
Systems and Internet Infrastructure Security Laboratory (SIIS) Page 1

CMPSC 447
Privilege Separation

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Our Goal

2

• In this course, we want to develop techniques to
prevent vulnerabilities from being created

‣ Prevent flaws

‣ Prevent access or exploitation of flaws

• Privilege separation prevents access and exploitation, but
moving sensitive data to another address space

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

OpenSSH
• Secure remote login software

• Client and server architecture

• Client and server establish secure channel using
private key stored on server

• Enabling client to login using password without fear
of password sniffing

3

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

OpenSSH
• Is security-critical software

‣ Runs as root – needs to be able to login users

‣ Stores and uses a private key that if lost could enable
machine spoofing

‣ Has access to user passwords that may apply to any
machine in the domain

‣ Launches user processes under the authenticated user ID,
which requires root privilege

• That is OK, OpenSSH is written in C, so I am sure
there are no problems

4

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

OpenSSH
• Is secure-critical software

‣ Runs as root – needs to be login users

‣ Stores and uses a private key that if lost could enable
machine spoofing

‣ Has access to user passwords that may apply to any
machine in the domain

‣ Launches user processes under the authenticated user ID,
which requires root privilege

• That is OK, OpenSSH is written in C, so I am sure
there are no problems

‣ That was a joke…
5

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

OpenSSH Vulnerabilities
• Circa 2002

‣ CVE-2000-0525 – does not properly drop privileges, allowing
local users to execute arbitrary commands

‣ CVE-2001-0872 – does not properly cleanse critical
environment variables, allowing local users to gain root

‣ CVE-2001-1029 – does not drop privileges before reading the
copyright files, allows local users to read arbitrary files

‣ CVE-2002-0059 – releases certain memory more than once
("double free"), allowing remote attackers to execute arbitrary
code

‣ CVE-2002-0083 – Off-by-one error allows remote malicious
servers to gain privileges.

6

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Retroactive Security

Deploy

Adversary
exploits

vulnerability

Fix
vulnerability

• “Penetrate and
patch” as flaws
are exposed as
vulnerabilities

7

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

OpenSSH
• After patching enough of these and other

vulnerabilities, what is the impact on?

‣ Preventing privilege escalation (to root)

‣ Protecting program secrets

8

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

OpenSSH
• After patching enough of these and other

vulnerabilities, what is the impact on?

‣ Preventing privilege escalation (to root)

‣ Protecting program secrets

• Not sure whether there are other latent flaws that
can be exploited (vulnerabilities)?

• Can we make some change to the design to make
such flaws much more difficult to access or exploit?

9

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Retrofit Security Mechanisms

Deploy

Adversary
exploits

vulnerability

Retrofit
security

mechanisms

• Several codebases have
been retrofit with security
mechanisms

‣ X Server, postgres, Apache,
OpenSSH, Linux Kernel,
browsers, etc.

• With a variety of security
mechanisms:

‣ Privilege separation,
Authentication, Auditing,
Authorization, etc.

10

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Privilege Separation
• Isolate parts of a program into separate protection

domains each with

‣ Access to a subset of the program data

‣ Different system privileges (access rights)

• Goals

‣ Small amount of code with sensitive data and privileges

‣ Rest of code can run with basic (low) data and privileges

• What parts of code need access to sensitive data
and privileges in OpenSSH?

11

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Privilege Separation
• What parts of code need access to sensitive data

and privileges in OpenSSH?

‣ Code that needs access to root privileges

• to change UID of child process (integrity)

‣ Code that needs access to critical secrets

• For setting up secure channels and password authentication
(secrecy)

12

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Privilege Separation
• How do we take a monolithic program and create

one or more privilege-separated components?

13

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Privilege Separation
• How do we take a monolithic program and create one

or more privilege-separated components?

‣ Need to identify privileged data in your program

‣ Integrity

• Must not be impacted by adversary inputs

• E.g., Data used in operations that require ‘root’ privileges

‣ Secrecy

• Must never be leaked to adversaries

• SSH private keys

• Then, you need to determine code (functions) that
operate on such data

14

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Privilege Separation
• How do we take a monolithic program and create

one or more privilege separated components?

