
Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

CMPSC 447
Heap Attacks

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 2

Heap Memory

• What is heap memory?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 3

Heap Memory
• Another region of memory that may be vulnerable

to attacks is heap memory

‣ Attacks similar to those on stack memory, such as buffer
overflows, are possible

‣ Although the attack techniques differ somewhat

‣ Target metadata – kinds of similar, but different effect

‣ Target data – we didn’t do that on the stack yet

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 4

Heap Memory
• Another region of memory that may be vulnerable

to attacks is heap memory

‣ However, the complexity of managing heap memory
brings other attacks into consideration

‣ While these attacks are also possible on stack memory in
theory, exploitable flaws are much less likely on the stack

• Today, we will look at the new attack types and
attack techniques for the heap

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 5

Heap Memory
• What is heap memory?

‣ The heap memory region is where dynamic memory
allocations take place

‣ It is a contiguous region of virtual memory (can expand)

Heap
Low

Heap
High

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 6

Heap Memory
• What is heap memory?

‣ The heap memory region is where dynamic memory
allocations take place

‣ An allocation is assigned a contiguous range of virtual
memory within the heap (e.g., on malloc)

Heap
Low

Heap
High

Obj
A

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 7

Heap Memory
• What is heap memory?

‣ The heap memory region is where dynamic memory
allocations take place

‣ An allocation is assigned a contiguous range of virtual
memory within the heap (e.g., on malloc)

Heap
Low

Heap
High

Obj
A

Obj
B

Obj
C

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 8

Heap Memory
• What is heap memory?

‣ The heap memory region is where dynamic memory
allocations take place

‣ Memory from a specific allocation may be reclaimed
when no longer needed (e.g., on “free”)

Heap
Low

Heap
High

Obj
A

Obj
C

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 9

Heap Memory
• What is heap memory?

‣ The heap memory region is where dynamic memory
allocations take place

‣ Memory from a specific allocation may be reclaimed
when no longer needed (e.g., on “free”) and reused

Heap
Low

Heap
High

Obj
A

Obj
C

Obj
D

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 10

Heap Memory
• What is heap memory?

‣ The heap memory region is where dynamic memory
allocations take place

‣ If you forget to reclaim memory no longer in use, that
memory region is lost (i.e., memory leak)

Heap
Low

Heap
High

Obj
D

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 11

Review: Stack Buffer Overflow
• Suppose that PacketRead causes an overflow on the

memory region of the variable “packet” below

‣ What is the potential impact?

int authenticated = 0;
char packet[1000];

while (!authenticated) {
PacketRead(packet);
if (Authenticate(packet))
authenticated = 1;

}
if (authenticated)
ProcessPacket(packet);

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 12

Stack Buffer Overflow
• Suppose that PacketRead causes an overflow on the

memory region of the variable “packet” below

‣ What is the potential impact? ”authenticated” may be set

int authenticated = 0;
char packet[1000];

while (!authenticated) {
PacketRead(packet);
if (Authenticate(packet))
authenticated = 1;

}
if (authenticated)
ProcessPacket(packet);

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 13

Heap Buffer Overflow
• What happens if we allocate “packet” on the heap?

‣ A buffer overflow of a buffer allocated on the heap is
called a heap overflow – Impact?

int authenticated = 0;
char *packet = (char *)malloc(1000);

while (!authenticated) {
PacketRead(packet);
if (Authenticate(packet))
authenticated = 1;

}
if (authenticated)
ProcessPacket(packet);

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 14

Heap Buffer Overflow
• While a heap overflow may impact heap memory

regions, it won’t impact stack memory (directly)

• “authenticated” is unaffected, but something else may be affected

int authenticated = 0;
char *packet = (char *)malloc(1000);

while (!authenticated) {
PacketRead(packet);
if (Authenticate(packet))
authenticated = 1;

}
if (authenticated)
ProcessPacket(packet);

