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Vulnerability S

 Consists of these elements
» Flaw
» Accessible to an adversary

» Adversary has ability to exploit

e
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Can We Really Reduce e

* ... Vulnerabilities and their exploitation?
* Directions of improvement

» Reduce/Eliminate Programming Flaws

» Reduce Accessibility

» Reduce/Eliminate Exploitability

« Take a look at the prospects of achieving such
goals in the future today
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Programming w/o Flaws S

 Prevent flaws of all kinds

« Memory safety
» Spatial
» Type
» Temporal
« And others
» Filesystem

» Information Flow
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Memory Safety S

* Prevent safety violations from being possible
» In most cases, they are not possible
* Most objects are only referenced by pointers in a safe way
» In others, we need some checking
« Hopefully, via safe APIs
» But, is the checking correct?
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Safety Validation =

« For memory safety in C: CCured system proposed a method identify the pointers only
used in memory-safe ways (2002)

»  Safe: No pointer arithmetic (spatial) or type casting (type) operations
» Results: Estimated 90% of pointers are only used in safe operations
» Problem: Does not account for temporal errors

» Under what conditions are temporal memory safety violations impossible by-design?
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Type-Specific Pools 5

« Hypothesis: use type-specific allocation
» All objects and fields are aligned
« Type-specific pools

» Allocate an object of type A from a memory region containing
only objects of type A

» Keep data and pointers (fields) separate

» Prevent pointer-region mismatch

« Must all references be of the same type! Default, yes
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Possibility of Memory Unsafe —

DataGuard System (presented today at NDSS)

Step 1: Simple

All e .. 9
Stack Safety Validation WolAdhwiad 91.45% of stack
Objects CCured + Escape unsafe operations objects protected
Analysis (are “safe’) by Safe Stack
16% of stack (without runtime checks!)
objects validated
statically

4% of stack (are “safe”)

objects do not
have concrete
safety constraints
(assume “unsafe”)

Step 2: Collect

»| Safety Constraints
For each memory
error class

3% of stack
objects validated
concolically
(are “safe”)

28% of stack
objects have
unsafe operations
(may be “unsafe”)

Step 3: Static

Safety Validation
Value Range + Integer
Range + Live Range

Step 4: Concolic

Safety Validation
Def-Use Guided
Concolic Execution

5% of stack
objects cannot
be validated
(assume “unsafe”)
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Memory Safety S

« If a pointer may violate memory safety
» Need to enforce safety (at runtime)

» ... Correctly
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Enforcing Spatial Safety 2

Two ways to enforce spatial safety
» Check memory bounds

» Automatic memory resizing

Checking bounds

» Make sure that a memory operation is limited to the
associated memory region

« Automatic resizing

» Resize the memory region to accommodate the memory
required to satisfy the operation safely

 You now have APIs that check bounds and auto
resize
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Enforcing Bounds -

e Enforce bounds checks

* int snprintf(char *S, size_t N, const char *FORMAT, ...);
» Writes output to buffer S up to N chars (bounds check)
» Always writes \O’ at end if N>=1 (terminate)

» Returns “length that would have been written” or negative if
error (reports truncation or error)

 Thus, achieves goals of correct bounds checking

» Enforces bounds, ensures correct C string, and reports
truncation or error

* len = snprintf(buf, buflen, "%s", original_value);
 if (len <0 || len >= buflen) ... // handle error/truncation

« What is needed for correctness?
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Auto Resizing S

« What about other functions like scanf?

» scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf — all unsafe by
default

» Instead, use “%ms”’ to auto-resize
o char *buffer = NULL; // Must be set to NULL

« scanf(buffer, “7%ms”);

» Allocates memory for the buffer dynamically to hold input
safely — null-terminated, no truncation required

« Note: also, can use for other functions that process
input like getline

» Should check whether the function you use supports this
option

Systems and Internet Infrastructure Security Laboratory (SIIS)



PENNSTAT

Safety from Type Errors e

« Type safety
» Memory region is only referenced by pointers of one type

» Corresponding to the type of the memory region allocation

« Memory safety (for regions of multiple types)

» Memory region may be referenced by pointers of more than
one type

» Semantics of all references correspond to allocation and
consistent use of the memory region

» Think about “question” types in the project
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Enforcing Type Safety S

« Type casts create risks of type errors
» Not type safe

* Any kinds of type casts guaranteed to be memory
safe?
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Enforcing Type Safety —

« Type cast risk type errors
» Not type safe

* Any kinds of type casts guaranteed to be memory
safe?

» Upcasts (spatial and type)
» Safe integer casts (same value, type) of same size (spatial)
» Other casts that preserve spatial and type constraints!?
« Constraints — do not allow memory errors
» Ensure separation of data and pointers

» Ensure an access using a pointer will be within bounds

» May want more constraints (e.g., value)
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Upcasts Are Memory Safe S

« Only allow “upcasts” for type casts

» An “upcast” from a child data type to a parent data type
« Reduces fields — no overflow possible, fields are same type

» Turn a downcast into an upcast — how!?

