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Security Problems
• We have discussed lots of security problems 

‣ Attacks on memory errors

‣ Return-oriented attacks

‣ Compromised software

• Is there any way new hardware features could 
prevent some attack vectors?
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Areas
• Control-Flow Integrity

‣ Can be enforced in software, but is a not as efficient as needed to 
be applied broadly

• Instrumentation is a bit complex 

• Operating Systems Integrity

‣ What to do about the possibility that operating systems may be 
compromised?

‣ Can we prevent code injection and reuse?

‣ Do we really need to trust operating systems?

• Hardware features have been made available that start to 
answer these kinds of questions
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Control-Flow Integrity
• What do you need to do to enforce control flow integrity?
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Control-Flow Integrity
• What do you need to do to enforce control flow 

integrity?

• Forward edges (indirect calls and jumps)

‣ For each indirect control transfer (source), ensure that 
the chosen target complies with the program’ CFG for 
that source (Fine-grained CFI) 

• Backward edges (returns)

‣ For each return, ensure that the target is associated with 
the originating call site (Shadow Stack)

• May be exceptions, but handle exceptionally
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Intel Processor Trace
• A new hardware feature that enables efficient 

recording of control-flow and timing information 
about software execution (3-5% overhead)

‣ Initially available on the Broadwell processor

‣ Fully implemented on the Skylake processor

• At each control choice, record a packet in memory

‣ Conditional branches

‣ Indirect call

‣ Returns

• Enough to reconstruct the actual control flow
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Intel PT Example
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A

B

Basic Blocks

jmp D

jcc E

C

call *rax

D

jcc B

E

ret

F

syscall

Trace Packets

PGE  A

TNT
Taken

End

Not Taken

TIP  F

PGD  0
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When to Check?
• Since we are using Intel PT to log the program’s 

execution, we are naturally running behind

‣ Is this sufficient to enforce CFI?

‣ A forward or backward edge may already have been 
exploited
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When to Check?
• Since we are using Intel PT to log the program’s 

execution, we are naturally running behind

‣ Is this sufficient to enforce CFI?

‣ A forward or backward edge may already have been 
exploited

• While an exploit may be underway, the exploit 
cannot really have an impact until a system call  
occurs

‣ Modify unauthorized data persistently (except for 
memory-mapped files)

‣ Leak sensitive data to others
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System Overview
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User Space Kernel Space
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System Overview
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User Space Kernel Space
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System Overview
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User Space Kernel Space
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System Overview
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User Space Kernel Space
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System Overview
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User Space Kernel Space



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

System Overview
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User Space Kernel Space



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

System Overview
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User Space Kernel Space



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

System Overview
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User Space Kernel Space
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What To Do? 

21
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CFI Policies
• Coarse-grained Policy

‣ Check if the targets of indirect control transfers are valid

‣ Requires decoding the trace packets to find each target

• Fine-grained Policy

‣ Check if the source and destination are a legitimate pair

‣ Requires control-flow recovery to identify source

• Stateful Policy

‣ Check if an indirect control transfer is legitimate based on 
the program state (e.g., shadow stack)

‣ Requires sequential processing if state spans trace buffers
23
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Using Intel PT for CFI

• What do you need to do to leverage an Intel PT trace 
to enforce fine-grained CFI?

24
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Using Intel PT for CFI

• What do you need to do to leverage an Intel PT trace 
to enforce fine-grained CFI?

‣ Need to collect the source and target of each indirect call

25
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Using Intel PT for CFI
• What do you need to do to leverage an Intel PT trace 

to enforce fine-grained CFI?

‣ Need to collect the source and target of each indirect call

• How do you find these from Intel PT trace?

‣ Target is recorded in a packet

‣ But how do we find the source?

26
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Using Intel PT for CFI

• What do you need to do to leverage an Intel PT trace 
to enforce fine-grained CFI?

‣ Need to collect the source and target of each indirect call

• How do you find these from Intel PT trace?

‣ Target is recorded in a packet

‣ But how do we find the source?

• Reconstructing the control flow from the trace 
identifies the sources

‣ Then can perform authorization

27
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Fine-Grained CFI
• Recover the control flow from the trace buffer and 

the program binaries to identify sources 

‣ Disassemble the binary online in basic blocks

‣ Traverse basic blocks using the trace buffer to find sources 
of indirect control transfers

• Authorize each indirect control transfer target against 
that program’s fine-grained policy for source

‣ For each indirect control transfer found in the trace 
ensure that the destination is in the legal target set of the 
corresponding source

28
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Evaluation
• SPEC CPU2006

‣ Average: 9.5%, Median: 5.6% for complete enforcement

‣ Shadow stack (backward) and fine-grained CFI (forward)

33
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CFI-Focused Logging

• Could you further optimize the hardware logging for 
CFI enforcement?

‣ Can we eliminate need for control-flow recovery to 
enforce fine-grained CFI policies?

35
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CFI-Focused Logging
• Could you further optimize the hardware logging for 

CFI enforcement?

