
Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

CMPSC 447
Midterm Review

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 2

Quiz 3
• #1 - The MITRE ATT&CK framework describes

the tactic of "execution" as a tactic to enable
adversaries to run adversary-controlled code on a
system.

‣ True/False

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 3

ATT&CK Tactics

• Initial Access

• Execution

• Persistence

• Privilege Escalation

• Defense Evasion

• Credential Access

• Discovery

• Lateral Movement

• Collection

• Command and
Control

• Exfiltration

• Impact

• Reconnaissance

• Resource
Development

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 4

ATT&CK Tactics in Action

• Initial Access, Discovery, and Credential access

‣ Gain and learn about (via secrets) an environment

‣ What was that for Stuxnet?

• Execution

‣ “Execution of adversary-controlled code”

‣ How Stuxnet?

• Collection and Exfiltration

‣ Steal data from the domain

‣ Did Stuxnet do that?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 5

ATT&CK Tactics in Action
• Persistence and Defense Evasion

‣ “to persist in the target environment” “undetected”

‣ How did Stuxnet do that?

• Privilege Escalation and Lateral Movement

‣ Gain more permissions in the environment and control
more components of same privilege

‣ How for Stuxnet?

• Command and Control

‣ Method to obtain commands for malware

‣ Did Stuxnet do that?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 6

Quiz 3
• #2 - A type error can violate memory safety by

allowing an adversary to cause the program to
treat data values as pointer values.

‣ True/False

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 7

Memory Safety
• What are the requirements for memory safety for

all three categories

‣ Spatial safety: All reads and writes using a pointer to a
memory region must be within that memory region

• Strings additionally require a null-terminator

‣ Temporal safety: All reads and writes using a pointer
must be to a live (not deallocated) memory region that
is assigned to the pointer

‣ Type memory safety: Semantics of all field references
at the same offset must be of the same type (weaker:
cannot be both data and pointer)

• Type safety: Only pointers of one type for the memory region

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Type Errors

• Type errors are possible when pointers of multiple
types are used to access the same region
‣ t1 *p, t2 *q; // declare pointers

‣ p = (t1 *) malloc(sizeof(t1)); // allocate object and define p

‣ pàfield = value; // use pointer for t1

‣ q = (t2 *)p; // type cast and define q

‣ qàX(); // use pointer for t2

• Semantics of ”pàfield” may be different than “qàX”
‣ Pointer vs. data

‣ Data of multiple types (formats)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Type Errors

• Downcasts – Cast to a larger type; causes overflow
‣ t1 *p, t2 *q; // declare pointers

‣ p = (t1 *) malloc(sizeof (t1)); // allocate t1 object, define p

‣ pàfield = value; // suppose this is an int field

‣ q = (t2 *)p; // downcast, t2 is a larger type

‣ qàextra= value2; // overflow memory of object

• E.g., t2 is a child type of t1
‣ So, the size of type t2 is greater than the size of type t1

‣ “extra” field is added to the type t1 to create type t2

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 10

Quiz 3
• A temporal error caused by a use-after-free

vulnerability can be mitigated by which methods
(may be multiple correct answers).

‣ Freeing the pointer memory along with the memory
region

‣ Nullifying the pointer value when the assigned memory
region is freed

‣ Deallocating memory on function returns

‣ Never freeing memory

‣ Only allocating memory regions in type-specific
memory pools

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Use Before Initialization

• What does ”p” reference upon use?
‣ char *p; // declare pointer

‣ len = snprintf(p, size, "%s", original_value); // use pointer

‣ p = (char *) malloc(size); // define pointer to object

‣ free(p); // deallocate object

• Called “use before initialization” (UBI)
‣ Allows an adversary to use reference value defined at the

location used to declare “p” (not an assignment)

‣ Could be anywhere

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Use After Free

• What does ”p” reference upon use?
‣ char *p; // declare pointer

‣ p = (char *) malloc(size); // define pointer to object

‣ free(p); // deallocate object – release memory for reuse

‣ len = snprintf(p, size, "%s", original_value); // use pointer

• Called “use after free” (UAF)
‣ Allows an adversary to use reference to memory region

that may be allocated a different object

‣ Could be anywhere

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Zeroing Pointers

• Yes! Set every pointer value to zero on deallocation
‣ Zero pointers on deallocation from the heap
• free(p), p = 0;

‣ Trickier on the stack
• In theory, no stack reference should outlive its assignment

• But, hard to guarantee since deallocation is implicit

• Also, the cost of zeroing on deallocation can be
worse
‣ Since not done at all normally

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Temporal Defense Alternatives
• Hypothesis: memory is so cheap and abundant, we

just do not need to deallocate
‣ Will be some cases where this is not going to work

‣ But, for others, why risk attack?

