
Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

CMPSC 447
Final Review

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Final
• Format (114 points)

‣ True/False

• 8 questions – 16 points

‣ Short answer – word/phrase to sentence or two

• 8 questions – 36 points

‣ Long answer – like essay-ish

• 4 questions – 32 points

‣ Constructions – how

• 3 questions (multi-part) – 30 points

‣ Time should be less of an issue, but be careful

2

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 3

Defenses Quiz
• #1 - When a stack canary is overwritten, then the

program check (immediately) terminates the
process execution.

• True/False

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 4

Defenses Quiz
• #1 - When a stack canary is overwritten, then the

program check (immediately) terminates the
process execution.

• True/False

Systems and Internet Infrastructure Security (SIIS) Laboratory Page
5

Stack Canary Defense

stack frame
for main

2
1

• Place a “canary” value on
the stack to detect
attempted overwrites of
the return address

• Canary value is
randomized

• And checked prior to
any return

• How does this prevent
overflows from
exploiting the return
address?

ret
canary

buffer

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 6

Defenses Quiz
• #2 - The randomness of Address Space Layout

Randomization (ASLR) is restricted by the relative
positions of the individual memory regions (stack,
heap, etc.).

‣ True/False

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 7

Defenses Quiz
• #2 - The randomness of Address Space Layout

Randomization (ASLR) is restricted by the relative
positions of the individual memory regions (stack,
heap, etc.).

‣ True/False

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 8

ASLR
• Create a memory segment

‣ Heap

‣ Stack

‣ Code (Library)

• Compute (randomize) the base address

‣ High order bits – fixed – segment needs to be placed in the
expected relative position

‣ Some middle bits – random – this is where ASLR is applied

‣ Low order bits – align – must be at least page aligned

• Limits the “entropy” of the randomization

‣ Number of possible locations - 2n where n is entropy in ”bits”

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 9

Defenses Quiz
• #3 - Coarse-grained Control-Flow Integrity (CFI)

restricts the allowed targets of an indirect call site
to the following set of program code locations.

‣ The targets of this call site in the CFG

‣ The functions with the same type signature as the call
site

‣ Any caller of the function with this call site

‣ Any code instruction

‣ The start of any function

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 10

Defenses Quiz
• #3 - Coarse-grained Control-Flow Integrity (CFI)

restricts the allowed targets of an indirect call site
to the following set of program code locations.

‣ The targets of this call site in the CFG

‣ The functions with the same type signature as the call
site

‣ Any caller of the function with this call site

‣ Any code instruction

‣ The start of any function

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

CFI Policies
• Coarse-grained Policy

‣ Check if the targets of indirect control transfers are valid

‣ Requires decoding the trace packets to find each target

• Fine-grained Policy

‣ Check if the source and destination are a legitimate pair

‣ Requires control-flow recovery to identify source

• Shadow Stack

‣ Check that a function can only return to its caller
(instruction after the call site)

‣ Check if an indirect control transfer is legitimate based on
the program state (e.g., shadow stack)

11

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 12

Defenses Quiz
• #4 - The return address address of a function is

most accurately restricted to the set of legal
callers by the following.

‣ Shadow Stack

‣ Coarse-grained CFI

‣ Fine-grained CFI

‣ Stack Canary

‣ CFG

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 13

Defenses Quiz
• #4 - The return address address of a function is

most accurately restricted to the set of legal
callers by the following.

‣ Shadow Stack

‣ Coarse-grained CFI

‣ Fine-grained CFI

‣ Stack Canary

‣ CFG

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 14

Defenses Quiz
• You can limit an load/store instruction to the

range of addresses between 0x1400 and 0x14FF
by "masking" the load/store address X using "X &
_____" followed by "X | _______”

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 15

Defenses Quiz
• You can limit an load/store instruction to the

range of addresses between 0x1400 and 0x14FF
by "masking" the load/store address X using "X &
_____" followed by "X | _______”

‣ X & 0x00FF

‣ X | 0x1400

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 16

Defenses Quiz
• #6 – If some of your program's code is restricted

to a limited memory region by Software-Fault
Isolation, the code can only invoke a function
outside that region by jumping to an address
defined by the following.

‣ Sandbox

‣ Segment

‣ Trampoline

‣ Stub

‣ Mask

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 17

Defenses Quiz
• #6 – If some of your program's code is restricted

to a limited memory region by Software-Fault
Isolation, the code can only invoke a function
outside that region by jumping to an address
defined by the following.

