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Heap Memory

• What is heap memory?
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Heap Memory
• Another region of memory that may be vulnerable 

to attacks is heap memory

‣ Attacks similar to those on stack memory, such as buffer 
overflows, are possible

‣ Although the attack techniques differ somewhat

‣ Target metadata – kinds of similar, but different effect

‣ Target data – we didn’t do that on the stack yet
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Heap Memory
• Another region of memory that may be vulnerable 

to attacks is heap memory

‣ However, the complexity of managing heap memory 
brings other attacks into consideration

‣ While these attacks are also possible on stack memory in
theory, exploitable flaws are much less likely on the stack 

• Today, we will look at the new attack types and  
attack techniques for the heap 
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Heap Memory
• What is heap memory?

‣ The heap memory region is where dynamic memory 
allocations take place

‣ It is a contiguous region of virtual memory (can expand)

Heap
Low

Heap
High
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Heap Memory
• What is heap memory?

‣ The heap memory region is where dynamic memory 
allocations take place

‣ An allocation is assigned a contiguous range of virtual 
memory within the heap (e.g., on malloc)
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Heap Memory
• What is heap memory?

‣ The heap memory region is where dynamic memory 
allocations take place

‣ An allocation is assigned a contiguous range of virtual 
memory within the heap (e.g., on malloc)
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Heap Memory
• What is heap memory?

‣ The heap memory region is where dynamic memory 
allocations take place

‣ Memory from a specific allocation may be reclaimed
when no longer needed (e.g., on “free”) 
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Heap Memory
• What is heap memory?

‣ The heap memory region is where dynamic memory 
allocations take place

‣ Memory from a specific allocation may be reclaimed 
when no longer needed (e.g., on “free”) and reused
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Heap Memory
• What is heap memory?

‣ The heap memory region is where dynamic memory 
allocations take place

‣ If you forget to reclaim memory no longer in use, that 
memory region is lost (i.e., memory leak)
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Review: Stack Buffer Overflow
• Suppose that PacketRead causes an overflow on the 

memory region of the variable “packet” below

‣ What is the potential impact?

int authenticated = 0; 
char packet[1000]; 

while (!authenticated) { 
PacketRead(packet); 
if (Authenticate(packet))  
authenticated = 1; 

} 
if (authenticated) 
ProcessPacket(packet);
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Stack Buffer Overflow
• Suppose that PacketRead causes an overflow on the 

memory region of the variable “packet” below

‣ What is the potential impact?  ”authenticated” may be set

int authenticated = 0; 
char packet[1000]; 

while (!authenticated) { 
PacketRead(packet); 
if (Authenticate(packet))  
authenticated = 1; 

} 
if (authenticated) 
ProcessPacket(packet);
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Heap Buffer Overflow
• What happens if we allocate “packet” on the heap?

‣ A buffer overflow of a buffer allocated on the heap is 
called a heap overflow – Impact? 

int authenticated = 0; 
char *packet = (char *)malloc(1000); 

while (!authenticated) { 
PacketRead(packet); 
if (Authenticate(packet))  
authenticated = 1; 

} 
if (authenticated) 
ProcessPacket(packet);
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Heap Buffer Overflow
• While a heap overflow may impact heap memory 

regions, it won’t impact stack memory (directly)

• “authenticated” is unaffected, but something else may be affected

int authenticated = 0; 
char *packet = (char *)malloc(1000); 

while (!authenticated) { 
PacketRead(packet); 
if (Authenticate(packet))  
authenticated = 1; 

} 
if (authenticated) 
ProcessPacket(packet);



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 15

Heap Memory Layout
• The Heap Memory Layout below is idealized

‣ Depends on the heap allocator

‣ Many heap allocators store metadata with objects on
the heap to manage the heap region
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Heap Memory Layout
• The Heap Memory Layout often includes metadata

‣ Depends on the heap allocator

‣ Often placed between objects to store information 
needed to manage allocation state – e.g., sizes and 
status
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Heap Memory Layout
• The Heap Memory 

Layout often includes
metadata

‣ Depends on the heap
allocator

‣ Often placed between 
objects to store 
information like the “size 
of chunk,” “size of 
allocation,” “in use bit,” 
and reference to the 
previous or next chunk

CSE543 - Introduction to Computer and Network Security Page

Heap Overflows
• Overflows on heap also possible

• “Classical” heap overflow 
corrupts metadata 
‣ Heap metadata maintains chunk 

size, previous and next pointers, ...

• Heap metadata is inline with 
heap data

‣ And waits for heap management 
functions (malloc, free) to 
write corrupted metadata to 
target locations

�X

char *packet = malloc(1000)
ptr[1000] = ‘M’;
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Heap Memory Layout
• The Heap Memory Layout often includes metadata

‣ Depends on the heap allocator

‣ So, what are the potential impacts of a heap overflow?