• Hypothesis: garbage collection
‣ Too expensive for C

• Hypothesis: temporal safety like Rust’s “safe” objects
‣ Harder to program with lifetimes and ownerships

• Hypothesis: use type-specific allocation
‣ All objects and fields are aligned

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 15

Quiz 3
• What are the differences between strncpy and

snprintf with respect to safe string processing?

‣ Only strncpy ensures a null terminator is added to the
end of the string

‣ Only snprintf ensures a null terminator is added to the
end of the string

‣ Only snprintf returns an integer for the amount of data
that would have been written to detect truncation

‣ Only snprintf/strncpy does bounds checking

‣ Only strncpy returns a pointer to the resultant buffer
memory region to detect truncation

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Traditional Solution – That Works!

• int snprintf(char *S, size_t N, const char *FORMAT, ...);
‣ Writes output to buffer S up to N chars (bounds check)

‣ Always writes ‘\0’ at end if N>=1 (terminate)

‣ Returns “length that would have been written” or negative
if error (reports truncation or error)

• Thus, achieves goals of correct bounds checking
‣ Enforces bounds, ensures correct C string, and reports

truncation or error
• len = snprintf(buf, buflen, "%s", original_value);

• if (len < 0 || len >= buflen) … // handle error/truncation

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Bounds Checking

• For each byte in the operation:
• If oversized option (1) – stop processing input
‣ Reject and try again, or even halt program (may make

DoS)

• If oversized option (2) – truncate data
‣ Common approach, but has issues:
• Terminates text “in the middle” at place of attacker’s choosing

• Way better to truncate than to allow easy buffer overflow attack

• But, should report when truncation occurs for the programmer to
handle the possible impacts

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 18

Quiz 3
• What kind of memory error flaw does the

following code demonstrate?
int a;

unsigned int b;

a = adv_input;

if (a < MAX_VALUE) { // MAX_VALUE is a constant

b = (unsigned int)a;

read(fd, buf, b); // assume fd and buf are initialized

}

‣ Integer overflow / Downcast error / Special error /
Use-after-initialization / Recast error

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Integer Overflows

• Key question
‣ What is an integer?

‣ In a computer system?

• There are several different computer representations
for integers
‣ Size – number of bytes used to represent

‣ Signedness – range of values integers can take

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 20

Quiz 3
• safe_strcpy(dest, src) is a secure string copy

function. What properties should that function
ensure and how could you implement that
function to ensure those properties given the
limitations in the arguments available?

‣ Idea: Automatic memory resizing

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Automatic Resizing
• For each byte in the operation:

• If oversized – Auto-resize – move string to a new
memory region, if necessary
‣ This is what most languages do automatically

• other than C

• Must deal with “too large” data

• By default, handling auto-resize manually in C can
create issues
‣ More code changes/complexity in existing C code

• But, available APIs support options to handle this for you

‣ Dynamic allocation is manual in C, so adds new risks
• Temporal errors

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 22

Quiz 3
• Produce the stack layout to use the following

return-oriented programming (ROP) gadgets to
move a value at 0xffcd to 0x0804.

