
Systems and Internet Infrastructure Security Laboratory (SIIS) Page 1

CMPSC 447
Dynamic Analysis

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Our Goal

2

• We want to develop techniques to detect
vulnerabilities automatically before they are
exploited

‣ What’s a vulnerability?

‣ How to find them?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Vulnerability

3

• How do you define computer ‘vulnerability’?
‣ Flaw

‣ Accessible to an adversary

‣ Adversary has ability to exploit

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Problem

5

• How do we know if your program has a flaw?

‣ May be likely, but not guaranteed

• More importantly, how do we locate a flaw?

‣ To assess whether it is vulnerable

‣ Or better yet, to fix the flaw

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Example

6

• Can you find the flaw(s)?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Example

7

• Can you find the flaw(s)?

format.c (line 276):
...
while (lastc != ’\n’) {

rdc();
}
...

input.c (line 27):
rdc()
{ do { readchar(); } // assigns ‘lastc’ to 0

while (lastc == ’ ’ || lastc == ’\t’); return (lastc);
}

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Flaw Evidence

8

• What indicates that your program has a flaw?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Flaw Evidence

9

• What indicates that your program has a flaw?

• A crash (i.e., memory error)

‣ Means that an instruction accessed an illegal memory
location

‣ First example – read beyond bounds

• A hang (i.e., infinite loop)

‣ Some loop condition check has an error

‣ Second example - Not check for EOF

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Find Flaws

10

• How can we find flaws?

‣ Run the program

‣ When it hangs/crashes, we have found a flaw

• Challenge

‣ Flaw may only be triggered by particular inputs

‣ The task of producing inputs to test your program by
executing it over those inputs is called dynamic analysis

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Dynamic Analysis Options

11

• Regression Testing

‣ Run program on many normal inputs and look for bad
behavior in the responses

• Typically looking for behavior that differs from expected –
e.g., a previous version of the program

• Fuzz Testing

‣ Run program on many abnormal inputs and look for bad
behavior in the responses

• Looking for behaviors that may cause the program to stop
executing at all – crash or hang

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Dynamic Analysis Options

12

• Why might fuzz testing be more appropriate for
finding vulnerabilities?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Dynamic Analysis Options

13

• Why might fuzz testing be more appropriate for
finding vulnerabilities?

‣ Memory errors that lead to crashes are often
exploitable

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Fuzz Testing

14

• Fuzz Testing

‣ Idea proposed by Bart Miller at Wisconsin in 1988

• Problem: People assumed that utility programs
could correctly process any input values

‣ Accessible to all

• Found that they could crash 25-33% of UNIX
utility programs

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Fuzz Testing

15

• Fuzz Testing

‣ Idea proposed by Bart Miller at Wisconsin in 1988

• Approach

‣ Generate random inputs

‣ Run lots of programs using random inputs

‣ Identify crashes of these programs

‣ Correlate with the random inputs that caused the
crashes

• Problems: Not checking returns, Array indices…

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Example Found

16

• Fuzz Testing

‣ Produce random inputs for processing

format.c (line 276):
...
while (lastc != ’\n’) {

rdc();
}
...

input.c (line 27):
rdc()
{ do { readchar(); } // assigns ‘lastc’ to 0

while (lastc == ’ ’ || lastc == ’\t’); return (lastc);
}

‣ Eventually produce line with EOF in the middle

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Fuzz Testing

17

• Idea: Search for flaws in a program by running
the program under a variety of inputs

• Challenge: Selecting input values for the program

‣ What should be the goals in choosing input values for
fuzz testing?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Challenges

18

• Idea: Search for flaws in a program by running
the program under a variety of inputs

• Challenge: Selecting input values for the program

‣ What should be the goals in choosing input values for
fuzz testing?

