
Systems and Internet Infrastructure Security Laboratory (SIIS) Page 1

CMPSC 447:
Future Directions

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Vulnerability

2

• Consists of these elements

‣ Flaw

‣ Accessible to an adversary

‣ Adversary has ability to exploit

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Can We Really Reduce

• … Vulnerabilities and their exploitation?
• Directions of improvement
‣ Reduce/Eliminate Programming Flaws

‣ Reduce Accessibility

‣ Reduce/Eliminate Exploitability

• Take a look at the prospects of achieving such
goals in the future today

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Programming w/o Flaws

• Prevent flaws of all kinds
• Memory safety
‣ Spatial
‣ Type
‣ Temporal

• And others
‣ Filesystem
‣ Information Flow

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Memory Safety

• Prevent safety violations from being possible
‣ In most cases, they are not possible

• Most objects are only referenced by pointers in a safe way

‣ In others, we need some checking

• Hopefully, via safe APIs

‣ But, is the checking correct?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Safety Validation
• For memory safety in C: CCured system proposed a method identify the pointers only

used in memory-safe ways (2002)

‣ Safe: No pointer arithmetic (spatial) or type casting (type) operations

‣ Results: Estimated 90% of pointers are only used in safe operations

‣ Problem: Does not account for temporal errors

‣ Under what conditions are temporal memory safety violations impossible by-design?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Type-Specific Pools
• Hypothesis: use type-specific allocation
‣ All objects and fields are aligned

• Type-specific pools
‣ Allocate an object of type A from a memory region containing

only objects of type A

‣ Keep data and pointers (fields) separate

‣ Prevent pointer-region mismatch

• Must all references be of the same type? Default, yes

Obj
A

Obj
A

Obj
A

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Step 1: Simple
Safety Validation
CCured + Escape

Analysis

Step 2: Collect
Safety Constraints

For each memory
error class

Step 3: Static
Safety Validation

Value Range + Integer
Range + Live Range

All
Stack

Objects

72% of stack
objects have no

unsafe operations
(are “safe”)

28% of stack
objects have

unsafe operations
(may be “unsafe”)

4% of stack
objects do not
have concrete

safety constraints
 (assume “unsafe”)

Step 4: Concolic
Safety Validation

Def-Use Guided
Concolic Execution

16% of stack
objects validated

statically
 (are “safe”)

3% of stack
objects validated

concolically
 (are “safe”)

5% of stack
objects cannot

be validated
 (assume “unsafe”)

91.45% of stack
objects protected

by Safe Stack
 (without runtime checks!)

Possibility of Memory Unsafe

DataGuard System (presented today at NDSS)

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Memory Safety

• If a pointer may violate memory safety
‣ Need to enforce safety (at runtime)

‣ … Correctly

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Enforcing Spatial Safety

• Two ways to enforce spatial safety
‣ Check memory bounds

‣ Automatic memory resizing

• Checking bounds
‣ Make sure that a memory operation is limited to the

associated memory region

• Automatic resizing
‣ Resize the memory region to accommodate the memory

required to satisfy the operation safely

• You now have APIs that check bounds and auto
resize

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Enforcing Bounds

• Enforce bounds checks
• int snprintf(char *S, size_t N, const char *FORMAT, ...);
‣ Writes output to buffer S up to N chars (bounds check)

‣ Always writes ‘\0’ at end if N>=1 (terminate)

‣ Returns “length that would have been written” or negative if
error (reports truncation or error)

• Thus, achieves goals of correct bounds checking
‣ Enforces bounds, ensures correct C string, and reports

truncation or error
• len = snprintf(buf, buflen, "%s", original_value);

• if (len < 0 || len >= buflen) … // handle error/truncation

• What is needed for correctness?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Auto Resizing
• What about other functions like scanf?
‣ scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf – all unsafe by

default

‣ Instead, use “%ms” to auto-resize
• char *buffer = NULL; // Must be set to NULL

• scanf(buffer, “%ms”);

‣ Allocates memory for the buffer dynamically to hold input
safely – null-terminated, no truncation required

• Note: also, can use for other functions that process
input like getline
‣ Should check whether the function you use supports this

option

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Safety from Type Errors

• Type safety
‣ Memory region is only referenced by pointers of one type

‣ Corresponding to the type of the memory region allocation

• Memory safety (for regions of multiple types)
‣ Memory region may be referenced by pointers of more than

one type

‣ Semantics of all references correspond to allocation and
consistent use of the memory region

‣ Think about “question” types in the project

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Enforcing Type Safety

• Type casts create risks of type errors
‣ Not type safe

• Any kinds of type casts guaranteed to be memory
safe?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Enforcing Type Safety

• Type cast risk type errors
‣ Not type safe

• Any kinds of type casts guaranteed to be memory
safe?
‣ Upcasts (spatial and type)

‣ Safe integer casts (same value, type) of same size (spatial)

‣ Other casts that preserve spatial and type constraints?