G1: push %ebx; ret

G2: push %ecx; ret

G3: pop %ebx; ret

G4: pop %ecx; ret

G5: mov %ecx, (%ebx); ret // store value in %ecx to memory location (%ebx)

G6: mov %ebx, (%ecx); ret // store value in %ebx to memory location (%ecx)

G7: mov (%ecx), %ebx; ret // load value in %ebx from memory location (%ecx)

G8: mov (%ebx), %ecx; ret // load value in %ecx to memory location (%ebx)

• G4 | 0xffcd | G7 | G4 | 0x0804 | G6

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 23

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

ROP	Example
• Use	ESP	as	program	counter	
– E.g.,	Store	5	at	address	0x8048000	(without	introducing	
new	code)

%eax	=
%ebx	=

0x8048000	=

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop	%eax	
ret

pop	%ebx	
ret

movl	%eax,	(%ebx)	
ret

G2: G2

G3

G1:

G3:

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 24

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

ROP	Example
• Use	ESP	as	program	counter	
– E.g.,	Store	5	at	address	0x8048000	(without	introducing	
new	code)

%eax	=
%ebx	=

0x8048000	=

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop	%eax	
ret

pop	%ebx	
ret

movl	%eax,	(%ebx)	
ret

G2: G2

G3

G1:

G3:

5

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 25

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

ROP	Example
• Use	ESP	as	program	counter	
– E.g.,	Store	5	at	address	0x8048000	(without	introducing	
new	code)

%eax	=
%ebx	=

0x8048000	=

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop	%eax	
ret

pop	%ebx	
ret

movl	%eax,	(%ebx)	
ret

G2: G2

G3

G1:

G3:

5

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 26

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

ROP	Example
• Use	ESP	as	program	counter	
– E.g.,	Store	5	at	address	0x8048000	(without	introducing	
new	code)

%eax	=
%ebx	=

0x8048000	=

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop	%eax	
ret

pop	%ebx	
ret

movl	%eax,	(%ebx)	
ret

G2: G2

G3

G1:

G3:

5

0x8048000

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 27

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

ROP	Example
• Use	ESP	as	program	counter	
– E.g.,	Store	5	at	address	0x8048000	(without	introducing	
new	code)

%eax	=
%ebx	=

0x8048000	=

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop	%eax	
ret

pop	%ebx	
ret

movl	%eax,	(%ebx)	
ret

G2: G2

G3

G1:

G3:

5

0x8048000

ROP	Example
• Use	ESP	as	program	counter	
– E.g.,	Store	5	at	address	0x8048000	(without	introducing	
new	code)

%eax	=
%ebx	=

0x8048000	=

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop	%eax	
ret

pop	%ebx	
ret

movl	%eax,	(%ebx)	
ret

G2: G2

G3

G1:

G3:

5

0x8048000

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 28

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

ROP	Example
• Use	ESP	as	program	counter	
– E.g.,	Store	5	at	address	0x8048000	(without	introducing	
new	code)

%eax	=
%ebx	=

0x8048000	=

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop	%eax	
ret

pop	%ebx	
ret

movl	%eax,	(%ebx)	
ret

G2: G2

G3

G1:

G3:

5

0x8048000

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 29

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

ROP	Example
• Use	ESP	as	program	counter	
– E.g.,	Store	5	at	address	0x8048000	(without	introducing	
new	code)

%eax	=
%ebx	=

0x8048000	=

Registers Memory

Code Stack

G1

5

jmp G2

Return Address

buf

0x8048000

jump G3

. . .

pop	%eax	
ret

pop	%ebx	
ret

movl	%eax,	(%ebx)	
ret

G2: G2

G3

G1:

G3:

5

0x8048000

5

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 30

Finding Gadgets
• Snippets of code ending in “ret” are called gadgets

• How do we build a complete exploit from
available code?

‣ Must find the gadgets that are available in that code

• How do you think one finds all the gadgets in a
code region?

‣ From each byte offset in the code region, see what
sequence of instructions are encoded until a ”ret” is
reached

‣ Find “a, b, c, ret” – where a, b, and c are other instructions

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 31

Previous Quizzes (#2)
• How many filler bytes are necessary to reach the

field (*fn) in the following structure if there is a
buffer overflow for writing to the field "buffer"
(assume 32-bit binary and 4-byte ints)?

struct X {

int index;

char buffer[12];

char other[8];

int answer;

int (*fn) (int y);

};

• 24 bytes

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 32

Hijack Control Flow
• Let’s create a payload to hijack control by

overwriting the return address

‣ To print a string from the binary

• To create the payload

‣ Insert filler to reach the return address

‣ Add the new return address (printf@plt) at 0x10a0

• Note: changed the from the prior figure where printf@plt at
0x1080

‣ And the reference to a string at 0x342
“__libc_start_main”

