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Format String Vulnerabilities
• Who uses printf in their programs?

printf ("This class is %s\n", string); 

‣ In some cases, printf can be exploited
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Format String Vulnerabilities
• Who uses printf in their programs?

printf ("This class is %s\n", string); 

‣ In some cases, printf can be exploited

• Printf takes a format string and an arbitrary 
number of subsequent arguments

‣ Format string determines what to print

• Including a set of format parameters

‣ Arguments supply input for format parameters

• Which may be values (e.g., %d) or references (e.g., %s)

• An argument for each format parameter
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Format String Vulnerabilities
• Who uses printf in their programs?

‣ In some cases, printf can be exploited

• As usual, arguments are retrieved from the stack

‣ What happens when the following is done?

printf(“%s%s%s%s”);
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Format String Vulnerabilities
• Who uses printf in their programs?

‣ In some cases, printf can be exploited

• As usual, arguments are retrieved from the stack

‣ What happens when the following is done?

printf(“%s%s%s%s”);

• Traditionally, compilers do not check for a match 
between arguments and format string – do now…

‣ So, printf would print “strings” using next four values 
on stack as string addresses – whatever they are
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Printf and the Stack

…
Arg 3
Arg 2

Address of
Format str

• Remember these are 
parameters to a function call

• So, the function expects 
them on the stack

• Printf will just start reading 
whatever is above the 
format string address

Arg 1
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Format String Vulnerabilities
• Who uses printf in their programs?

‣ In some cases, printf can be exploited

• As usual, arguments are retrieved from the stack

‣ What happens when the following is done?

printf(arg);

‣ Anyone use this?  Some people do.



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 39

Format String Vulnerabilities
• Who uses printf in their programs?

‣ In some cases, printf can be exploited

• As usual, arguments are retrieved from the stack

‣ What happens when the following is done?

printf(arg);

• Printf can take a variable as an argument – treated 
as a format string

‣ If an adversary can control this argument and put 
values on the stack, they can direct printf to access 
that memory – “%s%s%s…”
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Format String Vulnerabilities
• Who uses printf in their programs?

‣ In some cases, printf can be exploited

• As usual, arguments are retrieved from the stack

‣ What happens when the following is done?

printf(arg);

• An “interesting” format parameter type – %n

‣ “%n” in a format string tells the printf to write the 
number of bytes written via the format string 
processing up to that point to an address specified by 
the argument
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Printf and the Stack

…
Arg 3
Arg 2

Address of
Format str

• Suppose format string 
generates an adversary-
controlled number of bytes

• Suppose adversary controls 
Arg1-Arg3 on stack

• Adversary can control number 
of bytes generated by format 
string with Arg1 and Arg2

• Adversary can direct where to 
write that number (of bytes) 
using %n with address at Arg3

Arg 1
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Printf-oriented Programming

…
Arg 3
Arg 2

Address of
Format str

• If the program has a loop 
that calls printf under 
adversary control

• An adversary can supply 
inputs to write to any 
memory address

• Over and over

• To control the execution of 
the program arbitrarily 
(Turing complete)

Arg 1
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Prevent Vulnerabilities
• Preventing format string vulnerabilities means 

limiting the ability of adversaries to control the 
format string

‣ Hard-coded strings w/ no arguments – when you can

‣ Hard-coded format strings at least – no printf(arg)

‣ Do not use %n

• Be careful with other references - %s and sprintf can be used 
to created disclosure attacks

‣ Compiler support to match printf arguments with 
format string
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Take Away
• There are other ways to implement powerful 

attacks besides overflow vulnerabilities

• We examined a few of the common ones

‣ Use-after-free

‣ Type confusion

‣ Format string vulnerabilities

• Each are capable of implementing arbitrary write 
primitives that give an adversary arbitrary control 
of memory 

‣ We will want to prevent these vulnerabilities