15

Untrusted
(receive

client input)

Integrity
(root ops)

Secrecy
(authenticate)

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Information Flow
• One security property for evaluating programs is

information flow

• Use information flow to control

‣ Secrecy

‣ Integrity

16

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Information Flow Secrecy
• One security property for

evaluating programs is
information flow

• Information Flow Secrecy

‣ Subjects – Subject Level LS

‣ Objects – Object Level LO

‣ LS ≥ LO for Subject to read an
object

‣ LS ≤ LO for Subject to write an
object

17

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Information Flow Secrecy
• One security property for

evaluating programs is
information flow

• Information Flow Secrecy

‣ Subjects – Subject Level LS

‣ Objects – Object Level LO

‣ LS ≥ LO for Subject to read an
object

‣ LS ≤ LO for Subject to write an
object

18

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Information Flow Integrity
• One security property for

evaluating programs is
information flow

• Information Flow Integrity

‣ Subjects – Subject Level IS

‣ Objects – Object Level IO

‣ IS ≤ IO for Subject to read an object

‣ IS ≥ IO for Subject to write an
object

19

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Privilege Separation
• How do we take a monolithic program and create

one or more privilege separated components?

20

Untrusted
(receive

client input)

Integrity
(root ops)

Secrecy
(authenticate)

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

OpenSSH Privilege Separation
• What parts of code need access to sensitive data

and privileges in OpenSSH?

‣ Code that needs access to root privileges

• to change UID of child process (integrity)

‣ Code that needs access to critical secrets

• For setting up secure channels and password authentication
(secrecy)

• How would you privilege separate these
functionalities from the rest of OpenSSH?

21

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

OpenSSH Privilege Separation
• How OpenSSH looks after privilege separation

22

Secrecy

Integrity

mm = mm_create(back, 655360);
back = mm_create(NULL, 65536);

Parent

...
pid = fork();

waitpid(pid, NULL, 0);

Parent

p = mm_malloc(mm, size);
...
exit(0);

MmBack

Back Mm

Child

Figure 3: The complete state of a slave process in-
cludes dynamically allocated memory. When exporting
this state, the dynamically allocated address space in
opaque data objects must not change. By employing a
shared memory allocator that is backed by another shared
address space, we can export state without changing the
addresses of dynamically allocated data.

wants to change its identity, it exits and the thread of
execution continues in the parent. The parent has ac-
cess to all the data that was allocated in the child.
However, one problem remains. The shared address
space back uses libc’s malloc that allocated memory
in the child’s address space to keep track of its state.
If this information is lost when the child process exits,
then subsequent calls to mm malloc or mm free fail. To
solve the problem, the parent calls the mm share sync
function which recreates the state information in the
shared address space back. Afterwards, freeing and al-
locating memory proceeds without any problems.

We use shared memory and XDR-like data marshal-
ing to export all state from the child to the parent. Af-
ter the child process exports its state and terminates,
the parent creates a new child process. The new pro-
cess changes to the desired UID and GID and then
imports the exported state. This e↵ects a change of
identity in the slave that preserves state information.

4 Separating Privileges in OpenSSH

In this section, we show how to use privilege sep-
aration in OpenSSH, a free implementation of the
SSH protocols. OpenSSH provides secure remote lo-
gin across the Internet. OpenSSH supports protocol
versions one and two; we restrict our explanation of
privilege separation to the latter. The procedure is
very similar for protocol one and also applies to other
services that require authentication.

Key Exchange
Auth Result

Request Auth

User Request
Processing

privileged
OpenSSH

privileged
OpenSSH

privileged
OpenSSH

Tim
eline

Network connection

fork unprivileged child

State Export

User Network Data
Request PTY

Pass PTYMonitor

Monitor Processing
Network

Listen *:22

fork user child

unprivileged
OpenSSH

OpenSSH
user privileged

Authentication

Figure 4: Overview of privilege separation in OpenSSH.
An unprivileged slave processes all network communica-
tion. It must ask the monitor to perform any operation
that requires privileges.

When the SSH daemon starts, it binds a socket to
port 22 and waits for new connections. Every new con-
nection is handled by a forked child. The child needs
to retain superuser privileges throughout its lifetime
to create new pseudo terminals for the user, to au-
thenticate key exchanges when cryptographic keys are
replaced with new ones, to clean up pseudo terminals
when the SSH session ends, to create a process with
the privileges of the authenticated user, etc.

