\ Systems and Internet
‘ Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

CMPSC 447
Return-oriented
Programming

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab
Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Securit

PENNSTATE

Code Injection B
¥
execve e Remember this exploit
61 2 e The adversary’s goal is
(/bin/sh) to get execve to run to
generate a command
ret shell
| e To do this the adversary
) uses execve from libc —
i.e., reuses code that is
stack frame already there
for main

Systems and Internet Infrastructure Security (SIIS) Laborato

PENNSTATE

Injection Requirements S

e What is required for a code injection attack?
» Appreciated by the adversary...

» That is not expected in practice!

ﬁmﬁﬂf‘/

APPRECIATED
BUT NOT
EXPECTED

Systems and Internet Infrastructure Securit

PENNSTATE

Injection Requirements —

e What is required for a code injection attack?
» Appreciated by the adversary...
» That is not expected in practice!

e Answer: Execute stack memory
» Code is injected in stack memory

» So, we must be able to execute stack memory

e Must all memory be executable?

» Recall page permissions

Systems and Internet Infrastructure Security (SIIS) Laborato

PENNSTATE

Prevent Injection =

e An available defense can prevent injection

» DEP or W xor X: Stack memory is not executable

e Set the program memory regions to be either
writable or executable, but not both

» Writable: Stack and heap and global data
» Executable: Code

» Of course, some can be read-only and not executable

e Bottom line is that we can remove the execute
permission from stack and heap memory pages

» And prevent writing of code pages

Systems and Internet Infrastructure Securit

Bypass DEP -

e Can we invoke execve without code injection!?

e If so, how!

Systems and Internet Infrastructure Security (SIIS) Laborato Page 24

PENNSTATE

Return-to-execve S

e How can we invoke execve without code injection?

» Use the code directly

e The difference is subtle, but significant

execve@plt o)
ptr to “/bin/sh” /bin/sh
ret execve

“/bin” ptr to “/bin/sh”
“/Sh” Q

stack frame stack frame
for main for main

Systems and Internet Infrastructure Securit

PENNSTATE

Return-to-execve S

e How can we invoke execve without code injection?

» Call execve directly from return value

e The difference is subtle, but significant

» In the original exploit, we wrote the address of execve
into buffer on the stack and modified return address to
start executing at buffer

e le, we are executing in the stack memory region

» Instead, we can modify the return address to point to
execve directly, so we continue to execute code

e Key: Point return address (function pointer) to code memory
(PLT to invoke libc function) rather than stack memory

Systems and Internet Infrastructure Security (SIIS) Laborato Page 26

: S
Return-to-Libc e

e Can we invoke any Libc functon without code
injection?

» Well, any that the program uses explicitly from the PLT

» And any other from Libc code — if you know where it is
e Called “Return-to-Libc” in general

» Change the return address to refer to a Libc function

» Gives you access to a lot of valuable code for attacks

e Can you invoke other code like this!?

Systems and Internet Infrastructure Securit

PENNSTATE

Return-to-X in General =

e Return-to-Libc attacks can be employed more
generally to enable adversaries to execute existing
code under their control

» Termed “return-oriented attacks”
e by Hovav Shacham and his colleagues

e Next few slides are Prof Shacham’s

Systems and Internet Infrastructure Security (SIIS) Laborato Page 28

PENNSTAT

Return-Oriented Programming =

Bad code versus bad behavior

/ Application]
¥ code |

/

Problem: this implication is
false!