Heap
Low

Heap
High

Obj
A

Obj
C

Obj
D

Metadata



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Process Address Space

• Text: static code

• Data: also called heap

‣ static variables

‣ dynamically allocated data 
(malloc, new)

• Stack: program 
execution stacks

Text

Data

Stack

lower
memory
address

higher
memory
address

CSE543 - Introduction to Computer and Network Security Page

Heap Overflows

• http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf

�X

• Heap allocators maintain a doubly-linked list of allocated 
and free chunks

• malloc() and free() modify this list
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Program Stack

• For implementing procedure calls and returns

• Keep track of program execution and state by 
storing

‣ local variables

‣ arguments to the called procedure (callee)

‣ return address of the calling procedure (caller)

‣ ...

CSE543 - Introduction to Computer and Network Security Page

Heap Overflows
• free() removes a chunk from allocated list

• By overflowing chunk2, attacker controls bk and fd
‣ Controls both where and what data is written!  

• Arbitrarily change memory (e.g., function pointers)

�X

chunk2->bk->fd = chunk2->fd 
chunk2->fd->bk = chunk2->bk
chunk2->bk->fd = chunk2->fd 
chunk2->fd->bk = chunk2->bk

1
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Program Stack

*Slide by Robert Seacord
CSE543 - Introduction to Computer and Network Security Page

Heap Overflows
• By overflowing chunk2, attacker controls bk and fd
‣ Controls both where and what data is written!  

• Assign chunk2->fd to value to want to write 

• Assign chunk2->bk to address X (where you want to write)

• Less an offset of the fd field in the structure

• Free() removes a chunk from allocated list

• What’s the result?

�X

chunk2->bk->fd = chunk2->fd 
chunk2->fd->bk = chunk2->bk

1
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Stack Frames

• Stack grows from high mem to low mem addresses

• The stack pointer points to the top of the stack

• ESP in Intel architectures

• The frame pointer points to the end of the current 
frame

‣ also called the base pointer

• EBP in Intel architectures

• The stack is modified during

‣ function calls, function initializations, returning from 
a function

CSE543 - Introduction to Computer and Network Security Page

Heap Overflows
• By overflowing chunk2, attacker controls bk and fd
‣ Controls both where and what data is written!  

• Assign chunk2->fd to value to want to write 

• Assign chunk2->bk to address X (where you want to write)

• Less an offset of the fd field in the structure

• Free() removes a chunk from allocated list

• What’s the result?
• Change a memory address to a new pointer value (in data)

�X

chunk2->bk->fd = chunk2->fd 
      addrX->fd = value 
chunk2->fd->bk = chunk2->bk 
      value->bk = addrX
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• A buffer overflow occurs when data is written 
outside of the boundaries of the memory allocated 
to a particular data structure

• Happens when buffer boundaries are neglected 
and unchecked

• Can be exploited to modify (memory after buffer)

‣ Stack: return address, local variables, function pointers, 
etc.

‣ Heap: data structures and metadata (next time)

24

Buffer Overflows

CSE543 - Introduction to Computer and Network Security Page

Heap Overflow Defenses
• Separate data and metadata
‣ e.g., OpenBSD’s allocator (Variation of PHKmalloc)	

• Sanity checks during heap management

‣ Added to GNU libc 2.3.5

• Randomization
• Q. What are analogous defenses for stack overflows?

�X

free(chunk2) --> 
assert(chunk2->fd->bk == chunk2) 
assert(chunk2->bk->fd == chunk2)



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 25

Other Heap Attacks
• Other Types of Attacks

‣ Buffer Overread or Disclosure

‣ Use-After-Free

‣ Type Confusion

• While these are all also possible attacks on stack 
objects, they are often more significant attacks on 
heap objects

‣ We will take a look
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Buffer Overread/Disclosure
• A buffer overread (disclosure) attack enables an 

adversary to read memory outside of a region
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Buffer Overread/Disclosure
• A buffer overread (disclosure) attack enables an 

adversary to read memory outside of a region

‣ Benign task: Copy from “buffer X” to “buffer Y”

‣ Read beyond the memory region of “buffer X”

‣ To access other objects’ data 

‣ And copy into “buffer Y”

• Why would that be a problem?
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Buffer Overread/Disclosure
• A buffer overread (disclosure) attack enables an 

adversary to read memory outside of a region

‣ Benign task: Copy from “buffer X” to “buffer Y”

‣ Read beyond the memory region of “buffer X”

‣ To access other objects’ data 

‣ And copy into “buffer Y”

• While also possible for stack objects, often more 
sensitive data is stored on the heap

