
Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

CMPSC 447
Hardware Security

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 3

Security Problems
• We have discussed lots of security problems

‣ Attacks on memory errors

‣ Return-oriented attacks

‣ Compromised software

• Is there any way new hardware features could
prevent some attack vectors?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 5

Areas
• Control-Flow Integrity

‣ Can be enforced in software, but is a not as efficient as needed to
be applied broadly

• Instrumentation is a bit complex

• Operating Systems Integrity

‣ What to do about the possibility that operating systems may be
compromised?

‣ Can we prevent code injection and reuse?

‣ Do we really need to trust operating systems?

• Hardware features have been made available that start to
answer these kinds of questions

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 6

Control-Flow Integrity
• What do you need to do to enforce control flow integrity?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 7

Control-Flow Integrity
• What do you need to do to enforce control flow

integrity?

• Forward edges (indirect calls and jumps)

‣ For each indirect control transfer (source), ensure that
the chosen target complies with the program’ CFG for
that source (Fine-grained CFI)

• Backward edges (returns)

‣ For each return, ensure that the target is associated with
the originating call site (Shadow Stack)

• May be exceptions, but handle exceptionally

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 8

Intel Processor Trace
• A new hardware feature that enables efficient

recording of control-flow and timing information
about software execution (3-5% overhead)

‣ Initially available on the Broadwell processor

‣ Fully implemented on the Skylake processor

• At each control choice, record a packet in memory

‣ Conditional branches

‣ Indirect call

‣ Returns

• Enough to reconstruct the actual control flow

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Intel PT Example

10

A

B

Basic Blocks

jmp D

jcc E

C

call *rax

D

jcc B

E

ret

F

syscall

Trace Packets

PGE A

TNT
Taken

End

Not Taken

TIP F

PGD 0

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 11

When to Check?
• Since we are using Intel PT to log the program’s

execution, we are naturally running behind

‣ Is this sufficient to enforce CFI?

‣ A forward or backward edge may already have been
exploited

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 12

When to Check?
• Since we are using Intel PT to log the program’s

execution, we are naturally running behind

‣ Is this sufficient to enforce CFI?

‣ A forward or backward edge may already have been
exploited

• While an exploit may be underway, the exploit
cannot really have an impact until a system call
occurs

‣ Modify unauthorized data persistently (except for
memory-mapped files)

‣ Leak sensitive data to others

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

System Overview

13

User Space Kernel Space

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

System Overview

14

User Space Kernel Space

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

System Overview

15

User Space Kernel Space

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

System Overview

16

User Space Kernel Space

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

System Overview

17

User Space Kernel Space

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

System Overview

18

User Space Kernel Space

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

System Overview

19

User Space Kernel Space

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

System Overview

20

User Space Kernel Space

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

What To Do?

21

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

CFI Policies
• Coarse-grained Policy

‣ Check if the targets of indirect control transfers are valid

‣ Requires decoding the trace packets to find each target

• Fine-grained Policy

‣ Check if the source and destination are a legitimate pair

‣ Requires control-flow recovery to identify source

• Stateful Policy

‣ Check if an indirect control transfer is legitimate based on
the program state (e.g., shadow stack)

‣ Requires sequential processing if state spans trace buffers
23

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Using Intel PT for CFI

• What do you need to do to leverage an Intel PT trace
to enforce fine-grained CFI?

24

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Using Intel PT for CFI

• What do you need to do to leverage an Intel PT trace
to enforce fine-grained CFI?

‣ Need to collect the source and target of each indirect call

25

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Using Intel PT for CFI
• What do you need to do to leverage an Intel PT trace

to enforce fine-grained CFI?

‣ Need to collect the source and target of each indirect call

• How do you find these from Intel PT trace?

‣ Target is recorded in a packet

‣ But how do we find the source?

26

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Using Intel PT for CFI

• What do you need to do to leverage an Intel PT trace
to enforce fine-grained CFI?

‣ Need to collect the source and target of each indirect call

• How do you find these from Intel PT trace?

‣ Target is recorded in a packet

‣ But how do we find the source?

• Reconstructing the control flow from the trace
identifies the sources

‣ Then can perform authorization

27

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Fine-Grained CFI
• Recover the control flow from the trace buffer and

the program binaries to identify sources

‣ Disassemble the binary online in basic blocks

‣ Traverse basic blocks using the trace buffer to find sources
of indirect control transfers

• Authorize each indirect control transfer target against
that program’s fine-grained policy for source

‣ For each indirect control transfer found in the trace
ensure that the destination is in the legal target set of the
corresponding source

28

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Evaluation
• SPEC CPU2006

‣ Average: 9.5%, Median: 5.6% for complete enforcement

‣ Shadow stack (backward) and fine-grained CFI (forward)

33

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

CFI-Focused Logging

• Could you further optimize the hardware logging for
CFI enforcement?