CSE543 - Introduction to Computer and Network Security

ROP Thesis %

any sufficiently large program codebase

L |

arbitrary attacker computation and behavior,
without code injection

(in the absence of control-flow integrity)

CSE543 - Introduction to Computer and Network Security

PENNSTATE

ROP vs return-to-libc

attacker control of stack

] J
N4 N4

arbitrary attacker computation and behavior
via return-into-libc techniques

(given any sufficiently large codebase to draw on)

CSE543 - Introduction to Computer and Network Security

PENNSTATE

Machine Instructions

insn insn insn insn insn

instruction
pointer

» Instruction pointer (%eip) determines which
instruction to fetch & execute

» Once processor has executed the instruction, it
automatically increments %eip to next instruction

» Control flow by changing value of %eip

CSE543 - Introduction to Computer and Network Security

PENNSTAT

ROP Execution =

~ ~—
NSNS ... ret insns ... ret
C library
insns ... ret insns ... ret insns ... ret

/N [V]

stack
pointer

» Stack pointer (%esp) determines which instruction
sequence to fetch & execute

» Processor doesn’t automatically increment %esp; — but
the “ret” at end of each instruction sequence does

CSE543 - Introduction to Computer and Network Security

ROP Example

e Use ESP as program counter
— E.g., Store 5 at address 0x8048000 (without introducing

new code)
Gt pop Yoeax G1 Return Address
ret
5
G2: pop %ebx -
ret "y
4
G3: movl %eax, (%ebx) 0x8048000
ret a3
%eax = 0x8048000 =

%ebx =

ROP Example

e Use ESP as program counter
— E.g., Store 5 at address 0x8048000 (without introducing

new code)
et pop Yeax G1 Return Address
ret
5
G2: pop %ebx -
ret buf
G3: movl %eax, (%ebx) 0x8048000
ret G3
%eax= 5 0x8048000 =

%ebx =

ROP Example

e Use ESP as program counter
— E.g., Store 5 at address 0x8048000 (without introducing

new code)
et pop Yeax G1 Return Address
ret
5
G2: pop %ebx -
ret buf
G3: movl %eax, (%ebx) 0x8048000
ret G3
%eax= 5 0x8048000 =

%ebx =

ROP Example

e Use ESP as program counter
— E.g., Store 5 at address 0x8048000 (without introducing

new code)
et pop Yeax G1 Return Address
ret
5
G2: pop %ebx -
ret buf
G3: movl %eax, (%ebx) 0x8048000
ret G3
%eax= 5 0x8048000 =

%ebx = 0x8048000

ROP Example

e Use ESP as program counter
— E.g., Store 5 at address 0x8048000 (without introducing

new code)
et pop Yeax G1 Return Address
ret
5
G2: pop %ebx -
ret buf
G3: movl %eax, (%ebx) 0x8048000
ret G3
%eax= 5 0x8048000 =

%ebx = 0x8048000

ROP Example

e Use ESP as program counter
— E.g., Store 5 at address 0x8048000 (without introducing

new code)
et pop Yeax G1 Return Address
ret
5
G2: pop %ebx -
ret buf
G3: | movl %eax, (%ebx) 0x8048000
ret G3
%eax= 5 0x8048000 =

%ebx = 0x8048000

ROP Example

e Use ESP as program counter
— E.g., Store 5 at address 0x8048000 (without introducing

new code)
et pop Yeax G1 Return Address
ret
5
G2: pop %ebx -
ret buf
G3: | movl %eax, (%ebx) 0x8048000
ret G3
%eax= 5 0x8048000 = 5

%ebx = 0x8048000

Building ROP Functionality ™'&"

No-ops
nop nop nop :‘:‘/I\i
instruction stack
pointer pointer

» No-op instruction does nothing but advance %eip

» Return-oriented equivalent:
point to return instruction
advances %esp

» Useful in nop sled

CSE543 - Introduction to Computer and Network Security

Building ROP Functionality ™'&

Immediate constants

pop “ebx; ret

// \ OXdG&dDQGT'

A

Instruction stack
pointer pointer

mov $0xdeadbeef, %seax
(bb ef be ad de)

4

» Instructions can encode constants

» Return-oriented equivalent:
Store on the stack;
Pop into register to use

CSE543 - Introduction to Computer and Network Security

Building ROP Functionality ™'&"

Control flow

pop “esp, ret

|mp +4 I

» 4

Instruction stack
pointer pointer

» Ordinary programming:
(Conditionally) set %eip to new value

» Return-oriented equivalent:
(Conditionally) set %esp to new value

CSE543 - Introduction to Computer and Network Security

PENNSTATE

Return-oriented Programming =

¢ What can we do with return-oriented
programming?