‣ Heap data is longer lived (more than a function) and 
often more diverse and complex (structures)
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Heartbleed
• The Heartbleed vulnerability was a significant 

threat to the security of OpenSSL

‣ OpenSSL – crypto library for the SSL/TLS protocols

‣ Buffer overread vulnerability in the library that allowed 
an adversary to steal web servers’ private keys

‣ About 500,000 secure web servers were at risk



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 30

Heartbleed
• The Heartbleed vulnerability was a significant 

threat to the security of OpenSSL

‣ OpenSSL – crypto library for the SSL/TLS protocols

• Caused by a heap overread

‣ Send a message of length K, but say its length is N > K

‣ Allocate N-byte buffer, but only copy K bytes into the 
buffer from the original message

‣ Return all the memory in the N-byte buffer 
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Attacks on Memory Reuse
• Attacks also exploit the inconsistencies caused in 

the reuse of memory on the heap

• Inconsistencies

‣ Your program may reclaim memory

• And reuse that memory region for another object

‣ But, the pointers to the original object (i.e., memory 
location prior to reclamation) may remain

• And be used after the reuse

• Examples

‣ Use-after-free and type confusion
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Use After Free
• Flaw: Program frees data on the heap, but then 

references that memory as if it were still valid

‣ E.g., pointer to Obj B (say “b”)

• Accessible: Adversary can control data written 
using the freed pointer

‣ memcpy(b, adv-data, size);

• Exploit: Obtain a “write primitive”

Obj
A

Obj 
B

Obj 
C
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Use After Free
• Flaw: Program frees data on the heap, but then 

references that memory as if it were still valid

‣ E.g., pointer to Obj B (say “b”)

• Accessible: Adversary can control data written 
using the freed (stale) pointer

‣ memcpy(b, adv-data, size);

• Exploit: Obtain a “write primitive”

Obj
A

adv-data
Obj 
C
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Use After Free
• Flaw: Program frees data on the heap, but then 

references that memory as if it were still valid

• Accessible: Adversary can control data written 
using the freed pointer

• Exploit: Obtain a “write primitive”

• Hold on: just using a reference to freed memory 
isn’t really a problem, is it?

‣ What is missing from above?
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Use After Free
• Flaw: Program frees data on the heap, but then 

references that memory as if it were still valid

‣ E.g., pointer to Obj B (say “b”)

• Accessible: Adversary can control data written using 
the freed pointer

‣ memcpy(b, adv-data, size);

• Exploit: Obtain a “write primitive” to a new object

Obj
A

Obj 
D

Obj 
C
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Use After Free
• What happens here?

int main(int argc, char **argv) {   

char *buf1R1;
char *buf2R1;

char *buf2R2;

char *buf3R2;

buf1R1 = (char *) malloc(BUFSIZER1);

buf2R1 = (char *) malloc(BUFSIZER1);

free(buf2R1);

buf2R2 = (char *) malloc(BUFSIZER2);

buf3R2 = (char *) malloc(BUFSIZER2);

strncpy(buf2R1, argv[1], BUFSIZER1-1);

free(buf1R1);

free(buf2R2);
free(buf3R2);

}
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Use After Free
• When the second R1 buffer (buf2R1) is freed that 

memory is available for reuse right away
buf1R1 = (char *) malloc(BUFSIZER1);

buf2R1 = (char *) malloc(BUFSIZER1);

free(buf2R1);

• Then, the R2 buffers could be allocated within that 
memory region (buf2R1s) 

buf2R2 = (char *) malloc(BUFSIZER2);

buf3R2 = (char *) malloc(BUFSIZER2);

• Finally, the write using the freed pointer will 
overwrite the R2 buffers (and metadata between)

strncpy(buf2R1, argv[1], BUFSIZER1-1);
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Type Confusion Attacks
• A type confusion attack exploits when a program 

uses a pointer one type to reference a memory 
region of another type 

‣ A common way of utilizing a use-after-free vulnerability 
to go from a “write primitive” to an “arbitrary write 
primitive”

‣ Let’s see how…
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Type Confusion
• Most effective attacks exploit data of another type

struct A {  

struct C *c;
char buffer[40];

};

struct B {

int B1;

int B2;

char info[32];

};
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Type Confusion
• Free A and allocate B – assume in A’s location

struct A {  x = (struct A *)malloc(sizeof(struct A));

struct C *c; free(x);
char buffer[40]; y = (struct B *)malloc(sizeof(struct B));

};

struct B {

int B1;

int B2;

char info[32];

};
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Type Confusion
• How do you think you exploit this?

struct A {  x = (struct A *)malloc(sizeof(struct A));

struct C *c; free(x);
char buffer[40]; y = (struct B *)malloc(sizeof(struct B));

};

struct B {

int B1;

int B2;

char info[32];

};
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Type Confusion
• Arbitrary write primitive!