With privilege separation, the forked child acts as
the monitor and forks a slave that drops all its priv-
ileges and starts accepting data from the established
connection. The monitor now waits for requests from
the slave; see Figure 4. Requests that are permitted
in the pre-authentication phase are shown in Figure 5.
If the child issues a request that is not permitted, the
monitor terminates.

First, we identify the actions that require special
privilege in OpenSSH and show which request types
can fulfill them.

4.1 Pre-Authentication Phase

In this section, we describe the privileged requests
for the pre-authentication phase:

• Key Exchange: SSH v2 supports the Di�e-
Hellman Group Exchange which allows the client
to request a group of a certain size from the
server [10]. To find an appropriate group the
server consults the /etc/moduli file. However, be-
cause the slave has no privileges to access the file
system, it can not open the file itself, so, it is-
sues an informational request to the monitor. The

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Separation Issues
• Information Flow Issues

‣ Secrecy

• Secret component must return authentication result

• Filter secrets from the response (declassify)

‣ Integrity

• High integrity component must receive input

• Validate integrity of untrusted inputs (endorsement)

‣ Both

• In many cases the secret data is also high integrity

• What then?

23

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Separation Issues
• Information Flow Issues

‣ Secrecy

• Secret component must return authentication result

• Filter secrets from the response (declassify)

‣ Integrity

• High integrity component must receive input

• Validate integrity of untrusted inputs (endorsement)

‣ Both

• In many cases the secret data is also high integrity

• What then? Both declassification and endorsement

24

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Declassification and Endorsement

• Declassification

‣ Remove as much impact from the secret as possible

‣ Example: Password checking

‣ What is the minimal impact of password value of checking
result?

• Endorsement

‣ Remove influence of untrusted input as much as possible

‣ Example: Untrusted request

‣ What is the minimal influence of an untrusted input on
request processing?

25

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Implementing Privilege Separation
• Getting privilege separation to work correctly is

non-trivial

‣ Need to turn a function call

‣ Into a remote procedure call

• One challenge

‣ Data in caller and callee are no longer in the same
protection domains

‣ Example: int check(char *passwd)

‣ Normally, pass as a pointer to a memory location “passwd”

‣ Now, need to copy memory from caller to callee

29

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Implementing Privilege Separation

• Complex task for programmers

• Simplify by specifying as a remote procedure call
(RPC)

‣ RPC in terms of interface description language (IDL)

• Marshalling (on caller) and unmarshalling (on callee) input
arguments

• Reverse on return

‣ Performance impact

• What if there are many RPCs to the privilege separated domain?

30

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Implementing Privilege Separation

• Some Issues

• Synchronization cost

‣ Suppose the original function call passes a reference to a
large structure

• int fn(struct t1 *t);

‣ But, only uses one field – do we need to copy it all?

• Multithreading

‣ What if the two domains (caller and callee) have concurrent
access to the same data?

31

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Privilege Separation
• Complex task for programmers

‣ We would like to automate this task (next time)

32

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Privilege Separation In Use

34

• Browsers

goal is to minimize the attacker’s advantage. We can model this advantage using a va-
riety of mathematical functions. For instance, an attacker’s worst-case advantage from
compromising a single vulnerability may be defined as max(pi); a privilege-separated
design is good if it yields a large value of (1 � max(pi)) 1. However, as we argue in
this paper, a practical privilege-separated design often departs significantly from this
conceptual formulation. We argue that this purely security-focused viewpoint ignores
the implicit performance costs associated with partitioning. Rather than focusing on
mathematical modeling, we focus on the key methodology to quantify the benefits of a
privilege partitioning scheme in this work.

2.2 Privilege Separation in Browsers

Network

Parser

DOM

JavaScript Engine

Browser Event Manager

Browser Add-ons

1

2

3
4

5

7

8

9

10

12

13

Send requestReceive response
Create

XMLHttpRequest

Feed page
content

Load external
resources

Process script

Read/write
DOM

ParseFeed new
content

11

Register
to events

6
Call event
handlers /
Process

script

Register
to events

Events

Trigger event
processing

Load web page

14

Layout

15 16

14

17

Store style
attributes

Reflect
structure

<canvas>

/ WebGL

Storage

17

Store / retrieve

File System Libraries

Web Browser

Operating System

Web ServersTCP, SSL,...