» Anything any other program can do

» How do we know!

Systems and Internet Infrastructure Securit

PENNSTATE

Return-oriented Programming =

¢ What can we do with return-oriented
programming?

» Anything any other program can do

» How do we know! Turing completeness
e A language is Turing complete if it has (loosely)

» Conditional branching

» Can change memory arbitrarily

e Both are possible with ROP

Systems and Internet Infrastructure Securit

PENNSTATE

Finding Gadgets —

e Snippets of code ending in “ret” are called gadgets

e How do we build a complete exploit from
available code?

» Must find the gadgets that are available in that code

e How do you think one finds all the gadgets in a
code region!

Systems and Internet Infrastructure Securit

PENNSTATE

Finding Gadgets —

e Snippets of code ending in “ret” are called gadgets

e How do we build a complete exploit from
available code?

» Must find the gadgets that are available in that code

e How do you think one finds all the gadgets in a
code region!

» From each byte offset in the code region, see what
sequence of instructions are encoded until a "ret” is
reached

» Find “a, b, ¢, ret” — where a, b, and c are other instructions

Systems and Internet Infrastructure Securit

PENNSTATE

Finding Gadgets —

e Snippets of code ending in “ret” are called gadgets

e How do we build a complete exploit from
available code?

» Must find the gadgets that are available in that code

e How do you think one finds all the gadgets in a
code region!

» Start from a “ret” byte “Oxc3” at any memory location
and work backwards to find the longest useful
sequence of instructions for a gadget

» Find “a, b, ¢, ret” —find “c, ret”, then *“b, c, ret”, then...

Systems and Internet Infrastructure Securit

PENNSTATE

Gadgets and Returns =

e Must all useful gadgets end with “ret™?

Systems and Internet Infrastructure Securit

PENNSTATE

Gadgets and Returns =

e Must all useful gadgets end with “ret™?

» No, several control transfer functions can be employed
to chain gadgets together

e Some examples
» Jump-oriented programming
» Call-oriented programming

» Basic idea — transition to the next gadget through a
jump or call rather than using a return

» So, such attacks are more generally called “code-
reuse attacks”

Systems and Internet Infrastructure Security (SIIS) Laborato Page 50

ROP in the Wild e

e Do adversaries really employ such attacks!?

Systems and Internet Infrastructure Securit

PENNSTATE

Gadgets and Returns =

e 2010: ROP attacks contained in “exploit packs”

» Exploit packs are exploits used in penetration testing

e 2013: First ROP-only attack detected
» Against Adobe Reader X

» i.e., no shell code — entire attack within process

e But often there are easier ways to exploit your
software flaws

» Be careful with JIT code — if adversary can modify

» Why!?

Systems and Internet Infrastructure Securit

PENNSTATE

Is Code Injection Dead? =

e Code Injection Is Still Desirable for Adversaries

» Add new code for additional attack functionality
¢ Could add a new code file and execute

e But, may still want to use the hijacked process (evade detection)

e But, given DEP is code injection no longer possible?

Systems and Internet Infrastructure Security (SIIS) Laborato Page 53

: PENNSTATE
Disable DEP S

e How would we use code reuse to disable DEP?

e Goal is to allow execution of writable memory (i.e.,
change page permissions)

» There’s a system call for that
int mprotect(void *addr, size t len, int prot);
» Sets protection for region of memory starting at address

» Invoke this system call to allow execution on stack and
then start executing from the injected code

stems and Internet Infrastructure Securit

PENNSTATE

Take Away =

e Code injection attacks are prevented by DEP
» Also called W xor X (write XOR execute)

e But, adversaries can reuse available code in return-
oriented programming attacks

» Generalized to code-reuse attacks
e We examined the ROP mechanism today

» That is the one you must know

e Note that ROP (code-reuse) attacks can re-enable
the possibility of code injection attacks

Systems and Internet Infrastructure Securit