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 15

Heap Memory Layout
• The Heap Memory Layout below is idealized

‣ Depends on the heap allocator

‣ Many heap allocators store metadata with objects on
the heap to manage the heap region

Heap
Low

Heap
High

Obj
A

Obj
C

Obj
D

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 16

Heap Memory Layout
• The Heap Memory Layout often includes metadata

‣ Depends on the heap allocator

‣ Often placed between objects to store information
needed to manage allocation state – e.g., sizes and
status

Heap
Low

Heap
High

Obj
A

Obj
C

Obj
D

Metadata

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 17

Heap Memory Layout
• The Heap Memory

Layout often includes
metadata

‣ Depends on the heap
allocator

‣ Often placed between
objects to store
information like the “size
of chunk,” “size of
allocation,” “in use bit,”
and reference to the
previous or next chunk

CSE543 - Introduction to Computer and Network Security Page

Heap Overflows
• Overflows on heap also possible

• “Classical” heap overflow
corrupts metadata
‣ Heap metadata maintains chunk

size, previous and next pointers, ...

• Heap metadata is inline with
heap data

‣ And waits for heap management
functions (malloc, free) to
write corrupted metadata to
target locations

�X

char *packet = malloc(1000)
ptr[1000] = ‘M’;

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 18

Heap Memory Layout
• The Heap Memory Layout often includes metadata

‣ Depends on the heap allocator

‣ So, what are the potential impacts of a heap overflow?

Heap
Low

Heap
High

Obj
A

Obj
C

Obj
D

Metadata

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Process Address Space

• Text: static code

• Data: also called heap

‣ static variables

‣ dynamically allocated data
(malloc, new)

• Stack: program
execution stacks

Text

Data

Stack

lower
memory
address

higher
memory
address

CSE543 - Introduction to Computer and Network Security Page

Heap Overflows

• http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf

�X

• Heap allocators maintain a doubly-linked list of allocated
and free chunks

• malloc() and free() modify this list

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Program Stack

• For implementing procedure calls and returns

• Keep track of program execution and state by
storing

‣ local variables

‣ arguments to the called procedure (callee)

‣ return address of the calling procedure (caller)

‣ ...

CSE543 - Introduction to Computer and Network Security Page

Heap Overflows
• free() removes a chunk from allocated list

• By overflowing chunk2, attacker controls bk and fd
‣ Controls both where and what data is written!

• Arbitrarily change memory (e.g., function pointers)

�X

chunk2->bk->fd = chunk2->fd
chunk2->fd->bk = chunk2->bk
chunk2->bk->fd = chunk2->fd
chunk2->fd->bk = chunk2->bk

1

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Program Stack

*Slide by Robert Seacord
CSE543 - Introduction to Computer and Network Security Page

Heap Overflows
• By overflowing chunk2, attacker controls bk and fd
‣ Controls both where and what data is written!

• Assign chunk2->fd to value to want to write

• Assign chunk2->bk to address X (where you want to write)

• Less an offset of the fd field in the structure

• Free() removes a chunk from allocated list

• What’s the result?

�X

chunk2->bk->fd = chunk2->fd
chunk2->fd->bk = chunk2->bk

1

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Stack Frames

• Stack grows from high mem to low mem addresses

• The stack pointer points to the top of the stack

• ESP in Intel architectures

• The frame pointer points to the end of the current
frame

‣ also called the base pointer

• EBP in Intel architectures

• The stack is modified during

‣ function calls, function initializations, returning from
a function

CSE543 - Introduction to Computer and Network Security Page

Heap Overflows
• By overflowing chunk2, attacker controls bk and fd
‣ Controls both where and what data is written!