‣ Sandbox

‣ Segment

‣ Trampoline

‣ Stub

‣ Mask

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Jumping Outside of Domain

• Sometimes need to invoke code outside of the
domain

‣ For system calls; for communication with other domains

‣ Danger: Cannot allow untrusted code to invoke code
outside of the fault domain arbitrarily

• Idea:

‣ Insert a jump table into the (immutable) code region

‣ Each entry is a control transfer instruction whose target
address is a legal entry point outside of the domain

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

A Fixed Jumptable (Trampoline)

• For example

‣ Trampolines for
system calls: fopen;
fread; …

‣ Trampolines for
communication with
other fault domains

stubs to trusted routines

Fault Domain

Code Region

Data Region

Trampolines

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Trusted Stubs

• Stubs are outside of the fault domain

‣ Why?

• Stubs can implement security checks

‣ E.g., can restrict fopen to open files only in a particular
directory

‣ Or can disallow fopen completely

• Just not install a jump table entry for it

‣ It can implement system call interposition

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 21

Defenses Quiz
• #7 – In the code below, why is the "key" not

leaked from the function encrypt?
• char* cipher;

char* key;

• void encrypt(char *plain, int n) {
cipher = (char*)malloc(n);
for (i = 0; i < n; i++) { cipher[i] = plain[i] ^ key[I]; }
}

• void main (){
char plaintext[1024];
scanf("%s",plaintext);
encrypt(plaintext,strlen(plaintext));
...
}

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 22

Defenses Quiz
• #7 – In the code below, why is the "key" not

leaked from the function encrypt?
• char* cipher;

char* key;

• void encrypt(char *plain, int n) {
cipher = (char*)malloc(n);
for (i = 0; i < n; i++) { cipher[i] = plain[i] ^ key[I]; }
}

• void main (){
char plaintext[1024];
scanf("%s",plaintext);
encrypt(plaintext,strlen(plaintext));
...
}

• Encryption as a declassifier

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

OpenSSH Privilege Separation
• What parts of code need access to sensitive data and

privileges in OpenSSH?

‣ Code that needs access to root privileges

• to change UID of child process (integrity)

‣ Code that needs access to critical secrets

• For setting up secure channels and password authentication
(secrecy)

• How would you privilege separate these
functionalities from the rest of OpenSSH?

23

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

OpenSSH Privilege Separation
• How OpenSSH looks after privilege separation

24

Secrecy

Integrity

mm = mm_create(back, 655360);
back = mm_create(NULL, 65536);

Parent

...
pid = fork();

waitpid(pid, NULL, 0);

Parent

p = mm_malloc(mm, size);
...
exit(0);

MmBack

Back Mm

Child

Figure 3: The complete state of a slave process in-
cludes dynamically allocated memory. When exporting
this state, the dynamically allocated address space in
opaque data objects must not change. By employing a
shared memory allocator that is backed by another shared
address space, we can export state without changing the
addresses of dynamically allocated data.

wants to change its identity, it exits and the thread of
execution continues in the parent. The parent has ac-
cess to all the data that was allocated in the child.
However, one problem remains. The shared address
space back uses libc’s malloc that allocated memory
in the child’s address space to keep track of its state.
If this information is lost when the child process exits,
then subsequent calls to mm malloc or mm free fail. To
solve the problem, the parent calls the mm share sync
function which recreates the state information in the
shared address space back. Afterwards, freeing and al-
locating memory proceeds without any problems.

We use shared memory and XDR-like data marshal-
ing to export all state from the child to the parent. Af-
ter the child process exports its state and terminates,
the parent creates a new child process. The new pro-
cess changes to the desired UID and GID and then
imports the exported state. This e↵ects a change of
identity in the slave that preserves state information.

4 Separating Privileges in OpenSSH

In this section, we show how to use privilege sep-
aration in OpenSSH, a free implementation of the
SSH protocols. OpenSSH provides secure remote lo-
gin across the Internet. OpenSSH supports protocol
versions one and two; we restrict our explanation of
privilege separation to the latter. The procedure is
very similar for protocol one and also applies to other
services that require authentication.