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 33

Hijack Control Flow
• Create the payload

‣ Actually, code is loaded at an offset

• So, need to account for the offset in the payload

‣ Add the new return address (printf@plt) at offset
0x1080 à 0x56555000 + 0x10a0 = 0x565560a0

• Little endian \xa0\x60\x55\x56

‣ And the reference to the format string at offset 0x342
à 0x56555000 + 0x342 = 0x56555342

• Little endian \x42\x53\x55\x56 or “BSUV” in ascii

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 34

Previous Quizzes (#1)
• Specify a payload to a buffer overflow vulnerability

for writing a buffer of size 10 that overwrites the
return address that is eight bytes above the buffer
with the address 0x080432f0.

‣ Payload

• Fill buffer (10 bytes)

• Fill rest of space to the return address (8 bytes)

• Set the return address to 0x800432f0

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 35

Previous Quizzes (#2)
• In a 32-bit program, suppose the heap metadata

structure only contains the fields "bk" (for
referencing the previous block) and "fd" (for
referencing the next block) in that order.

• And the metadata is updated using the follow code
("chunk2" is an instance of the heap metadata
struct):

‣ chunk2àbkàfd = chunk2àfd;

• If you want to write "0xffff" at address "0x4d78,"
you need to write the chunk2àfd to be 0xffff and
chunk2àbk to be 0x4d74

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 36

Heap Memory Layout
• The Heap Memory Layout often includes metadata

‣ Depends on the heap allocator

‣ Often placed between objects to store information
needed to manage allocation state – e.g., sizes and
status

Heap
Low

Heap
High

Obj
A

Obj
C

Obj
D

Metadata

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Process Address Space

• Text: static code

• Data: also called heap

‣ static variables

‣ dynamically allocated data
(malloc, new)

• Stack: program
execution stacks

Text

Data

Stack

lower
memory
address

higher
memory
address

CSE543 - Introduction to Computer and Network Security Page

Heap Overflows

• http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf

�X

• Heap allocators maintain a doubly-linked list of allocated
and free chunks

• malloc() and free() modify this list

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 38

Previous Quizzes (#1)
• Suppose user2 has a symbolic link 'linkfile' in

'/home/user2' to '/'. If a program running as root
opens the file '/home/user2/linkfile/etc/foo.txt',
which pathname elements does the program have
to check for confused deputy attacks to
detect/prevent attacks?

‣ /home/user2/linkfile

‣ /home/user2

• Pathname elements modifiable by someone other than root

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Common Threat (1)

• What is the threat that enables link traversal
and file squatting attacks?

‣ Common to both

• In both cases, the adversary has write
permission to a directory that a victim uses in
name resolution

‣ Could be any directory used in resolution, not just
the last one

‣ Enables the adversary to plant links and/or files

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Common Threat (2)

• What is the threat that enables directory
traversal attacks?

• In this case, the victim uses adversary input to
construct file names

‣ Any parts of file names

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Talk Outline

• Problem: Processes need resources from system

41CSE543 - Introduction to Computer and Network Security Page

Integrity (and Secrecy) Threat
• Confused Deputy
‣ Process is tricked into performing an operation on

an adversary’s behalf that the adversary could not
perform on their own
• Write to (read from) a privileged file

�X

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 42

Previous Quizzes (#1)
• Which code is guaranteed to produce a C string in

the buffer defined by 'char buffer[20];’?

‣ None of the answers supplied are correct

‣ How would you do that now?

• E.g., strlcpy(buffer, src, 20);

• Check others

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Traditional Solution – That Works!

• int snprintf(char *S, size_t N, const char *FORMAT, ...);
‣ Writes output to buffer S up to N chars (bounds check)

‣ Always writes ‘\0’ at end if N>=1 (terminate)

‣ Returns “length that would have been written” or negative
if error (reports truncation or error)

• Thus, achieves goals of correct bounds checking
‣ Enforces bounds, ensures correct C string, and reports

truncation or error
• len = snprintf(buf, buflen, "%s", original_value);

• if (len < 0 || len >= buflen) … // handle error/truncation

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 44

Previous Quizzes (#2)
• What properties do we expect from all secure

string copy operations? Select one or more
correct answers.