• Assign chunk2->fd to value to want to write

• Assign chunk2->bk to address X (where you want to write)

• Less an offset of the fd field in the structure

• Free() removes a chunk from allocated list

• What’s the result?
• Change a memory address to a new pointer value (in data)

�X

chunk2->bk->fd = chunk2->fd
 addrX->fd = value
chunk2->fd->bk = chunk2->bk
 value->bk = addrX

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

• A buffer overflow occurs when data is written
outside of the boundaries of the memory allocated
to a particular data structure

• Happens when buffer boundaries are neglected
and unchecked

• Can be exploited to modify (memory after buffer)

‣ Stack: return address, local variables, function pointers,
etc.

‣ Heap: data structures and metadata (next time)

24

Buffer Overflows

CSE543 - Introduction to Computer and Network Security Page

Heap Overflow Defenses
• Separate data and metadata
‣ e.g., OpenBSD’s allocator (Variation of PHKmalloc)	

• Sanity checks during heap management

‣ Added to GNU libc 2.3.5

• Randomization
• Q. What are analogous defenses for stack overflows?

�X

free(chunk2) -->
assert(chunk2->fd->bk == chunk2)
assert(chunk2->bk->fd == chunk2)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 25

Other Heap Attacks
• Other Types of Attacks

‣ Buffer Overread or Disclosure

‣ Use-After-Free

‣ Type Confusion

• While these are all also possible attacks on stack
objects, they are often more significant attacks on
heap objects

‣ We will take a look

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 26

Buffer Overread/Disclosure
• A buffer overread (disclosure) attack enables an

adversary to read memory outside of a region

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 27

Buffer Overread/Disclosure
• A buffer overread (disclosure) attack enables an

adversary to read memory outside of a region

‣ Benign task: Copy from “buffer X” to “buffer Y”

‣ Read beyond the memory region of “buffer X”

‣ To access other objects’ data

‣ And copy into “buffer Y”

• Why would that be a problem?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 28

Buffer Overread/Disclosure
• A buffer overread (disclosure) attack enables an

adversary to read memory outside of a region

‣ Benign task: Copy from “buffer X” to “buffer Y”

‣ Read beyond the memory region of “buffer X”

‣ To access other objects’ data

‣ And copy into “buffer Y”

• While also possible for stack objects, often more
sensitive data is stored on the heap

‣ Heap data is longer lived (more than a function) and
often more diverse and complex (structures)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 29

Heartbleed
• The Heartbleed vulnerability was a significant

threat to the security of OpenSSL

‣ OpenSSL – crypto library for the SSL/TLS protocols

‣ Buffer overread vulnerability in the library that allowed
an adversary to steal web servers’ private keys

‣ About 500,000 secure web servers were at risk

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 30

Heartbleed
• The Heartbleed vulnerability was a significant

threat to the security of OpenSSL

‣ OpenSSL – crypto library for the SSL/TLS protocols

• Caused by a heap overread

‣ Send a message of length K, but say its length is N > K

‣ Allocate N-byte buffer, but only copy K bytes into the
buffer from the original message

‣ Return all the memory in the N-byte buffer

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 31

Attacks on Memory Reuse
• Attacks also exploit the inconsistencies caused in

the reuse of memory on the heap

• Inconsistencies

‣ Your program may reclaim memory

• And reuse that memory region for another object

‣ But, the pointers to the original object (i.e., memory
location prior to reclamation) may remain

• And be used after the reuse

• Examples

‣ Use-after-free and type confusion

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 32

Use After Free
• Flaw: Program frees data on the heap, but then

references that memory as if it were still valid

‣ E.g., pointer to Obj B (say “b”)

• Accessible: Adversary can control data written
using the freed pointer

‣ memcpy(b, adv-data, size);

• Exploit: Obtain a “write primitive”

Obj
A

Obj
B

Obj
C

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 33

Use After Free
• Flaw: Program frees data on the heap, but then

references that memory as if it were still valid

‣ E.g., pointer to Obj B (say “b”)

• Accessible: Adversary can control data written
using the freed (stale) pointer

‣ memcpy(b, adv-data, size);

• Exploit: Obtain a “write primitive”

Obj
A

adv-data
Obj
C

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 34

Use After Free
• Flaw: Program frees data on the heap, but then

references that memory as if it were still valid

• Accessible: Adversary can control data written
using the freed pointer

• Exploit: Obtain a “write primitive”

• Hold on: just using a reference to freed memory
isn’t really a problem, is it?