struct A {  x = (struct A *)malloc(sizeof(struct A));

struct C *c; free(x);
char buffer[40]; y = (struct B *)malloc(sizeof(struct B));

}; y->B1 = address_of_where_to_write;

x->c->field = value_to_write;

struct B {

int B1;

int B2;

char info[32];

};
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Use After Free
• Flaw: program frees data on the heap, but then 

references that memory as if it were still valid

• Accessible: Adversary can control data written 
using the freed pointer

• Exploit: Obtain an “arbitrary write primitive”

• Become a popular vulnerability to exploit – over 
60% of CVEs

‣ http://blog.tempest.com.br/breno-cunha/perspectives-
on-exploit-development-and-cyber-attacks.html

http://blog.tempest.com.br/breno-cunha/perspectives-on-exploit-development-and-cyber-attacks.html
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Type Confusion
• How do you think you exploit this?

struct A {  x = (struct A *)malloc(sizeof(struct A));

void (*fnptr)(char *arg); free(x);
char buffer[40]; y = (struct B *)malloc(sizeof(struct B));

};

struct B {

int B1;

int B2;

char info[32];

};
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Type Confusion
• Arbitrary code reuse!

struct A {  x = (struct A *)malloc(sizeof(struct A));

void (*fnptr)(char *arg); free(x);
char buffer[40]; y = (struct B *)malloc(sizeof(struct B));

}; y->B1 = execve@PLT;

x->fnptr(“/bin/sh”);

struct B {

int B1;

int B2;

char info[32];

};
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Type Confusion
• Adversary chooses function pointer value (set as int)

• Adversary may also be able to choose value for “arg”

• To implement arbitrary code reuse

struct A {  x = (struct A *)malloc(sizeof(struct A));

void (*fnptr)(char *arg); free(x);

char buffer[40]; y = (struct B *)malloc(sizeof(struct B));

}; y->B1 = execve@PLT;

x->fnptr(“/bin/sh”);

struct B {

int B1;

int B2;

char info[32];

};
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Heap Spraying
• How do adversaries use such flaws?

‣ May be hard to get an object of ”struct Y” in the 
location of the freed “struct X” object

• Use heap spraying to fill the heap with lots of 
“struct Y” objects

‣ Eventually, one will be placed in the location of the 
freed “struct X” object, so we can use the pointer to 
access to target memory or code
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Type Confusion
• Does type confusion require a use-after-free?

‣ What other C operation enables a programmer to 
reference data one location via multiple type 
signatures?
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Type Casts
• Does type confusion require a use-after-free?

‣ What other C operation enables a programmer to 
reference data one location via multiple type 
signatures?

• Type Cast

‣ A type cast enables you to create a pointer of a 
different type to the same memory region

• Also, reasoning about multiple types is common in object-
oriented languages (C++)
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Type Confusion Via Casts
• Cause the program to process data of one type 

when it expects data of another type

‣ Provides same affect as we did with use-after-free

‣ But, without the “free” – just need an ambiguous “use”

• Where’s the error below?

class Ancestor { int x; }

class Descendent : Ancestor { int y; }   

Ancestor *A = new A;

Descendant *D = static cast <Ancestor *> A;

D->y = 7;

HexType – Jeon et al.  ACM CCS 2017
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Type Confusion
• Cause the program to process data of one type 

when it expects data of another type

‣ Provides same affect as we did with use-after-free

‣ But, without the “free” – just need an ambiguous “use”

• Where’s the error below?

class Ancestor { int x; }

class Descendent : Ancestor { int y; }   

Ancestor *A = new A;

Descendant *D = static cast <Ancestor *> A;

D->y = 7;  // not within memory region allocated to A

HexType – Jeon et al.  ACM CCS 2017
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Type Hierarchies
• C++ allows you to construct type hierarchies

HexType – Jeon et al.  ACM CCS 2017

Upcast Downcast
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Type Hierarchies
• C++ allows you to construct type hierarchies

‣ Which type of cast is safe and why?

HexType – Jeon et al.  ACM CCS 2017

Upcast Downcast
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Un/Safe Type Casts
• Upcasts are always safe because they only reduce 

the type structure

‣ That is, only subtypes extend the structure definitions

• Thus, downcasts (as in the example) and arbitrary 
casts (that do not follow the hierarchy) are unsafe

‣ However, programming environments trust 
programmers to do the right thing
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Take Away
• Heaps provide a wide variety of options for 

adversaries, depending on the software flaw

• Can attack either heap metadata or other heap 
data, including pointers to access arbitrary memory

• Heaps are susceptible to more types of powerful 
attacks than stacks

‣ Disclosure attacks, use-after-free, and type confusion

‣ These attacks are all somewhat related

• We will explore defenses for all of these