‣ Can we eliminate need for control-flow recovery to
enforce fine-grained CFI policies?

35

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

CFI-Focused Logging
• Could you further optimize the hardware logging for

CFI enforcement?

‣ Can we eliminate need for control-flow recovery to
enforce fine-grained CFI policies?

• Intel PT could record the source in a packet as well
as the target packet

‣ And ignore recording other information not necessary
for fine-grained CFI – taken/not-taken

• This combination of changes reduces overhead for checking by
over 90% on average

• But, not clear what impact on hardware overhead

36

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Intel CET
• Intel Control-Flow Enforcement Technology (CET)

aims to enforce shadow stack defenses in hardware

‣ Announced in June 2017

‣ Now available in Intel’s 11th generation CPU

• Shadow Stack on backward edge

‣ Exception on failure – for handler to deal with

• Indirect Branch Tracking on forward edge

‣ Restrict indirect calls/jumps to valid targets

‣ Weak – Single class of valid targets for all calls (coarse)

37

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Preventig Code Injection
• Preventing code injection is a key defense

‣ We prevent code injection in user space using W xor X

‣ Which is implemented by the kernel

• What if the kernel itself is compromised? Or
hijacked program tries to disable protection?

‣ Turn off W xor X

‣ So, code injection itself is trivial

• Can we prevent kernel code injection – even when
the kernel is compromised?

45

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Lifetime Kernel Code Integrity

0x00000000

0xBFFFFFFF
0xC0000000

0xFFFFFFFF

.data

.text

.init

.bss

R/W

R/X

R/W

kernel space

user space

46

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Attack on Permissions
• Tamper with permissions

47

0x00000000

0xBFFFFFFF
0xC0000000

0xFFFFFFFF

.data

.text

.init

.bss

R/W

R/X

R/W

kernel space

user space

/X

/W

/X

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Attack on Mappings

• Tamper with mappings

48

data page #m

virtual pages

code page #n

code page #n-1

physical frames

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Goal

49

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Background: TrustZone

• Resources are partitioned into two distinct worlds

‣ Physical memory, interrupts, peripherals, etc.

• Each world has its autonomy over its own resources

• Secure world can access normal world resources, but
not vice versa

• Run in time-sliced fashion

50

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 51

ARM TrustZone
• Main limitation is that Trusted Computing technologies are

designed only to build proofs of system boot

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

SPROBE Placement
• Recall the specific attacks

‣ Change to a different set of page tables that are under
attacker’s control

• instrument all instructions that can be potentially used
to switch the page table root

‣ Modify page table entries in place

• write-protect the whole page tables and instrument the
first instruction in page fault handler

�13

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

SPROBES Invariants
• S1: Execution of user space code from the kernel must

never be allowed.

• S2: W⊕X protection employed by the operating system
must always be enabled.

• S3: MMU must be kept enabled to ensure all existing
memory protections function properly.

• S4: The page table base address must always correspond to
a legitimate page table.

• S5: Any modification to the page table entry must not make
a kernel code page writable or make a kernel data page
executable.

52

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

SPROBE Mechanism

• We need an instrumentation mechanism that enables
the secure world to be notified upon events of its
choice in the normal world

53

normal world

push {r1-r3}
stmia sp!,r10
...
mov pc,lr

secure world

sprobe_handler()
{

check_kernel();
restore_insn();
return_to_ns();

}

smc #0

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

A Little Bit More…

• Samsung has implemented the same idea and
deployed this technique on millions of devices

57

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 58

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 59

Eliminate Trust in OS
• The OS may not be secure itself

‣ Millions of lines of code

‣ Complex and evolving codebase, including device drivers

• What if you want to eliminate trust in the OS
altogether?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 60

Intel Software Guard Ext
• What if we only want to run one high-integrity user-

process?

