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Our Goal
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• We want to develop techniques to detect 
vulnerabilities automatically before they are 
exploited 

‣ What’s a vulnerability?

‣ How to find them?
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Vulnerability
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• How do you define computer ‘vulnerability’?
‣ Flaw

‣ Accessible to an adversary

‣ Adversary has ability to exploit
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Problem
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• How do we know if your program has a flaw?

‣ May be likely, but not guaranteed

• More importantly, how do we locate a flaw?

‣ To assess whether it is vulnerable

‣ Or better yet, to fix the flaw



Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Example
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• Can you find the flaw(s)?
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Example
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• Can you find the flaw(s)?

format.c (line 276):
...
while (lastc != ’\n’) {

rdc(); 
}
...

input.c (line 27):
rdc()
{ do { readchar(); } // assigns ‘lastc’ to 0

while (lastc == ’ ’ || lastc == ’\t’); return (lastc);
}
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Flaw Evidence

8

• What indicates that your program has a flaw?
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Flaw Evidence
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• What indicates that your program has a flaw?

• A crash (i.e., memory error)

‣ Means that an instruction accessed an illegal memory 
location

‣ First example – read beyond bounds

• A hang (i.e., infinite loop)

‣ Some loop condition check has an error

‣ Second example - Not check for EOF
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Find Flaws

10

• How can we find flaws?

‣ Run the program

‣ When it hangs/crashes, we have found a flaw

• Challenge

‣ Flaw may only be triggered by particular inputs

‣ The task of producing inputs to test your program by 
executing it over those inputs is called dynamic analysis
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Dynamic Analysis Options
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• Regression Testing

‣ Run program on many normal inputs and look for bad 
behavior in the responses

• Typically looking for behavior that differs from expected –
e.g., a previous version of the program

• Fuzz Testing

‣ Run program on many abnormal inputs and look for bad 
behavior in the responses

• Looking for behaviors that may cause the program to stop 
executing at all – crash or hang
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Dynamic Analysis Options
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• Why might fuzz testing be more appropriate for 
finding vulnerabilities?
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Dynamic Analysis Options
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• Why might fuzz testing be more appropriate for 
finding vulnerabilities?

‣ Memory errors that lead to crashes are often 
exploitable
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Fuzz Testing
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• Fuzz Testing

‣ Idea proposed by Bart Miller at Wisconsin in 1988

• Problem: People assumed that utility programs 
could correctly process any input values

‣ Accessible to all

• Found that they could crash 25-33% of UNIX 
utility programs
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Fuzz Testing
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• Fuzz Testing

‣ Idea proposed by Bart Miller at Wisconsin in 1988

• Approach

‣ Generate random inputs

‣ Run lots of programs using random inputs

‣ Identify crashes of these programs 

‣ Correlate with the random inputs that caused the 
crashes

• Problems: Not checking returns, Array indices…
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Example Found
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• Fuzz Testing

‣ Produce random inputs for processing

format.c (line 276):
...
while (lastc != ’\n’) {

rdc(); 
}
...

input.c (line 27):
rdc()
{ do { readchar(); } // assigns ‘lastc’ to 0

while (lastc == ’ ’ || lastc == ’\t’); return (lastc);
}

‣ Eventually produce line with EOF in the middle
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Fuzz Testing
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• Idea: Search for flaws in a program by running 
the program under a variety of inputs

• Challenge: Selecting input values for the program

‣ What should be the goals in choosing input values for 
fuzz testing?
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Challenges
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• Idea: Search for flaws in a program by running 
the program under a variety of inputs

• Challenge: Selecting input values for the program

‣ What should be the goals in choosing input values for 
fuzz testing?