‣ Can we eliminate need for control-flow recovery to 
enforce fine-grained CFI policies?

• Intel PT could record the source in a packet as well 
as the target packet

‣ And ignore recording other information not necessary 
for fine-grained CFI – taken/not-taken

• This combination of changes reduces overhead for checking by 
over 90% on average

• But, not clear what impact on hardware overhead
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Intel CET
• Intel Control-Flow Enforcement Technology (CET) 

aims to enforce shadow stack defenses in hardware

‣ Announced in June 2017

‣ Now available in Intel’s 11th generation CPU

• Shadow Stack on backward edge

‣ Exception on failure – for handler to deal with

• Indirect Branch Tracking on forward edge

‣ Restrict indirect calls/jumps to valid targets

‣ Weak – Single class of valid targets for all calls (coarse)

37
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Preventig Code Injection
• Preventing code injection is a key defense

‣ We prevent code injection in user space using W xor X

‣ Which is implemented by the kernel

• What if the kernel itself is compromised?  Or 
hijacked program tries to disable protection? 

‣ Turn off W xor X

‣ So, code injection itself is trivial 

• Can we prevent kernel code injection – even when 
the kernel is compromised?

45
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Lifetime Kernel Code Integrity

0x00000000

0xBFFFFFFF
0xC0000000

0xFFFFFFFF

.data

.text

.init

.bss

R/W

R/X

R/W

kernel space

user space
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Attack on Permissions
• Tamper with permissions
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0x00000000

0xBFFFFFFF
0xC0000000

0xFFFFFFFF

.data

.text

.init

.bss

R/W

R/X

R/W

kernel space

user space

/X

/W

/X
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Attack on Mappings

• Tamper with mappings
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data page #m

virtual pages

code page #n

code page #n-1

physical frames
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Goal

49
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Background: TrustZone

• Resources are partitioned into two distinct worlds

‣ Physical memory, interrupts, peripherals, etc.

• Each world has its autonomy over its own resources

• Secure world can access normal world resources, but 
not vice versa

• Run in time-sliced fashion

50
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ARM TrustZone
• Main limitation is that Trusted Computing technologies are 

designed only to build proofs of system boot

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

SPROBE Placement
• Recall the specific attacks

‣ Change to a different set of page tables that are under 
attacker’s control

• instrument all instructions that can be potentially used 
to switch the page table root

‣ Modify page table entries in place

• write-protect the whole page tables and instrument the 
first instruction in page fault handler

�13
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SPROBES Invariants
• S1: Execution of user space code from the kernel must 

never be allowed. 

• S2: W⊕X protection employed by the operating system 
must always be enabled. 

• S3: MMU must be kept enabled to ensure all existing 
memory protections function properly. 

• S4: The page table base address must always correspond to 
a legitimate page table. 

• S5: Any modification to the page table entry must not make 
a kernel code page writable or make a kernel data page 
executable. 

52
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SPROBE Mechanism

• We need an instrumentation mechanism that enables 
the secure world to be notified upon events of its 
choice in the normal world

53

normal world

push     {r1-r3}
stmia    sp!,r10
...
mov      pc,lr

secure world

sprobe_handler()
{

check_kernel();
restore_insn();
return_to_ns();

}

smc      #0



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

A Little Bit More…

• Samsung has implemented the same idea and 
deployed this technique on millions of devices

57
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Eliminate Trust in OS
• The OS may not be secure itself

‣ Millions of lines of code

‣ Complex and evolving codebase, including device drivers

• What if you want to eliminate trust in the OS 
altogether?
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Intel Software Guard Ext
• What if we only want to run one high-integrity user-

process?

SYSTEM 

SECURITY 

LAB Slide Nr. 2, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi   ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX 

� Security critical code isolated in 

enclave 

� Only CPU is trusted 

� Transparent memory encryption 
� 18 new instructions 

� Enclaves cannot harm the system 

� Only unprivileged code (CPU ring3) 
� Memory protection 

� Designed for Multi-Core systems 

� Multi-threaded execution of enclaves 
� Parallel execution of enclaves and 

untrusted code 
� Enclaves are interruptible 

� Programming Reference available 

Intel® Software Guard Extensions (SGX) 

APP2 

Hardware 

APP1 Enclave 
Security 

Service 

Operating System 

CPU SGX 

Trusted Untrusted 

[McKeen et al, Hoekstra et al., Anati Ğƚ�Ăů͕͘�,�^W͛ϭϯ΁ 
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Intel Software Guard Ext
• What if we only want to run one high-integrity user-

process?

SYSTEM 
SECURITY 
LAB Slide Nr. 3, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi   ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX 

� Enclaves are isolated memory regions of code and 
data 

� One part of physical memory (RAM) is reserved for 
enclaves 
� It is called Enclave Page Cache (EPC) 
� EPC memory is encrypted in the main memory (RAM) 
� Trusted hardware consists of the CPU-Die only 
� EPC is managed by OS/VMM 

SGX Enclaves 

RAM: Random Access Memory 
OS: Operating System 
VMM: Virtual Machine Monitor (also known as Hypervisor) 
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Intel Software Guard Ext
• What if we only want to run one high-integrity user-

process?