‣ What is missing from above?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 35

Use After Free
• Flaw: Program frees data on the heap, but then

references that memory as if it were still valid

‣ E.g., pointer to Obj B (say “b”)

• Accessible: Adversary can control data written using
the freed pointer

‣ memcpy(b, adv-data, size);

• Exploit: Obtain a “write primitive” to a new object

Obj
A

Obj
D

Obj
C

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 37

Use After Free
• What happens here?

int main(int argc, char **argv) {

char *buf1R1;
char *buf2R1;

char *buf2R2;

char *buf3R2;

buf1R1 = (char *) malloc(BUFSIZER1);

buf2R1 = (char *) malloc(BUFSIZER1);

free(buf2R1);

buf2R2 = (char *) malloc(BUFSIZER2);

buf3R2 = (char *) malloc(BUFSIZER2);

strncpy(buf2R1, argv[1], BUFSIZER1-1);

free(buf1R1);

free(buf2R2);
free(buf3R2);

}

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 38

Use After Free
• When the second R1 buffer (buf2R1) is freed that

memory is available for reuse right away
buf1R1 = (char *) malloc(BUFSIZER1);

buf2R1 = (char *) malloc(BUFSIZER1);

free(buf2R1);

• Then, the R2 buffers could be allocated within that
memory region (buf2R1s)

buf2R2 = (char *) malloc(BUFSIZER2);

buf3R2 = (char *) malloc(BUFSIZER2);

• Finally, the write using the freed pointer will
overwrite the R2 buffers (and metadata between)

strncpy(buf2R1, argv[1], BUFSIZER1-1);

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 41

Type Confusion Attacks
• A type confusion attack exploits when a program

uses a pointer one type to reference a memory
region of another type

‣ A common way of utilizing a use-after-free vulnerability
to go from a “write primitive” to an “arbitrary write
primitive”

‣ Let’s see how…

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 42

Type Confusion
• Most effective attacks exploit data of another type

struct A {

struct C *c;
char buffer[40];

};

struct B {

int B1;

int B2;

char info[32];

};

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 43

Type Confusion
• Free A and allocate B – assume in A’s location

struct A { x = (struct A *)malloc(sizeof(struct A));

struct C *c; free(x);
char buffer[40]; y = (struct B *)malloc(sizeof(struct B));

};

struct B {

int B1;

int B2;

char info[32];

};

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 44

Type Confusion
• How do you think you exploit this?

struct A { x = (struct A *)malloc(sizeof(struct A));

struct C *c; free(x);
char buffer[40]; y = (struct B *)malloc(sizeof(struct B));

};

struct B {

int B1;

int B2;

char info[32];

};

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 45

Type Confusion
• Arbitrary write primitive!

struct A { x = (struct A *)malloc(sizeof(struct A));

struct C *c; free(x);
char buffer[40]; y = (struct B *)malloc(sizeof(struct B));

}; y->B1 = address_of_where_to_write;

x->c->field = value_to_write;

struct B {

int B1;

int B2;

char info[32];

};

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 46

Use After Free
• Flaw: program frees data on the heap, but then

references that memory as if it were still valid

• Accessible: Adversary can control data written
using the freed pointer

• Exploit: Obtain an “arbitrary write primitive”

• Become a popular vulnerability to exploit – over
60% of CVEs

‣ http://blog.tempest.com.br/breno-cunha/perspectives-
on-exploit-development-and-cyber-attacks.html

http://blog.tempest.com.br/breno-cunha/perspectives-on-exploit-development-and-cyber-attacks.html

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 47

Type Confusion
• How do you think you exploit this?

