\ Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

CMPSC 447:
Future Directions

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab
Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Vulnerability S

 Consists of these elements
» Flaw
» Accessible to an adversary

» Adversary has ability to exploit

e

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Can We Really Reduce e

* ... Vulnerabilities and their exploitation?
* Directions of improvement

» Reduce/Eliminate Programming Flaws

» Reduce Accessibility

» Reduce/Eliminate Exploitability

« Take a look at the prospects of achieving such
goals in the future today

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Programming w/o Flaws S

 Prevent flaws of all kinds

« Memory safety
» Spatial
» Type
» Temporal
« And others
» Filesystem

» Information Flow

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Memory Safety S

* Prevent safety violations from being possible
» In most cases, they are not possible
* Most objects are only referenced by pointers in a safe way
» In others, we need some checking
« Hopefully, via safe APIs
» But, is the checking correct?

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Safety Validation =

« For memory safety in C: CCured system proposed a method identify the pointers only
used in memory-safe ways (2002)

» Safe: No pointer arithmetic (spatial) or type casting (type) operations
» Results: Estimated 90% of pointers are only used in safe operations
» Problem: Does not account for temporal errors

» Under what conditions are temporal memory safety violations impossible by-design?

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Type-Specific Pools 5

« Hypothesis: use type-specific allocation
» All objects and fields are aligned
« Type-specific pools

» Allocate an object of type A from a memory region containing
only objects of type A

» Keep data and pointers (fields) separate

» Prevent pointer-region mismatch

« Must all references be of the same type! Default, yes

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Possibility of Memory Unsafe —

DataGuard System (presented today at NDSS)

Step 1: Simple

All e .. 9
Stack Safety Validation WolAdhwiad 91.45% of stack
Objects CCured + Escape unsafe operations objects protected
Analysis (are “safe’) by Safe Stack
16% of stack (without runtime checks!)
objects validated
statically

4% of stack (are “safe”)

objects do not
have concrete
safety constraints
(assume “unsafe”)

Step 2: Collect

»| Safety Constraints
For each memory
error class

3% of stack
objects validated
concolically
(are “safe”)

28% of stack
objects have
unsafe operations
(may be “unsafe”)

Step 3: Static

Safety Validation
Value Range + Integer
Range + Live Range

Step 4: Concolic

Safety Validation
Def-Use Guided
Concolic Execution

5% of stack
objects cannot
be validated
(assume “unsafe”)

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Memory Safety S

« If a pointer may violate memory safety
» Need to enforce safety (at runtime)

» ... Correctly

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Enforcing Spatial Safety 2

Two ways to enforce spatial safety
» Check memory bounds

» Automatic memory resizing

Checking bounds

» Make sure that a memory operation is limited to the
associated memory region

« Automatic resizing

» Resize the memory region to accommodate the memory
required to satisfy the operation safely

 You now have APIs that check bounds and auto
resize

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Enforcing Bounds -

e Enforce bounds checks

* int snprintf(char *S, size_t N, const char *FORMAT, ...);
» Writes output to buffer S up to N chars (bounds check)
» Always writes \O’ at end if N>=1 (terminate)

» Returns “length that would have been written” or negative if
error (reports truncation or error)

 Thus, achieves goals of correct bounds checking

» Enforces bounds, ensures correct C string, and reports
truncation or error

* len = snprintf(buf, buflen, "%s", original_value);
 if (len <0 || len >= buflen) ... // handle error/truncation

« What is needed for correctness?

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Auto Resizing S

« What about other functions like scanf?

» scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf — all unsafe by
default

» Instead, use “%ms”’ to auto-resize
o char *buffer = NULL; // Must be set to NULL

« scanf(buffer, “7%ms”);

» Allocates memory for the buffer dynamically to hold input
safely — null-terminated, no truncation required

« Note: also, can use for other functions that process
input like getline

» Should check whether the function you use supports this
option

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Safety from Type Errors e

« Type safety
» Memory region is only referenced by pointers of one type

» Corresponding to the type of the memory region allocation

« Memory safety (for regions of multiple types)

» Memory region may be referenced by pointers of more than
one type

» Semantics of all references correspond to allocation and
consistent use of the memory region

» Think about “question” types in the project

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Enforcing Type Safety S

« Type casts create risks of type errors
» Not type safe

* Any kinds of type casts guaranteed to be memory
safe?

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Enforcing Type Safety —

« Type cast risk type errors
» Not type safe

* Any kinds of type casts guaranteed to be memory
safe?

» Upcasts (spatial and type)
» Safe integer casts (same value, type) of same size (spatial)
» Other casts that preserve spatial and type constraints!?
« Constraints — do not allow memory errors
» Ensure separation of data and pointers

» Ensure an access using a pointer will be within bounds

» May want more constraints (e.g., value)

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Upcasts Are Memory Safe S

« Only allow “upcasts” for type casts

» An “upcast” from a child data type to a parent data type
« Reduces fields — no overflow possible, fields are same type

» Turn a downcast into an upcast — how!?

* If you can compute the set of types that may access a memory

region
Object
A
[|]
Medule Membesinfo hyembly
Upcast 7 Downcast
[[|]
Trpe Eventlnfo MethedBae | | Properylalo Fieldinfe

(enstruckerinfo Methodlnfo

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Tagged Casts Can Be Safe %

A tagged union is a data structure that has multiple,
pre-defined types

» Since we know the pre-defined sets of type for the memory
region

» We can limit the types of pointers that may access the
memory region

» And we can validate ahead-of-time that the combination of
types is memory safe

« E.g., pointer fields are only aligned with pointer fields

« Problem: Need to find set of pre-defined types

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Safety from Temporal Errors 5

« Type-specific pools
» Like type safety
« Memory region is only referenced by pointers of one type
« Corresponding to the type of the memory region allocation
» Like “compatible” tagged unions

« Could exploit type-specific pools for a compatible set of pre-
defined types

« Multiple types that comply with memory safety requirements
« Otherwise

» Zeroing pointers at initialization and deallocation seems
easiest — can add up as overhead

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Detecting Vulnerabilities %

* (I) Using safe APIs

* (2) And having program analyses to detect flaws

» Fuzzing, static analysis, symbolic execution

« What would you need analyses for?