Key Exchange
Auth Result

Request Auth

User Request
Processing

privileged
OpenSSH

privileged
OpenSSH

privileged
OpenSSH

Tim
eline

Network connection

fork unprivileged child

State Export

User Network Data
Request PTY

Pass PTYMonitor

Monitor Processing
Network

Listen *:22

fork user child

unprivileged
OpenSSH

OpenSSH
user privileged

Authentication

Figure 4: Overview of privilege separation in OpenSSH.
An unprivileged slave processes all network communica-
tion. It must ask the monitor to perform any operation
that requires privileges.

When the SSH daemon starts, it binds a socket to
port 22 and waits for new connections. Every new con-
nection is handled by a forked child. The child needs
to retain superuser privileges throughout its lifetime
to create new pseudo terminals for the user, to au-
thenticate key exchanges when cryptographic keys are
replaced with new ones, to clean up pseudo terminals
when the SSH session ends, to create a process with
the privileges of the authenticated user, etc.

With privilege separation, the forked child acts as
the monitor and forks a slave that drops all its priv-
ileges and starts accepting data from the established
connection. The monitor now waits for requests from
the slave; see Figure 4. Requests that are permitted
in the pre-authentication phase are shown in Figure 5.
If the child issues a request that is not permitted, the
monitor terminates.

First, we identify the actions that require special
privilege in OpenSSH and show which request types
can fulfill them.

4.1 Pre-Authentication Phase

In this section, we describe the privileged requests
for the pre-authentication phase:

• Key Exchange: SSH v2 supports the Di�e-
Hellman Group Exchange which allows the client
to request a group of a certain size from the
server [10]. To find an appropriate group the
server consults the /etc/moduli file. However, be-
cause the slave has no privileges to access the file
system, it can not open the file itself, so, it is-
sues an informational request to the monitor. The

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Separation Issues
• Information Flow Issues

‣ Secrecy

• Secret component must return authentication result

• Filter secrets from the response (declassify)

‣ Integrity

• High integrity component must receive input

• Validate integrity of untrusted inputs (endorsement)

‣ Both

• In many cases the secret data is also high integrity

• What then?

25

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 26

Defenses Quiz
• #8 – When enforcing CFI using process traces

collected using Intel Processor Trace, CFI is not
enforced until a system call is made because...

‣ Process traces only collect system calls

‣ A system call stops all process threads

‣ The OS cannot process traces completely until a
system call occurs

‣ Only a system call can impact the system

‣ System calls are necessary to violate control flow

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 27

Defenses Quiz
• #8 – When enforcing CFI using process traces

collected using Intel Processor Trace, CFI is not
enforced until a system call is made because…
(from a security perspective)

‣ Process traces only collect system calls

‣ A system call stops all process threads

‣ The OS cannot process traces completely until a
system call occurs

‣ Only a system call can impact the system

‣ System calls are necessary to violate control flow

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

System Overview

28

User Space Kernel Space

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 29

Defenses Quiz
• #9 – Enclaves protect a program (being run in an

enclave from attacks from ...

‣ Other threads in the same enclave

‣ Other enclaves

‣ Other processes outside of enclaves

‣ The processor

‣ The operating system

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 30

Defenses Quiz
• #9 – Enclaves protect a program (being run in an

enclave from attacks from ...

‣ Other threads in the same enclave

‣ Other enclaves

‣ Other processes outside of enclaves

‣ The processor

‣ The operating system

• Anything but what is in the enclave and the
processor

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 31

Analysis Quiz
• #1 - A vulnerability is a _____ that is ____ to an

adversary who can ____ it (Ans1).

‣ Three answers

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 32

Analysis Quiz
• #1 - A vulnerability is a _____ that is ____ to an

adversary who can ____ it (Ans1).

‣ Flaw

‣ Accessible

‣ Exploit

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 33

Analysis Quiz
• #2 - Redo Question 14 of the midterm

1: int a; // size input set in line 5

2: char adv_input_2[SIZE]; // SIZE is a constant
3: char b[SIZE];
4:
5: a=adv_input_1;
6: if (a<SIZE) {
7: read(&adv_input_2, a); // read(char **dest, size_t size);

8: strlcpy(b, adv_input_2, a); // strlcpy(char *dest, char *src,
size_t size);
9: send(b, a); // send(char *msg, size_t size); to adversary

10: }
11: return;

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 34

Analysis Quiz
• #3 - Use static analysis - via abstract interpretation

- to detect that an adversary-controlled input is
used to define an invalid size variable "a" in
Question 14 of the midterm.

