
Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

CMPSC 447
Other Memory
Vulnerabilities

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 33

Format String Vulnerabilities
• Who uses printf in their programs?

printf ("This class is %s\n", string);

‣ In some cases, printf can be exploited

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 34

Format String Vulnerabilities
• Who uses printf in their programs?

printf ("This class is %s\n", string);

‣ In some cases, printf can be exploited

• Printf takes a format string and an arbitrary
number of subsequent arguments

‣ Format string determines what to print

• Including a set of format parameters

‣ Arguments supply input for format parameters

• Which may be values (e.g., %d) or references (e.g., %s)

• An argument for each format parameter

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 35

Format String Vulnerabilities
• Who uses printf in their programs?

‣ In some cases, printf can be exploited

• As usual, arguments are retrieved from the stack

‣ What happens when the following is done?

printf(“%s%s%s%s”);

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 36

Format String Vulnerabilities
• Who uses printf in their programs?

‣ In some cases, printf can be exploited

• As usual, arguments are retrieved from the stack

‣ What happens when the following is done?

printf(“%s%s%s%s”);

• Traditionally, compilers do not check for a match
between arguments and format string – do now…

‣ So, printf would print “strings” using next four values
on stack as string addresses – whatever they are

Systems and Internet Infrastructure Security (SIIS) Laboratory Page
37

Printf and the Stack

…
Arg 3
Arg 2

Address of
Format str

• Remember these are
parameters to a function call

• So, the function expects
them on the stack

• Printf will just start reading
whatever is above the
format string address

Arg 1

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 38

Format String Vulnerabilities
• Who uses printf in their programs?

‣ In some cases, printf can be exploited

• As usual, arguments are retrieved from the stack

‣ What happens when the following is done?

printf(arg);

‣ Anyone use this? Some people do.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 39

Format String Vulnerabilities
• Who uses printf in their programs?

‣ In some cases, printf can be exploited

• As usual, arguments are retrieved from the stack

‣ What happens when the following is done?

printf(arg);

• Printf can take a variable as an argument – treated
as a format string

‣ If an adversary can control this argument and put
values on the stack, they can direct printf to access
that memory – “%s%s%s…”

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 40

Format String Vulnerabilities
• Who uses printf in their programs?

‣ In some cases, printf can be exploited

• As usual, arguments are retrieved from the stack

‣ What happens when the following is done?

printf(arg);

• An “interesting” format parameter type – %n

‣ “%n” in a format string tells the printf to write the
number of bytes written via the format string
processing up to that point to an address specified by
the argument

Systems and Internet Infrastructure Security (SIIS) Laboratory Page
41

Printf and the Stack

…
Arg 3
Arg 2

Address of
Format str

• Suppose format string
generates an adversary-
controlled number of bytes

• Suppose adversary controls
Arg1-Arg3 on stack

• Adversary can control number
of bytes generated by format
string with Arg1 and Arg2

• Adversary can direct where to
write that number (of bytes)
using %n with address at Arg3

Arg 1

Systems and Internet Infrastructure Security (SIIS) Laboratory Page
42

Printf-oriented Programming

…
Arg 3
Arg 2

Address of
Format str

• If the program has a loop
that calls printf under
adversary control

• An adversary can supply
inputs to write to any
memory address

• Over and over

• To control the execution of
the program arbitrarily
(Turing complete)

Arg 1

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 43

Prevent Vulnerabilities
• Preventing format string vulnerabilities means

limiting the ability of adversaries to control the
format string

‣ Hard-coded strings w/ no arguments – when you can

‣ Hard-coded format strings at least – no printf(arg)

‣ Do not use %n

• Be careful with other references - %s and sprintf can be used
to created disclosure attacks

‣ Compiler support to match printf arguments with
format string

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 44

Take Away
• There are other ways to implement powerful

attacks besides overflow vulnerabilities

• We examined a few of the common ones

‣ Use-after-free

‣ Type confusion

‣ Format string vulnerabilities

• Each are capable of implementing arbitrary write
primitives that give an adversary arbitrary control
of memory

‣ We will want to prevent these vulnerabilities