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Programming Safely —

* (I) Using safe APIs

* (2) And having program analyses to detect flaws

» Fuzzing, static analysis, symbolic execution

« What would you need analyses for?

» Even use of safe APIs and techniques may be incorrect

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Use-Before-Initialization @

static int queue_manag(void *data)

struct crypto_async_request *backlog;

1
2

3

4

5 if (cpg->eng_st == ENGINE_IDLE) { 4

6 backlog = crypto_get_backlog(&cpg->queue), var =

7

o path-sensitive
9 if (backlog) { @

10

11 backlog->complete(backlog, -EINPROGRESS);
12) _\ v |
13 return O; *V
14}
(1) Vulnerable Code (2) UBI Scenario

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Static Analysis for UBI S

. UBITect .

Qualifier
o\x/ Static
CallGraph Ve s eVYe e Analysis

Analysis . 70 7)Y 7Y
[] L J

@,

Source LLVMIIR® Functions & Warriiigs Bugs
Code Call Dependencies +Guidance Paths

Under-Constrained
Symbolic Execution

v

X
3
Jo

Implementation:
LLVM 7.0.0
13K+ LoC
SE Engine: KLEE

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Limiting Access to Flaws =

« If programs may still have flaws, how do we reduce
the ability of an adversary to access them!?

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Limiting Access to Flaws)

« If programs may still have flaws, how do we reduce
the ability of an adversary to access them!?

» Attack surface

 Limit the places where adversary input is allowed

Systems and Internet Infrastructure Security Laboratory (SIIS)

Attack Surface e

* Insight: Only a small fraction system calls expect to
use adversary-controlled input

Systems and Internet Infrastructure Security Laboratory (SIIS)

Attack Surface e

* Insight: Only a small fraction system calls expect to
use adversary-controlled input

» Any new attack surface is often the source of
vulnerabilities

1444

Systems and Internet Infrastructure Security Laboratory (SIIS)

Attack Surface e

* Insight: Only a small fraction of program system
calls expect to use adversary-controlled input

« Limit the system call to only access “safe” objects

| ===

43

e What is “safe’’?

Systems and Internet Infrastructure Security Laboratory (SIIS)

Attack Surface e

* Insight: Only a small fraction of program system
calls expect to use adversary-controlled input

« Limit the system call to only access “safe’objects

1444

« What is “safe”? Not modifiable by an adversary

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Limiting Exploitability of Flaws 5

« If programs may still have flaws that adversaries can
access, how do we reduce the ability of an adversary
to exploit them!?

» Isolation
* |solate good data from bad

» Restriction

 Limit targets to which a compromised pointer can reference

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

|Isolation >

« Isolate data that is safe from memory errors from
other unsafe data

» Only safe memory references possible for all safe objects

« Unsafe memory references are possible via unsafe
pointers

» But, if safe objects are not accessible from those unsafe memory
references then they are protected

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Motivation for Partitioning S

« Split the application into multiple partitions

« Each partition is isolated using some isolation mechanism such as
OS processes

Partition into two parts

Sensitive data

Trusted // Input-handling

partiticm%\parﬁtion
-)
/7

Although some partition of a program has been
hijacked, sensitive data can still be protected

Systems and Internet Infrastructure Security Laboratory (SIIS)

Multi-Stack (Safe Stack) ™'g

« A separate stack region for
objects validated to be safe from
spatial errors (Safe Stack)

« Results: Safe stack objects are protected
from spatial errors without runtime
checks

P

« With DataGuard all objects on the safe
stack have been proven safe from all
three classes of memory errors

-/ \

Safe Stack Original Unsafe Stack
. . . (OSDI 2014) Stack
« Can do same kind of thing with heap Region

objects as well!

« But, isolation between stacks is currently
implemented by ASLR

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTAT

Restriction >

 Limit memory accesses only to legal values

» Any example of this approach you can recall?

Systems and Internet Infrastructure Security Laboratory (SIIS)

- S
Restriction PENN%T

 Limit memory accesses only to legal values
» Any example of this approach you can recall?
» CFl — restrict targets of an indirect call to the CFG
» SFI — restrict targets of a memory access to a region

» Privilege separation restricts accesses to the memory regions
associated with a subset of functions (code) and their data

e How does SFI work!?

Systems and Internet Infrastructure Security Laboratory (SIIS)

SFI Policy %

4
B d Fault Domain h
> : 1) All jumps remain in CR\
Code Region .
2) Reference monitor not
(readable, bypassed by jumps
CL executable) /
DB
N
Data Region N - N
(readable, writable) All R/W remain in DR
DL [DB, DL]

J _ J

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Take Away =

e Reducing vulnerabilities is the target of defenses

¢ We can reduce flaws

e But, need help in validating safe cases and/or identifying
cases helpfully — e.g., analysis

e We can limit accessibility to flaws further

» Attack surfaces and privilege separation

e We can reduce the ability of adversaries to
exploit the remaining flaws

e May be a bit expensive w/o hardware help or need to be
more targeted

Systems and Internet Infrastructure Security Laboratory (SIIS)

