3

G1:

G3:

5

0x8048000

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 38

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

ROP	Example
• Use	ESP	as	program	counter	
– E.g.,	Store	5	at	address	0x8048000	(without	introducing	
new	code)

%eax	=
%ebx	=

0x8048000	=

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop	%eax	
ret

pop	%ebx	
ret

movl	%eax,	(%ebx)	
ret

G2: G2

G3

G1:

G3:

5

0x8048000

ROP	Example
• Use	ESP	as	program	counter	
– E.g.,	Store	5	at	address	0x8048000	(without	introducing	
new	code)

%eax	=
%ebx	=

0x8048000	=

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop	%eax	
ret

pop	%ebx	
ret

movl	%eax,	(%ebx)	
ret

G2: G2

G3

G1:

G3:

5

0x8048000

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 39

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

ROP	Example
• Use	ESP	as	program	counter	
– E.g.,	Store	5	at	address	0x8048000	(without	introducing	
new	code)

%eax	=
%ebx	=

0x8048000	=

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop	%eax	
ret

pop	%ebx	
ret

movl	%eax,	(%ebx)	
ret

G2: G2

G3

G1:

G3:

5

0x8048000

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 40

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

ROP	Example
• Use	ESP	as	program	counter	
– E.g.,	Store	5	at	address	0x8048000	(without	introducing	
new	code)

%eax	=
%ebx	=

0x8048000	=

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop	%eax	
ret

pop	%ebx	
ret

movl	%eax,	(%ebx)	
ret

G2: G2

G3

G1:

G3:

5

0x8048000

5

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 41

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

CSE543 - Introduction to Computer and Network Security Page

Building ROP Functionality

�X

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 42

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

CSE543 - Introduction to Computer and Network Security Page

Building ROP Functionality

�X

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 43

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

CSE543 - Introduction to Computer and Network Security Page

Building ROP Functionality

�X

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 44

Return-oriented Programming
• What can we do with return-oriented

programming?

‣ Anything any other program can do

‣ How do we know?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 45

Return-oriented Programming
• What can we do with return-oriented

programming?

‣ Anything any other program can do

‣ How do we know? Turing completeness

• A language is Turing complete if it has (loosely)

‣ Conditional branching

‣ Can change memory arbitrarily

• Both are possible with ROP

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 46

Finding Gadgets
• Snippets of code ending in “ret” are called gadgets

• How do we build a complete exploit from
available code?

‣ Must find the gadgets that are available in that code

• How do you think one finds all the gadgets in a
code region?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 47

Finding Gadgets
• Snippets of code ending in “ret” are called gadgets

• How do we build a complete exploit from
available code?

‣ Must find the gadgets that are available in that code

• How do you think one finds all the gadgets in a
code region?

‣ From each byte offset in the code region, see what
sequence of instructions are encoded until a ”ret” is
reached

‣ Find “a, b, c, ret” – where a, b, and c are other instructions

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 48

Finding Gadgets
• Snippets of code ending in “ret” are called gadgets

• How do we build a complete exploit from
available code?

‣ Must find the gadgets that are available in that code

• How do you think one finds all the gadgets in a
code region?

‣ Start from a “ret” byte “0xc3” at any memory location
and work backwards to find the longest useful
sequence of instructions for a gadget

‣ Find “a, b, c, ret” – find “c, ret”, then “b, c, ret”, then…

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 49

Gadgets and Returns
• Must all useful gadgets end with “ret”?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 50

Gadgets and Returns
• Must all useful gadgets end with “ret”?

‣ No, several control transfer functions can be employed
to chain gadgets together

• Some examples

‣ Jump-oriented programming

‣ Call-oriented programming

‣ Basic idea – transition to the next gadget through a
jump or call rather than using a return

‣ So, such attacks are more generally called “code-
reuse attacks”

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 51

ROP in the Wild
• Do adversaries really employ such attacks?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 52

Gadgets and Returns
• 2010: ROP attacks contained in “exploit packs”

‣ Exploit packs are exploits used in penetration testing

• 2013: First ROP-only attack detected

‣ Against Adobe Reader XI

‣ i.e., no shell code – entire attack within process

• But often there are easier ways to exploit your
software flaws

‣ Be careful with JIT code – if adversary can modify

‣ Why?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 53

Is Code Injection Dead?
• Code Injection Is Still Desirable for Adversaries

‣ Add new code for additional attack functionality

• Could add a new code file and execute

• But, may still want to use the hijacked process (evade detection)

• But, given DEP is code injection no longer possible?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 54

Disable DEP
• How would we use code reuse to disable DEP?

• Goal is to allow execution of writable memory (i.e.,
change page permissions)

‣ There’s a system call for that

int mprotect(void *addr, size_t len, int prot);

‣ Sets protection for region of memory starting at address

‣ Invoke this system call to allow execution on stack and
then start executing from the injected code

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 55

Take Away
• Code injection attacks are prevented by DEP

‣ Also called W xor X (write XOR execute)

• But, adversaries can reuse available code in return-
oriented programming attacks

‣ Generalized to code-reuse attacks

• We examined the ROP mechanism today

‣ That is the one you must know

• Note that ROP (code-reuse) attacks can re-enable
the possibility of code injection attacks