SYSTEM 
SECURITY 
LAB Slide Nr. 14, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi   ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX 

� Access control in two direction 
� &ƌŽŵ�ĞŶĐůĂǀĞƐ�ƚŽ�͞ŽƵƚƐŝĚĞ͞ 

� Isolating malicious enclaves 
� Enclaves needs some means to communicate with the outside 

ǁŽƌůĚ͕�Ğ͘Ő͕͘�ƚŚĞŝƌ�͞ŚŽƐƚ�ĂƉƉůŝĐĂƚŝŽŶƐ͟ 

� &ƌŽŵ�͞ŽƵƚƐŝĚĞ͞�ƚŽ�ĞŶĐůĂǀĞƐ 
� Enclave memory must be protected from 

� Applications 
� Privileged software (OS/VMM) 
� Other enclaves 

SGX Memory Access Control 

OS: Operating System 
VMM: Virtual Machine Monitor (also known as Hypervisor) 
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Intel Software Guard Ext
• What if we only want to run one high-integrity user-

process?

SYSTEM 
SECURITY 
LAB Slide Nr. 16, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi   ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX 

� &ƌŽŵ�͞ŽƵƚƐŝĚĞ͞�ƚŽ�ĞŶĐůĂǀĞƐ 
� Non-enclave accesses to EPC memory results in abort page 

semantics 
� Direct jumps from outside to any linear address that maps 

to an enclave do not enable enclave mode and result in a 
about page semantics and undefined behavior 

� Hardware detects and prevents enclave accesses using 
logical-to-linear address translations which are different 
than the original direct EA used to allocate the page. 
Detection of modified translation results in #GP(0) 
 

^'y�D���͞ŽƵƚƐŝĚĞ͟�ƚŽ�ĞŶĐůĂǀĞƐ 

MAC: Memory Access Control 
EA: Enclave Access 
#GP(0): General Protection Fault 



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 65

Intel Software Guard Ext
• What if we only want to run one high-integrity user-

process?

SYSTEM 
SECURITY 
LAB Slide Nr. 19, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi   ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX 

Hardware    

SGX ʹ Create Enclave 

1. Create App 2. Create app certificate (includes HASH(App) and Client PK)   3. Upload App to Loader 

SGX 

User space 

Operating system 
SGX 

driver 

5 Enclave Loader 

1 

2 

3 

Client 

SK/PK 

Trusted Untrusted 



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 66

Intel Software Guard Ext
• What if we only want to run one high-integrity user-

process?

SYSTEM 
SECURITY 
LAB Slide Nr. 20, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi   ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX 

Hardware    

SGX ʹ Create Enclave 

1. Create App 2. Create app certificate (includes HASH(App) and Client PK)   3. Upload App to Loader 

SGX 

User space 

Operating system 
SGX 

driver 

5 Enclave Loader 

5. Allocate enclave pages 

1 

2 

3 

4 

4. Create enclave 

5 

7 

Client 

SK/PK 

Trusted Untrusted 
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Intel Software Guard Ext
• What if we only want to run one high-integrity user-

process?

SYSTEM 
SECURITY 
LAB Slide Nr. 21, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi   ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX 

Hardware    

SGX ʹ Create Enclave 

1. Create App 2. Create app certificate (includes HASH(App) and Client PK)   3. Upload App to Loader 

SGX 

User space 

Operating system 
SGX 

driver 

5 Enclave Loader 

5. Allocate enclave pages 6. Load & Measure App 7. Validate certificate and enclave integrity 

1 

2 

3 

4 

4. Create enclave 

6 

5 

7 

Client 

SK/PK 

Trusted Untrusted 
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Intel Software Guard Ext
• What if we only want to run one high-integrity user-

process?

SYSTEM 
SECURITY 
LAB Slide Nr. 22, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi   ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX 

Hardware    

SGX ʹ Create Enclave 

1. Create App 2. Create app certificate (includes HASH(App) and Client PK)   3. Upload App to Loader 

SGX 

User space 

Operating system 
SGX 

driver 

5 Enclave Loader 

5. Allocate enclave pages 6. Load & Measure App 7. Validate certificate and enclave integrity 

1 

2 

3 

4 

4. Create enclave 

6 

5 

8. Generate enclave K key 

7 

9. Protect enclave 

8 
K 

Client 

SK/PK 

Trusted Untrusted 
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SGX Security Issues
• Lots of ways to leak information about a program 

running in an enclave if the adversary controls the 
operating system

‣ Operating system can see…

‣ Page faults

‣ Cache effects

‣ Branch prediction

‣ Speculative execution 

• As a result, the broad use of SGX has been limited

69
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Take Away
• Lots of efforts in exploring hardware features to 

improve security

‣ CFI enforcement via Intel PT

• Hardware may need to be optimized further

‣ Isolate code from untrusted kernel – SGX and TZ

• However, there are also security issues with such 
hardware mechanisms

‣ Side Channels