SYSTEM

SECURITY

LAB Slide Nr. 2, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

� Security critical code isolated in

enclave

� Only CPU is trusted

� Transparent memory encryption
� 18 new instructions

� Enclaves cannot harm the system

� Only unprivileged code (CPU ring3)
� Memory protection

� Designed for Multi-Core systems

� Multi-threaded execution of enclaves
� Parallel execution of enclaves and

untrusted code
� Enclaves are interruptible

� Programming Reference available

Intel® Software Guard Extensions (SGX)

APP2

Hardware

APP1 Enclave
Security

Service

Operating System

CPU SGX

Trusted Untrusted

[McKeen et al, Hoekstra et al., Anati Ğƚ�Ăů͕͘�,�^W͛ϭϯ΁

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 61

Intel Software Guard Ext
• What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 3, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

� Enclaves are isolated memory regions of code and
data

� One part of physical memory (RAM) is reserved for
enclaves
� It is called Enclave Page Cache (EPC)
� EPC memory is encrypted in the main memory (RAM)
� Trusted hardware consists of the CPU-Die only
� EPC is managed by OS/VMM

SGX Enclaves

RAM: Random Access Memory
OS: Operating System
VMM: Virtual Machine Monitor (also known as Hypervisor)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 62

Intel Software Guard Ext
• What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 14, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

� Access control in two direction
� &ƌŽŵ�ĞŶĐůĂǀĞƐ�ƚŽ�͞ŽƵƚƐŝĚĞ͞

� Isolating malicious enclaves
� Enclaves needs some means to communicate with the outside

ǁŽƌůĚ͕�Ğ͘Ő͕͘�ƚŚĞŝƌ�͞ŚŽƐƚ�ĂƉƉůŝĐĂƚŝŽŶƐ͟

� &ƌŽŵ�͞ŽƵƚƐŝĚĞ͞�ƚŽ�ĞŶĐůĂǀĞƐ
� Enclave memory must be protected from

� Applications
� Privileged software (OS/VMM)
� Other enclaves

SGX Memory Access Control

OS: Operating System
VMM: Virtual Machine Monitor (also known as Hypervisor)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 64

Intel Software Guard Ext
• What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 16, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

� &ƌŽŵ�͞ŽƵƚƐŝĚĞ͞�ƚŽ�ĞŶĐůĂǀĞƐ
� Non-enclave accesses to EPC memory results in abort page

semantics
� Direct jumps from outside to any linear address that maps

to an enclave do not enable enclave mode and result in a
about page semantics and undefined behavior

� Hardware detects and prevents enclave accesses using
logical-to-linear address translations which are different
than the original direct EA used to allocate the page.
Detection of modified translation results in #GP(0)

^'y�D���͞ŽƵƚƐŝĚĞ͟�ƚŽ�ĞŶĐůĂǀĞƐ

MAC: Memory Access Control
EA: Enclave Access
#GP(0): General Protection Fault

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 65

Intel Software Guard Ext
• What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 19, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

Hardware

SGX ʹ Create Enclave

1. Create App 2. Create app certificate (includes HASH(App) and Client PK) 3. Upload App to Loader

SGX

User space

Operating system
SGX

driver

5 Enclave Loader

1

2

3

Client

SK/PK

Trusted Untrusted

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 66

Intel Software Guard Ext
• What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 20, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

Hardware

SGX ʹ Create Enclave

1. Create App 2. Create app certificate (includes HASH(App) and Client PK) 3. Upload App to Loader

SGX

User space

Operating system
SGX

driver

5 Enclave Loader

5. Allocate enclave pages

1

2

3

4

4. Create enclave

5

7

Client

SK/PK

Trusted Untrusted

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 67

Intel Software Guard Ext
• What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 21, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

Hardware

SGX ʹ Create Enclave

1. Create App 2. Create app certificate (includes HASH(App) and Client PK) 3. Upload App to Loader

SGX

User space

Operating system
SGX

driver

5 Enclave Loader

5. Allocate enclave pages 6. Load & Measure App 7. Validate certificate and enclave integrity

1

2

3

4

4. Create enclave

6

5

7

Client

SK/PK

Trusted Untrusted

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 68

Intel Software Guard Ext
• What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 22, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

Hardware

SGX ʹ Create Enclave

1. Create App 2. Create app certificate (includes HASH(App) and Client PK) 3. Upload App to Loader

SGX

User space

Operating system
SGX

driver

5 Enclave Loader

5. Allocate enclave pages 6. Load & Measure App 7. Validate certificate and enclave integrity

1

2

3

4

4. Create enclave

6

5

8. Generate enclave K key

7

9. Protect enclave

8
K

Client

SK/PK

Trusted Untrusted

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

SGX Security Issues
• Lots of ways to leak information about a program

running in an enclave if the adversary controls the
operating system

‣ Operating system can see…

‣ Page faults

‣ Cache effects

‣ Branch prediction

‣ Speculative execution

• As a result, the broad use of SGX has been limited

69

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 76

Take Away
• Lots of efforts in exploring hardware features to

improve security

‣ CFI enforcement via Intel PT

• Hardware may need to be optimized further

‣ Isolate code from untrusted kernel – SGX and TZ

• However, there are also security issues with such
hardware mechanisms

‣ Side Channels