‣ Find as many exploitable flaws as possible

‣ With the fewest possible input values

• How should these goals impact input choices?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Black Box Fuzzing

• Like Miller – Feed the program random inputs
and see if it crashes

• Pros: Easy to configure

• Cons: May not search efficiently

‣ May re-run the same path over again (low coverage)

‣ May be very hard to generate inputs for certain
paths (checksums, hashes, restrictive conditions)

‣ May cause the program to terminate for logical
reasons – fail format checks and stop

19

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Black Box Fuzzing

• May be difficult to pass “authenticate_user”
with random inputs

function(char *name, char *passwd, char *buf)

{

if (authenticate_user(name, passwd)) {

if (check_format(buf)) {

update(buf);

}

}

}

20

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Mutation-Based Fuzzing

• Supply a well-formed input

‣ Generate random changes to that input

• No assumptions about modified input

‣ Only assumes that variants of the well-formed input
will be effective in fuzzing

• Example: zzuf

‣ https://fuzzing-project.org/tutorial1.html

‣ Reading: The Beginners’ Guide to Fuzzing

21

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Mutation-Based Fuzzing

• Example: zzuf

‣ https://fuzzing-project.org/tutorial1.html

• The Beginners’ Guide to Fuzzing

‣ zzuf -s 0:1000000 -c -C 0 -q -T 3 objdump -x
win9x.exe

‣ Fuzzes the program objdump using the sample
input executable win9x.exe

‣ Try 1M seed values (-s) from command line (-c) and
keep running if crashed (-C 0) with timeout (-T 3)

22

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Mutation-Based Fuzzing

• Easy to setup, and not dependent on program
details

• But may be strongly biased by the initial input

• Still prone to some problems
‣ May re-run the same path over again (same test)

‣ May be very hard to generate inputs for certain paths
(checksums, hashes, restrictive conditions)

‣ May not generate a legal value for executable (e.g., not
constrained to legal instruction)

23

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Generation-Based Fuzzing
• Generational fuzzer generate inputs “from scratch”

rather than using an initial input and mutating

• However, to overcome problems of naïve fuzzers
they often need a format or protocol spec to start

• Examples include

‣ SPIKE, Peach Fuzz

• Format-aware fuzzing can be cumbersome, because
you'll need a fuzzer specification for every input
format you are fuzzing

24

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Generation-Based Fuzzing
• Can be more accurate, but at a cost

• Pros: More direct search

‣ Values more specific to the program operation

‣ Can account for dependencies among inputs

• Cons: More work

‣ Get the specification

‣ Write the generator – ad hoc

• Need to do for each program

25

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Grey Box Fuzzing
• Rather than treating the program as a black box,

instrument the program to track the paths run

• Save inputs that lead to new paths

‣ Associated with the paths they exercise

‣ To bias toward running new paths

• Example

‣ American Fuzzy Lop (AFL)

• “State of the practice” at this time

26

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

AFL
• Provides compiler wrappers for gcc to instrument

target program to collect fuzzing stats

27

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

AFL
• Provides compiler wrappers for gcc to instrument

target program to collect fuzzing stats

• See

‣ http://lcamtuf.coredump.cx/afl/

28

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

AFL Build
• Provides compiler wrappers for gcc to instrument

target program to collect fuzzing stats

• Replace the gcc compiler in your build process with
afl-gcc

• For example, in the Makefile
‣ CC=path-to/afl-gcc

• Then build your target program with afl-gcc

‣ Generates a binary instrumented for AFL fuzzing

29

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

AFL Use
• Provides compiler wrappers for gcc to instrument

target program to collect fuzzing stats

• Run the fuzzer using afl-fuzz
path-to/afl-fuzz –i <input-dir> -o <output-dir> <path-to-bin> [args]

• For example
path-to/afl-fuzz –i input/ -o output/ ./cmpsc447-p3 set user passwd @@

• Where

‣ input/ directory with the input file

‣ output/ is the directory where the AFL results will be
placed

30

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

AFL Use
• Provides compiler wrappers for gcc to instrument

target program to collect fuzzing stats

• Run the fuzzer using afl-fuzz
path-to/afl-fuzz –i <input-dir> -o <output-dir> <path-to-bin> [args]

• For example
path-to/afl-fuzz –i input/ -o output/ ./cmpsc497-p1 set user passwd @@