‣ Find as many exploitable flaws as possible

‣ With the fewest possible input values

• How should these goals impact input choices?
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Black Box Fuzzing

• Like Miller – Feed the program random inputs 
and see if it crashes

• Pros: Easy to configure

• Cons: May not search efficiently

‣ May re-run the same path over again (low coverage)

‣ May be very hard to generate inputs for certain 
paths (checksums, hashes, restrictive conditions)

‣ May cause the program to terminate for logical 
reasons – fail format checks and stop

19
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Black Box Fuzzing

• May be difficult to pass “authenticate_user” 
with random inputs

function( char *name, char *passwd, char *buf )

{

if ( authenticate_user( name, passwd )) {

if ( check_format( buf )) {

update( buf );

}

}

}

20
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Mutation-Based Fuzzing

• Supply a well-formed input

‣ Generate random changes to that input

• No assumptions about modified input

‣ Only assumes that variants of the well-formed input 
will be effective in fuzzing

• Example: zzuf

‣ https://fuzzing-project.org/tutorial1.html

‣ Reading: The Beginners’ Guide to Fuzzing

21



Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Mutation-Based Fuzzing

• Example: zzuf

‣ https://fuzzing-project.org/tutorial1.html

• The Beginners’ Guide to Fuzzing

‣ zzuf -s 0:1000000 -c -C 0 -q -T 3 objdump -x 
win9x.exe

‣ Fuzzes the program objdump using the sample 
input executable win9x.exe

‣ Try 1M seed values (-s) from command line (-c) and
keep running if crashed (-C 0) with timeout (-T 3)

22
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Mutation-Based Fuzzing

• Easy to setup, and not dependent on program 
details

• But may be strongly biased by the initial input

• Still prone to some problems
‣ May re-run the same path over again (same test)

‣ May be very hard to generate inputs for certain paths 
(checksums, hashes, restrictive conditions)

‣ May not generate a legal value for executable (e.g., not 
constrained to legal instruction)

23
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Generation-Based Fuzzing 
• Generational fuzzer generate inputs “from scratch” 

rather than using an initial input and mutating

• However, to overcome problems of naïve fuzzers
they often need a format or protocol spec to start

• Examples include

‣ SPIKE, Peach Fuzz

• Format-aware fuzzing can be cumbersome, because 
you'll need a fuzzer specification for every input 
format you are fuzzing

24
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Generation-Based Fuzzing 
• Can be more accurate, but at a cost

• Pros: More direct search

‣ Values more specific to the program operation

‣ Can account for dependencies among inputs

• Cons: More work

‣ Get the specification

‣ Write the generator – ad hoc

• Need to do for each program

25
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Grey Box Fuzzing
• Rather than treating the program as a black box, 

instrument the program to track the paths run

• Save inputs that lead to new paths

‣ Associated with the paths they exercise

‣ To bias toward running new paths

• Example 

‣ American Fuzzy Lop (AFL)

• “State of the practice” at this time

26
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AFL 
• Provides compiler wrappers for gcc to instrument 

target program to collect fuzzing stats

27
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AFL
• Provides compiler wrappers for gcc to instrument 

target program to collect fuzzing stats

• See

‣ http://lcamtuf.coredump.cx/afl/

28
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AFL Build
• Provides compiler wrappers for gcc to instrument 

target program to collect fuzzing stats

• Replace the gcc compiler in your build process with 
afl-gcc

• For example, in the Makefile
‣ CC=path-to/afl-gcc

• Then build your target program with afl-gcc

‣ Generates a binary instrumented for AFL fuzzing

29
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AFL Use
• Provides compiler wrappers for gcc to instrument 

target program to collect fuzzing stats

• Run the fuzzer using afl-fuzz
path-to/afl-fuzz –i <input-dir> -o <output-dir> <path-to-bin> [args]

• For example
path-to/afl-fuzz –i input/ -o output/ ./cmpsc447-p3 set user passwd @@

• Where 

‣ input/ directory with the input file 

‣ output/ is the directory where the AFL results will be 
placed

30
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AFL Use
• Provides compiler wrappers for gcc to instrument 

target program to collect fuzzing stats

• Run the fuzzer using afl-fuzz
path-to/afl-fuzz –i <input-dir> -o <output-dir> <path-to-bin> [args]