* If you can compute the set of types that may access a memory

region
Object
A
[ | ]
Medule Membesinfo hyembly
Upcast 7 Downcast
[ [ | ]
Trpe Eventlnfo MethedBae | | Properylalo Fieldinfe

(enstruckerinfo Methodlnfo

Systems and Internet Infrastructure Security Laboratory (SIIS)




PENNSTATE

Tagged Casts Can Be Safe %

A tagged union is a data structure that has multiple,
pre-defined types

» Since we know the pre-defined sets of type for the memory
region

» We can limit the types of pointers that may access the
memory region

» And we can validate ahead-of-time that the combination of
types is memory safe

« E.g., pointer fields are only aligned with pointer fields

« Problem: Need to find set of pre-defined types
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Safety from Temporal Errors 5

« Type-specific pools
» Like type safety
« Memory region is only referenced by pointers of one type
« Corresponding to the type of the memory region allocation
» Like “compatible” tagged unions

« Could exploit type-specific pools for a compatible set of pre-
defined types

« Multiple types that comply with memory safety requirements
« Otherwise

» Zeroing pointers at initialization and deallocation seems
easiest — can add up as overhead
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Detecting Vulnerabilities %

* (I) Using safe APIs

* (2) And having program analyses to detect flaws

» Fuzzing, static analysis, symbolic execution

« What would you need analyses for?
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Programming Safely —

* (I) Using safe APIs

* (2) And having program analyses to detect flaws

» Fuzzing, static analysis, symbolic execution

« What would you need analyses for?

» Even use of safe APIs and techniques may be incorrect
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Use-Before-Initialization @

static int queue_manag(void *data)

struct crypto_async_request *backlog;

1
2

3

4

5 if (cpg->eng_st == ENGINE_IDLE) { 4

6 backlog = crypto_get_backlog(&cpg->queue), var =

7

o path-sensitive
9 if (backlog) { @

10

11 backlog->complete(backlog, -EINPROGRESS);
12 ) _\ v |
13 return O; *V
14}
(1) Vulnerable Code (2) UBI Scenario
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Static Analysis for UBI S

. UBITect .

Qualifier
o\x/ Static
CallGraph Ve s eVYe e Analysis

Analysis . 70 7)Y 7Y
[ ] L J

@,

Source LLVMIIR® Functions & Warriiigs Bugs
Code Call Dependencies +Guidance Paths

Under-Constrained
Symbolic Execution

v

X
3
Jo

Implementation:
LLVM 7.0.0
13K+ LoC
SE Engine: KLEE
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Limiting Access to Flaws =

« If programs may still have flaws, how do we reduce
the ability of an adversary to access them!?
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Limiting Access to Flaws )

« If programs may still have flaws, how do we reduce
the ability of an adversary to access them!?

» Attack surface

 Limit the places where adversary input is allowed
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Attack Surface e

* Insight: Only a small fraction system calls expect to
use adversary-controlled input
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Attack Surface e

* Insight: Only a small fraction system calls expect to
use adversary-controlled input

» Any new attack surface is often the source of
vulnerabilities

1444
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Attack Surface e

* Insight: Only a small fraction of program system
calls expect to use adversary-controlled input

« Limit the system call to only access “safe” objects

| ===

43

e What is “safe’’?
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Attack Surface e

* Insight: Only a small fraction of program system
calls expect to use adversary-controlled input

« Limit the system call to only access “safe’objects

1444

« What is “safe”? Not modifiable by an adversary
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Limiting Exploitability of Flaws 5

« If programs may still have flaws that adversaries can
access, how do we reduce the ability of an adversary
to exploit them!?

» Isolation
* |solate good data from bad

» Restriction

 Limit targets to which a compromised pointer can reference
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|Isolation >

« Isolate data that is safe from memory errors from
other unsafe data

» Only safe memory references possible for all safe objects

« Unsafe memory references are possible via unsafe
pointers

» But, if safe objects are not accessible from those unsafe memory
references then they are protected
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Motivation for Partitioning S

« Split the application into multiple partitions

« Each partition is isolated using some isolation mechanism such as
OS processes

Partition into two parts

Sensitive data

Trusted // Input-handling

partiticm%\parﬁtion
- )
/7

Although some partition of a program has been
hijacked, sensitive data can still be protected
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Multi-Stack (Safe Stack)  ™'g

« A separate stack region for
objects validated to be safe from
spatial errors (Safe Stack)

« Results: Safe stack objects are protected
from spatial errors without runtime
checks

P

«  With DataGuard all objects on the safe
stack have been proven safe from all
three classes of memory errors

-/ \

Safe Stack Original Unsafe Stack
. . . (OSDI 2014) Stack
« Can do same kind of thing with heap Region

objects as well!

« But, isolation between stacks is currently
implemented by ASLR
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Restriction >

 Limit memory accesses only to legal values

» Any example of this approach you can recall?
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Restriction PENN%T

 Limit memory accesses only to legal values
» Any example of this approach you can recall?
» CFl — restrict targets of an indirect call to the CFG
» SFI — restrict targets of a memory access to a region

» Privilege separation restricts accesses to the memory regions
associated with a subset of functions (code) and their data

e How does SFI work!?
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SFI Policy %

4
B d Fault Domain h
> : 1) All jumps remain in CR\
Code Region .
2) Reference monitor not
(readable, bypassed by jumps
CL executable) /
DB
N
Data Region N - N
(readable, writable) All R/W remain in DR
DL [DB, DL]

J \_ J
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Take Away =

e Reducing vulnerabilities is the target of defenses

¢ We can reduce flaws

e But, need help in validating safe cases and/or identifying
cases helpfully — e.g., analysis

e We can limit accessibility to flaws further

» Attack surfaces and privilege separation

e We can reduce the ability of adversaries to
exploit the remaining flaws

e May be a bit expensive w/o hardware help or need to be
more targeted
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