IP...

Fig. 1. Browser Blueprint. It shows typical interactions between browser components in process-
ing a web page.

Blueprint To discuss trade-offs in partitioning, we use a conceptual blueprint that
shows the various code units in a typical browser. We have manually extracted this
from Mozilla Firefox, a popular web browser, and we show it in Figure 12. We have
confirmed that this conceptual blueprint is also consistent with WebKit-based browsers

1 Alternative definitions of attacker’s advantage are easy to consider—for example, considering the average
case with avg rather than max. We can assign additional weights to the resources ri via a severity function
S(j, ri) if failure protect ri from j has more severity than other resources, etc.

2 Security analysts can pick different blueprints in their design; our methodology is largely agnostic to the
blueprint used.

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Some Browser Goals

35

• Isolate web page processing from network
processing

• Isolate browser components that need filesystem
access from those that do not

• Isolate the processing of one web page from
another

• Isolate the execution of browser processing from
the JavaScript engine

• Isolate the execution of browser processing from
browser extensions

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Browser Separation

36

• Firefox has 20+ components

• That “security” is the largest is not entirely a good
sign

• Browsers are as complex as operating systems

Since the engineering effort required to conduct such a large-scale study is non-
trivial, we develop an assistance tool to automate our measurement and analysis to a
large extent. Especially for the measurement of inter-partition function calls and data
exchange sizes, we develop an Intel Pin tool. It applies dynamic instrumentation on
the Firefox browser to intercept function calls and memory access. By maintaining a
simulated call stack structure, we capture the caller-callee relationships during browser
execution over test harness web pages. Before our experiments, we register accounts
for the Alexa Top 100 web sites, when applicable, and log into these web sites using
a vanilla Firefox browser under a test Firefox profile. Then we manually run Firefox
instrumented by the Pin tool to browse the front pages of the web sites under the same
test profile, so that contents requiring authentication are also rendered. As Firefox is
slowed down by the Pin tool, it took one of the authors around 10 days to finish the
browsing of the 100 web sites.

5 Experimental Evaluation
We conduct empirical measurements to obtain the data for evaluating browser designs.
Our measurements are mainly conducted on a Dell

TM
server running Ubuntu 10.04

64bit, with 2 Xeon R� 4-core E5640 2.67GHz CPUs and 48GB RAM. For the mea-
surement of inter-partition communication overhead, we connected two Dell

TM
desktop

machines with a dual-core i5-650 3.2GHz CPU and 4GB RAM via a 100 Mbps link.

5.1 Measurement Goals
Our measurements aim to measure the following:

Goal 1. Security benefits of isolating a browser component with regard to the num-
ber of historical security vulnerabilities that can be mitigated by privilege separation.

Goal 2. Worst-case estimation of additional inter-partition calls and data exchange
that would be incurred by isolating a component, and by isolating an authority (web
origin).

Goal 3. Memory and communication overhead incurred by different isolation prim-
itives.

Comp# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
LOC 136 367 74 155 32 3 131 21 77 366 10 269 763 17 223 24 137 478 24 188 53

Table 2. Kilo-lines of Source Code in Firefox Components. In our experiments, we consider the
following components: 0. NETWORK, 1. JS, 2. PARSER, 3. DOM, 4. BROWSER, 5. CHROME,
6. DB, 7. DOCSHELL, 8. EDITOR, 9. LAYOUT, 10. MEMORY, 11. MODULES, 12. SECURITY,
13. STORAGE, 14. TOOLKIT, 15. URILOADER, 16. WIDGET, 17. GFX, 18. SPELLCHECKER,
19. NSPR, 20. XPCONNECT, and 21. OTHERS.

5.2 Measurement over Alexa Top 100 Web Sites
Next, we explain how we measure these metrics and present their results.
For Goal 1: security benefits. We measure the number of historical security vulnera-
bilities in each Firefox component according to each severity category (Security Param-

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Take Away

37

• Programs may have lots of ad hoc bugs that prevent
it from running securely

‣ However, there are certain security goals we may want to
achieve

• Focusing on the goals may make the program easier to protect
through security mechanisms targeted for those goals

‣ One such security mechanism

• Privilege separation: Isolate code with extra privileges or sensitive
resources from rest of the program – call via small API