• For example
path-to/afl-fuzz –i input/ -o output/ ./cmpsc497-p1 set user passwd @@

• Where 

‣ @@ shows that the last arg (input file) will be fuzzed

‣ Can also do “user” and “passwd” 

31



Systems and Internet Infrastructure Security Laboratory (SIIS) Page

AFL Issues
• Provides compiler wrappers for gcc to instrument 

target program to collect fuzzing stats

• After you install AFL but before you can use it 
effectively, you must set the following environment 
variables to prevent aborts

setenv AFL_I_DONT_CARE_ABOUT_MISSING_CRASHES

setenv AFL_SKIP_CPUFREQ

• The former speeds up response from crashes

• The latter suppresses AFL complaint about missing 
some short-lived processes

32
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AFL Display
• Tracks the execution of the fuzzer

• Key information are

‣ “total paths” – number of different execution paths tried

‣ “unique crashes” – number of unique crash locations

33
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AFL Output
• Shows the results of the fuzzer

‣ E.g., provides inputs that will cause the crash

• File “fuzzer_stats” provides summary of stats – UI

• File “plot_data” shows the progress of fuzzer

• Directory “queue” shows inputs that led to paths

• Directory “crashes” contains input that caused 
crash

• Directory “hangs” contains input that caused hang

34
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AFL Results
• Shows the results of the fuzzer

‣ E.g., provides inputs that will cause the crash

• Crashes 

‣ May be caused by failed assertions – as they abort

• Had several assertions caught as crashes because format violated 
my checks

‣ I had a bug that slowed down the fuzzer

• Fixed this and the fuzzer generated unique paths more quickly 

36
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AFL Operation
• How does AFL work?

‣ http://lcamtuf.coredump.cx/afl/technical_details.txt

• The instrumentation captures branch (edge) 
coverage, along with coarse branch-taken hit counts.
‣ shared_mem[cur_location ^ prev_location]++;

• Record branches taken (previous branch to current 
branch) with low collision rate

• Enables distinguishing unique paths

37
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AFL Operation
• How does AFL work?

‣ http://lcamtuf.coredump.cx/afl/technical_details.txt

• “When a mutated input produces an execution trace 
containing new tuples, the corresponding input file is 
preserved and routed for additional processing”

‣ Otherwise, input is discarded

• “Mutated test cases that produced new state 
transitions [as above] are added to the input queue 
and used as a starting point for future rounds of 
fuzzing”

38
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AFL Operation
• How does AFL work?

‣ http://lcamtuf.coredump.cx/afl/technical_details.txt

• Fuzzing strategies 

‣ Highly deterministic at first – bit flips, add/sub integer 
values, and choose interesting integer values

‣ Then, non-deterministic choices – insertions, deletions, and 
combinations of test cases

39
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Grey Box Fuzzing 
• Finds flaws, but still does not understand the program

• Pros: Much better than black box testing

‣ Essentially no configuration

‣ Lots of crashes have been identified

• Cons: Still a bit of a stab in the dark

‣ May not be able to execute some paths 

‣ Searches for inputs independently from the program

• Need to improve the effectiveness further 

40
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White Box Fuzzing
• Combines test generation with fuzzing

‣ Test generation based on static analysis and/or symbolic 
execution – more later

‣ Rather than generating new inputs and hoping that they 
enable a new path to be executed, compute inputs that will 
execute a desired path

• And use them as fuzzing inputs

• Goal: Given a sequential program with a set of input 
parameters, generate a set of inputs that maximizes 
code coverage

41
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White Box Fuzzing
• We will come back to white box testing when we 

have the tools to perform automated test 
generation

42
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Take Away
• Goal is to detect vulnerabilities in our programs 

before adversaries exploit them

• One approach is dynamic testing of the program

‣ Fuzz testing aims to achieve good program coverage with 
little effort for the programmer

‣ Challenge is to generate the right inputs 

• Black box (Mutational and generation), Grey box, 
and White box approaches are being investigated

‣ AFL (Grey box) is now commonly used
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