struct A { x = (struct A *)malloc(sizeof(struct A));

void (*fnptr)(char *arg); free(x);
char buffer[40]; y = (struct B *)malloc(sizeof(struct B));

};

struct B {

int B1;

int B2;

char info[32];

};

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 48

Type Confusion
• Arbitrary code reuse!

struct A { x = (struct A *)malloc(sizeof(struct A));

void (*fnptr)(char *arg); free(x);
char buffer[40]; y = (struct B *)malloc(sizeof(struct B));

}; y->B1 = execve@PLT;

x->fnptr(“/bin/sh”);

struct B {

int B1;

int B2;

char info[32];

};

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 49

Type Confusion
• Adversary chooses function pointer value (set as int)

• Adversary may also be able to choose value for “arg”

• To implement arbitrary code reuse

struct A { x = (struct A *)malloc(sizeof(struct A));

void (*fnptr)(char *arg); free(x);

char buffer[40]; y = (struct B *)malloc(sizeof(struct B));

}; y->B1 = execve@PLT;

x->fnptr(“/bin/sh”);

struct B {

int B1;

int B2;

char info[32];

};

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 53

Heap Spraying
• How do adversaries use such flaws?

‣ May be hard to get an object of ”struct Y” in the
location of the freed “struct X” object

• Use heap spraying to fill the heap with lots of
“struct Y” objects

‣ Eventually, one will be placed in the location of the
freed “struct X” object, so we can use the pointer to
access to target memory or code

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 54

Type Confusion
• Does type confusion require a use-after-free?

‣ What other C operation enables a programmer to
reference data one location via multiple type
signatures?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 55

Type Casts
• Does type confusion require a use-after-free?

‣ What other C operation enables a programmer to
reference data one location via multiple type
signatures?

• Type Cast

‣ A type cast enables you to create a pointer of a
different type to the same memory region

• Also, reasoning about multiple types is common in object-
oriented languages (C++)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 56

Type Confusion Via Casts
• Cause the program to process data of one type

when it expects data of another type

‣ Provides same affect as we did with use-after-free

‣ But, without the “free” – just need an ambiguous “use”

• Where’s the error below?

class Ancestor { int x; }

class Descendent : Ancestor { int y; }

Ancestor *A = new A;

Descendant *D = static cast <Ancestor *> A;

D->y = 7;

HexType – Jeon et al. ACM CCS 2017

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 57

Type Confusion
• Cause the program to process data of one type

when it expects data of another type

‣ Provides same affect as we did with use-after-free

‣ But, without the “free” – just need an ambiguous “use”

• Where’s the error below?

class Ancestor { int x; }

class Descendent : Ancestor { int y; }

Ancestor *A = new A;

Descendant *D = static cast <Ancestor *> A;

D->y = 7; // not within memory region allocated to A

HexType – Jeon et al. ACM CCS 2017

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 58

Type Hierarchies
• C++ allows you to construct type hierarchies

HexType – Jeon et al. ACM CCS 2017

Upcast Downcast

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 59

Type Hierarchies
• C++ allows you to construct type hierarchies

‣ Which type of cast is safe and why?

HexType – Jeon et al. ACM CCS 2017

Upcast Downcast

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 60

Un/Safe Type Casts
• Upcasts are always safe because they only reduce

the type structure

‣ That is, only subtypes extend the structure definitions

• Thus, downcasts (as in the example) and arbitrary
casts (that do not follow the hierarchy) are unsafe

‣ However, programming environments trust
programmers to do the right thing

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 65

Take Away
• Heaps provide a wide variety of options for

adversaries, depending on the software flaw

• Can attack either heap metadata or other heap
data, including pointers to access arbitrary memory

• Heaps are susceptible to more types of powerful
attacks than stacks

‣ Disclosure attacks, use-after-free, and type confusion

‣ These attacks are all somewhat related

• We will explore defenses for all of these

