

CMPSC 447 Return-oriented Programming

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab
Computer Science and Engineering Department
Pennsylvania State University

Code Injection

- Remember this exploit
- The adversary's goal is to get execve to run to generate a command shell
- To do this the adversary uses execve from libc – i.e., reuses code that is already there

Injection Requirements

- What is required for a code injection attack?
 - Appreciated by the adversary...
 - That is not expected in practice?

Gratuity **APPRECIATED BUT NOT** EXPECTED

Injection Requirements

- What is required for a code injection attack?
 - Appreciated by the adversary...
 - That is not expected in practice?
- Answer: Execute stack memory
 - Code is injected in stack memory
 - So, we must be able to execute stack memory
- Must all memory be executable?
 - Recall page permissions

Prevent Injection

- An available defense can prevent injection
 - ▶ DEP or W xor X: Stack memory is not executable
- Set the program memory regions to be either writable or executable, but not both
 - Writable: Stack and heap and global data
 - Executable: Code
 - Of course, some can be read-only and not executable
- Bottom line is that we can remove the execute permission from stack and heap memory pages
 - And prevent writing of code pages

Bypass DEP

- Can we invoke execve without code injection?
 - If so, how?

Return-to-execve

- How can we invoke execve without code injection?
 - Use the code directly
- The difference is subtle, but significant

Return-to-execve

- How can we invoke execve without code injection?
 - Call execve directly from return value
- The difference is subtle, but significant
 - In the original exploit, we wrote the address of execve into buffer on the stack and modified return address to start executing at buffer
 - I.e., we are executing in the stack memory region
 - Instead, we can modify the return address to point to execve directly, so we continue to execute code
 - Key: Point return address (function pointer) to code memory (PLT to invoke libc function) rather than stack memory

Return-to-Libc

- Can we invoke any Libc function without code injection?
 - Well, any that the program uses explicitly from the PLT
 - And any other from Libc code if you know where it is
- Called "Return-to-Libc" in general
 - Change the return address to refer to a Libc function
 - Gives you access to a lot of valuable code for attacks
- Can you invoke other code like this?

Return-to-X in General

- Return-to-Libc attacks can be employed more generally to enable adversaries to execute existing code under their control
 - Termed "return-oriented attacks"
 - by Hovav Shacham and his colleagues
 - Next few slides are Prof Shacham's

Return-Oriented Programming

Problem: this implication is false!

ROP Thesis

any sufficiently large program codebase

arbitrary attacker computation and behavior, without code injection

(in the absence of control-flow integrity)

ROP vs return-to-libc

attacker control of stack

arbitrary attacker computation and behavior via return-into-libc techniques

(given any sufficiently large codebase to draw on)

Machine Instructions

- Instruction pointer (%eip) determines which instruction to fetch & execute
- Once processor has executed the instruction, it automatically increments %eip to next instruction
- Control flow by changing value of %eip

ROP Execution

- Stack pointer (%esp) determines which instruction sequence to fetch & execute
- Processor doesn't automatically increment %esp; but the "ret" at end of each instruction sequence does

- Use ESP as program counter
 - E.g., Store 5 at address 0x8048000 (without introducing new code)

- Use ESP as program counter
 - E.g., Store 5 at address 0x8048000 (without introducing new code)

- Use ESP as program counter
 - E.g., Store 5 at address 0x8048000 (without introducing new code)

- Use ESP as program counter
 - E.g., Store 5 at address 0x8048000 (without introducing new code)

- Use ESP as program counter
 - E.g., Store 5 at address 0x8048000 (without introducing new code)

- Use ESP as program counter
 - E.g., Store 5 at address 0x8048000 (without introducing new code)

- Use ESP as program counter
 - E.g., Store 5 at address 0x8048000 (without introducing new code)

Building ROP Functionality

- No-op instruction does nothing but advance %eip
- Return-oriented equivalent:
 - point to return instruction
 - advances %esp
- Useful in nop sled

Building ROP Functionality

- Instructions can encode constants
- Return-oriented equivalent:
 - Store on the stack;
 - Pop into register to use

Building ROP Functionality

- Ordinary programming:
 - (Conditionally) set %eip to new value
- Return-oriented equivalent:
 - (Conditionally) set %esp to new value

Return-oriented Programming

- What can we do with return-oriented programming?
 - Anything any other program can do
 - How do we know?

Return-oriented Programming

- What can we do with return-oriented programming?
 - Anything any other program can do
 - How do we know? Turing completeness
- A language is Turing complete if it has (loosely)
 - Conditional branching
 - Can change memory arbitrarily
- Both are possible with ROP

Finding Gadgets

- Snippets of code ending in "ret" are called gadgets
- How do we build a complete exploit from available code?
 - Must find the gadgets that are available in that code
- How do you think one finds all the gadgets in a code region?

Finding Gadgets

- Snippets of code ending in "ret" are called gadgets
- How do we build a complete exploit from available code?
 - Must find the gadgets that are available in that code
- How do you think one finds all the gadgets in a code region?
 - From each byte offset in the code region, see what sequence of instructions are encoded until a "ret" is reached
 - Find "a, b, c, ret" where a, b, and c are other instructions

Finding Gadgets

- Snippets of code ending in "ret" are called gadgets
- How do we build a complete exploit from available code?
 - Must find the gadgets that are available in that code
- How do you think one finds all the gadgets in a code region?
 - Start from a "ret" byte "0xc3" at any memory location and work backwards to find the longest useful sequence of instructions for a gadget
 - Find "a, b, c, ret" find "c, ret", then "b, c, ret", then...

Gadgets and Returns

Must all useful gadgets end with "ret"?

Gadgets and Returns

- Must all useful gadgets end with "ret"?
 - No, several control transfer functions can be employed to chain gadgets together
- Some examples
 - Jump-oriented programming
 - Call-oriented programming
 - Basic idea transition to the next gadget through a jump or call rather than using a return
- So, such attacks are more generally called "codereuse attacks"

ROP in the Wild

• Do adversaries really employ such attacks?

Gadgets and Returns

- 2010: ROP attacks contained in "exploit packs"
 - Exploit packs are exploits used in penetration testing
- 2013: First ROP-only attack detected
 - Against Adobe Reader XI
 - i.e., no shell code entire attack within process
- But often there are easier ways to exploit your software flaws
 - Be careful with JIT code if adversary can modify
 - Why?

Is Code Injection Dead?

- Code Injection Is Still Desirable for Adversaries
 - Add new code for additional attack functionality
 - Could add a new code file and execute
 - But, may still want to use the hijacked process (evade detection)
- But, given DEP is code injection no longer possible?

Disable DEP

- How would we use code reuse to disable DEP?
- Goal is to allow execution of writable memory (i.e., change page permissions)
 - There's a system call for that

```
int mprotect(void *addr, size t len, int prot);
```

- Sets protection for region of memory starting at address
- Invoke this system call to allow execution on stack and then start executing from the injected code

Take Away

- Code injection attacks are prevented by DEP
 - Also called W xor X (write XOR execute)
- But, adversaries can reuse available code in returnoriented programming attacks
 - Generalized to code-reuse attacks
- We examined the ROP mechanism today
 - That is the one you must know
- Note that ROP (code-reuse) attacks can re-enable the possibility of code injection attacks