• Constraints – do not allow memory errors
‣ Ensure separation of data and pointers

‣ Ensure an access using a pointer will be within bounds

‣ May want more constraints (e.g., value)

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Upcasts Are Memory Safe

• Only allow “upcasts” for type casts
‣ An “upcast” from a child data type to a parent data type

• Reduces fields – no overflow possible, fields are same type

‣ Turn a downcast into an upcast – how?
• If you can compute the set of types that may access a memory

region

Upcast Downcast

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Tagged Casts Can Be Safe

• A tagged union is a data structure that has multiple,
pre-defined types
‣ Since we know the pre-defined sets of type for the memory

region

‣ We can limit the types of pointers that may access the
memory region

‣ And we can validate ahead-of-time that the combination of
types is memory safe
• E.g., pointer fields are only aligned with pointer fields

• Problem: Need to find set of pre-defined types

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Safety from Temporal Errors

• Type-specific pools
‣ Like type safety

• Memory region is only referenced by pointers of one type

• Corresponding to the type of the memory region allocation

‣ Like “compatible” tagged unions
• Could exploit type-specific pools for a compatible set of pre-

defined types

• Multiple types that comply with memory safety requirements

• Otherwise
‣ Zeroing pointers at initialization and deallocation seems

easiest – can add up as overhead

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Detecting Vulnerabilities

• (1) Using safe APIs
• (2) And having program analyses to detect flaws
‣ Fuzzing, static analysis, symbolic execution

• What would you need analyses for?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Programming Safely

• (1) Using safe APIs
• (2) And having program analyses to detect flaws
‣ Fuzzing, static analysis, symbolic execution

• What would you need analyses for?
‣ Even use of safe APIs and techniques may be incorrect

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

(1) Vulnerable Code (2) UBI Scenario

1
2
3
4
5
6
7
8
9
10
11
12
13
14

static int queue_manag(void *data)
{

/* backlog is declared without initialization */
struct crypto_async_request *backlog;
if (cpg->eng_st == ENGINE_IDLE) {

backlog = crypto_get_backlog(&cpg->queue);
}
/* Uninitialized backlog is used*/
if (backlog) {

/* uninitialized pointer dereferenced! */
backlog->complete(backlog, -EINPROGRESS);

}
return 0;

}

path-sensitive

Use-Before-Initialization

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Source
Code
…

LLVM IR…

Call Graph
Analysis

…

……

Functions &
Call Dependencies

Warnings
+Guidance
… Bugs+

Paths
…

Under-Constrained
Symbolic Execution

Qualifier
Static

Analysis

UBITect

Implementation:
LLVM 7.0.0
13K+ LoC
SE Engine: KLEE

Static Analysis for UBI

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Limiting Access to Flaws

• If programs may still have flaws, how do we reduce
the ability of an adversary to access them?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Limiting Access to Flaws

• If programs may still have flaws, how do we reduce
the ability of an adversary to access them?
‣ Attack surface

• Limit the places where adversary input is allowed

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Attack Surface
• Insight: Only a small fraction system calls expect to

use adversary-controlled input

27

Apache httpd
httpd_t

mmap()open()
read() accept()

???

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Attack Surface
• Insight: Only a small fraction system calls expect to

use adversary-controlled input

‣ Any new attack surface is often the source of
vulnerabilities

28

Apache httpd
httpd_t

mmap()open()
read() accept()

???

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Attack Surface
• Insight: Only a small fraction of program system

calls expect to use adversary-controlled input

• Limit the system call to only access “safe” objects

• What is “safe”?

29

Apache httpd
httpd_t

mmap()open()
read() accept()

???

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Attack Surface
• Insight: Only a small fraction of program system

calls expect to use adversary-controlled input

• Limit the system call to only access “safe”objects

• What is “safe”? Not modifiable by an adversary

30

Apache httpd
httpd_t

mmap()open()
read() accept()

???

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Limiting Exploitability of Flaws

• If programs may still have flaws that adversaries can
access, how do we reduce the ability of an adversary
to exploit them?
‣ Isolation

• Isolate good data from bad

‣ Restriction
• Limit targets to which a compromised pointer can reference

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Isolation

• Isolate data that is safe from memory errors from
other unsafe data
‣ Only safe memory references possible for all safe objects

• Unsafe memory references are possible via unsafe
pointers
‣ But, if safe objects are not accessible from those unsafe memory

references then they are protected

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• Split the application into multiple partitions

• Each partition is isolated using some isolation mechanism such as
OS processes

Motivation for Partitioning

Sensitive data

Partition into two parts

Trusted
partition

Input-handling
partition

Although some partition of a program has been
hijacked, sensitive data can still be protected

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Multi-Stack (Safe Stack)

• A separate stack region for
objects validated to be safe from
spatial errors (Safe Stack)

• Results: Safe stack objects are protected
from spatial errors without runtime
checks

• With DataGuard all objects on the safe
stack have been proven safe from all
three classes of memory errors

• Can do same kind of thing with heap
objects as well!

• But, isolation between stacks is currently
implemented by ASLR

Safe Stack
(OSDI 2014)

Unsafe Stack Original
Stack

Region

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Restriction

• Limit memory accesses only to legal values
‣ Any example of this approach you can recall?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Restriction

• Limit memory accesses only to legal values
‣ Any example of this approach you can recall?

‣ CFI – restrict targets of an indirect call to the CFG

‣ SFI – restrict targets of a memory access to a region

‣ Privilege separation restricts accesses to the memory regions
associated with a subset of functions (code) and their data

• How does SFI work?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

SFI Policy

Fault Domain

Code Region
(readable,

executable)

Data Region
(readable, writable)

CB

CL

DB

DL
All R/W remain in DR

[DB, DL]

1) All jumps remain in CR
2) Reference monitor not

bypassed by jumps

39

Systems and Internet Infrastructure Security Laboratory (SIIS) Page 41

Take Away
• Reducing vulnerabilities is the target of defenses

• We can reduce flaws

• But, need help in validating safe cases and/or identifying
cases helpfully – e.g., analysis

• We can limit accessibility to flaws further

‣ Attack surfaces and privilege separation

• We can reduce the ability of adversaries to
exploit the remaining flaws

• May be a bit expensive w/o hardware help or need to be
more targeted