‣ Null-terminated

‣ Within memory bounds

‣ Truncation reported

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 45

Previous Quizzes (#1)
• Why is it possible to execute code injected on the

stack? Choose the best answer.

‣ Because the page permissions of the stack memory
region (all pages) include execute permission

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 46

Injecting Shell Code
• How do you invoke “execve” using injected code?

168 Chapter 6. Software Security—Exploits and Privilege Escalation

Ch.7.	Overflow	of	a	local	variable	on	the	stack.			

An	overflow	of			
buffer	var3		

overwrites	higher		
memory,		including:		

return	addr	

SP		

rest	of	
previous	frame	

increasing	addresses	

old	FP	
	return	addr	

var1	
var2	
var3	

arg1	=	src	
The	overwriIen		
return	address	
may	point	back	
into	injected	code	or	
to	any	other	address	

...
	

Figure 6.5: Buffer overflow of stack-based local variable.

dress if n is large enough. When myfunction() returns, the Instruction Pointer (Program
Counter) is reset from the return address; if the return address value was overwritten by
the string from src, program control still transfers to the (overwriting) value. Now sup-
pose the string src came from malicious program input—both intentionally longer than
var3, and with string content specifically created (by careful one-time effort) to overwrite
the stack return address with a prepared value. In a common variation, this value is an
address that points back into the stack memory overwritten by the overflow of the stack
buffer itself. The Instruction Pointer then retrieves instructions for execution from the
(injected content of the) stack itself. In this case, if the malicious input (a character string)
has binary interpretation that corresponds to meaningful machine instructions (opcodes),
the machine begins executing instructions specified by the malicious input.

NO-OP SLED. Among several challenges in crafting injected code for stack execution,
one is: precisely predicting the target transfer address that the to-be-executed code will
end up at, and within this same injected input, including that target address at a location
that will overwrite the stack frame’s return address. To reduce the precision needed to
compute an exact target address, a common tactic is to precede the to-be-executed code by
a sequence of machine code NOP (no-operation) instructions. This is called a no-op sled.3

Transferring control anywhere within the sled results in execution of the code sequence
beginning at the end of the sled. Since the presence of a NO-OP sled is a telltale sign of an
attack, attackers may replace literal NOP instructions with equivalent instructions having
no effect (e.g., OR 0 to a register). This complicates sled discovery.

6.4 Heap-based buffer overflows and heap spraying

Beyond the stack, overflows may affect buffers in heap memory and the data segment
(BSS and Data in Fig. 6.3). Traditionally, many systems have left the heap and BSS
not only writable (necessary), but also executable (unnecessary, dangerous). The data

3This term may make more sense to readers familiar with bobsleds or snow toboggans, which continue
sliding down a hill to its bottom (the code to be executed).

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 47

Code Reuse in General
• Code reuse attacks can be employed more

generally to enable adversaries to execute existing
code under their control

‣ Termed “return-oriented attacks”

CSE543 - Introduction to Computer and Network Security Page

Return-Oriented Programming

�X

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 48

Previous Quizzes (#2)
• What is one way (procedure) that the Stuxnet

worm achieved tactic of "lateral movement"?

‣ Infected any USB device inserted

• Compare Stuxnet behaviors to MITRE ATT&CK
tactics

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Stuxnet: Tactics
• Stuxnet tactics

‣ Zero-day exploits (initial access)

‣ Windows rootkit (persistence)

‣ PLC rootkit (execution)

‣ Antivirus evasion (defense evasion)

‣ Peer-to-Peer updates (command and control)

‣ Signed driver with a valid certificate (credentials)

• And more

‣ Go through Stuxnet and map actions to tactics

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 50

Take Away
• Reviewed for midterm from the quiz questions

and their answers

• Scope of exam includes these questions

‣ And a little more

• More about type and temporal attacks

‣ Including more context about what we discussed, so
go back to the related slide decks in the original

• Think about variants of these questions to give
yourself a broader understanding

• Good luck!