• Where

‣ @@ shows that the last arg (input file) will be fuzzed

‣ Can also do “user” and “passwd”

31

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

AFL Issues
• Provides compiler wrappers for gcc to instrument

target program to collect fuzzing stats

• After you install AFL but before you can use it
effectively, you must set the following environment
variables to prevent aborts

setenv AFL_I_DONT_CARE_ABOUT_MISSING_CRASHES

setenv AFL_SKIP_CPUFREQ

• The former speeds up response from crashes

• The latter suppresses AFL complaint about missing
some short-lived processes

32

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

AFL Display
• Tracks the execution of the fuzzer

• Key information are

‣ “total paths” – number of different execution paths tried

‣ “unique crashes” – number of unique crash locations

33

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

AFL Output
• Shows the results of the fuzzer

‣ E.g., provides inputs that will cause the crash

• File “fuzzer_stats” provides summary of stats – UI

• File “plot_data” shows the progress of fuzzer

• Directory “queue” shows inputs that led to paths

• Directory “crashes” contains input that caused
crash

• Directory “hangs” contains input that caused hang

34

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

AFL Results
• Shows the results of the fuzzer

‣ E.g., provides inputs that will cause the crash

• Crashes

‣ May be caused by failed assertions – as they abort

• Had several assertions caught as crashes because format violated
my checks

‣ I had a bug that slowed down the fuzzer

• Fixed this and the fuzzer generated unique paths more quickly

36

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

AFL Operation
• How does AFL work?

‣ http://lcamtuf.coredump.cx/afl/technical_details.txt

• The instrumentation captures branch (edge)
coverage, along with coarse branch-taken hit counts.
‣ shared_mem[cur_location ^ prev_location]++;

• Record branches taken (previous branch to current
branch) with low collision rate

• Enables distinguishing unique paths

37

http://lcamtuf.coredump.cx/afl/technical_details.txt

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

AFL Operation
• How does AFL work?

‣ http://lcamtuf.coredump.cx/afl/technical_details.txt

• “When a mutated input produces an execution trace
containing new tuples, the corresponding input file is
preserved and routed for additional processing”

‣ Otherwise, input is discarded

• “Mutated test cases that produced new state
transitions [as above] are added to the input queue
and used as a starting point for future rounds of
fuzzing”

38

http://lcamtuf.coredump.cx/afl/technical_details.txt

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

AFL Operation
• How does AFL work?

‣ http://lcamtuf.coredump.cx/afl/technical_details.txt

• Fuzzing strategies

‣ Highly deterministic at first – bit flips, add/sub integer
values, and choose interesting integer values

‣ Then, non-deterministic choices – insertions, deletions, and
combinations of test cases

39

http://lcamtuf.coredump.cx/afl/technical_details.txt

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Grey Box Fuzzing
• Finds flaws, but still does not understand the program

• Pros: Much better than black box testing

‣ Essentially no configuration

‣ Lots of crashes have been identified

• Cons: Still a bit of a stab in the dark

‣ May not be able to execute some paths

‣ Searches for inputs independently from the program

• Need to improve the effectiveness further

40

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

White Box Fuzzing
• Combines test generation with fuzzing

‣ Test generation based on static analysis and/or symbolic
execution – more later

‣ Rather than generating new inputs and hoping that they
enable a new path to be executed, compute inputs that will
execute a desired path

• And use them as fuzzing inputs

• Goal: Given a sequential program with a set of input
parameters, generate a set of inputs that maximizes
code coverage

41

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

White Box Fuzzing
• We will come back to white box testing when we

have the tools to perform automated test
generation

42

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Take Away
• Goal is to detect vulnerabilities in our programs

before adversaries exploit them

• One approach is dynamic testing of the program

‣ Fuzz testing aims to achieve good program coverage with
little effort for the programmer

‣ Challenge is to generate the right inputs

• Black box (Mutational and generation), Grey box,
and White box approaches are being investigated

‣ AFL (Grey box) is now commonly used

43