1: int a; // size input set in line 5

2: char adv_input_2[SIZE]; // SIZE is a constant
3: char b[SIZE];
4:
5: a=adv_input_1;
6: if (a<SIZE) {
7: read(&adv_input_2, a); // read(char **dest, size_t size);

8: strlcpy(b, adv_input_2, a); // strlcpy(char *dest, char *src,
size t size);
9: send(b, a); // send(char *msg, size t size); to adversary
10: }
11: return;

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Abstract Interpretation
• Descriptors represent the sign of a value

‣ Positive, negative, zero, unknown

• For an expression, c = a * b

‣ If a has a descriptor pos

‣ And b has a descriptor neg

• What is the descriptor for c after that instruction?

‣ Need a rule to combine two descriptors for each op

‣ For ‘*’ use rule for multiplication of pos and neg

• How might this help?

35

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 36

Analysis Quiz
• #4 – For the code below
F1() { return; }

F2() { F1(); }

FA(fptr) { fptr(); }

• The most accurate CFI policy for returns from F1
given that it is assigned to "fptr" is:

• F2 / FA / F1 and FA / F1 and F2 and FA / F2 and
FA

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 37

Analysis Quiz
• #4 – For the code below
F1() { return; }

F2() { F1(); }

FA(fptr) { fptr(); }

• The most accurate CFI policy for returns from F1
given that it is assigned to "fptr" is:

• F2 / FA / F1 and FA / F1 and F2 and FA / F2 and
FA

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 38

Analysis Quiz
• #5 – What is the best way to enable fuzz testing

to find inputs to take the "true" path of a
conditional "(x == 0xffff2345)"?

‣ Unsound Static Analysis

‣ Sound Static Analysis

‣ Generational Fuzzing

‣ Symbolic Execution

‣ Mutational Fuzzing

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 39

Analysis Quiz
• #5 – What is the best way to enable fuzz testing

to find inputs to take the "true" path of a
conditional "(x == 0xffff2345)"?

‣ Unsound Static Analysis

‣ Sound Static Analysis

‣ Generational Fuzzing

‣ Symbolic Execution

‣ Mutational Fuzzing

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 40

Heap Memory Layout
• The Heap Memory Layout often includes metadata

‣ Depends on the heap allocator

‣ Often placed between objects to store information
needed to manage allocation state – e.g., sizes and
status

Heap
Low

Heap
High

Obj
A

Obj
C

Obj
D

Metadata

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Helping Fuzzing

36

[� �LQW�LQSXW���
LI�[�!����

LI�[A�� �����������
SULQW��<RX�ZLQ��

HOVH�
SULQW��<RX�ORVH��

HOVH�
SULQW��<RX�ORVH��

 Ij°h�Nkvv�Qj�

Â�䋻�±9]k�Y]hI�±

ÆÊÄ�䋻�±9]k�Y]hI�±

ÂÉÄ�䋻�±9]k�Y]hI�±

Å�䋻�±9]k�Y]hI�±

ÅÊÉ�䋻�±9]k�Y]hI�±

ÅÃ�䋻�±9]k�Y]hI�±

Ä�䋻�±9]k�Y]hI�±

�

«««�

ÆÈ�䋻�±9]k�Y]hI�±

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Process Address Space

• Text: static code

• Data: also called heap

‣ static variables

‣ dynamically allocated data
(malloc, new)

• Stack: program
execution stacks

Text

Data

Stack

lower
memory
address

higher
memory
address

CSE543 - Introduction to Computer and Network Security Page

Heap Overflows

• http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf

�X

• Heap allocators maintain a doubly-linked list of allocated
and free chunks

• malloc() and free() modify this list

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Fuzzing vs. Symbolic Exec

40

�kvvQ[O�ph��/sZD]YQE��rIEkjQ][

�kvvQ[O�7Q[h /sZD]YQE��rIEkjQ][�7Q[h

[� �LQSXW��

GHI�UHFXUVH�[��GHSWK��
��LI�GHSWK� �����
����UHWXUQ��
��HOVH�^
����U� ���
����LI�[>GHSWK@� �Ȋ%ȋ�
������U� ��
����UHWXUQ�U���UHFXUVH�[
>GHSWK@��GHSWK�

LI�UHFXUVH�[����� ���
��SULQW�Ȋ<RX�ZLQ�ȋ

[� �LQW�LQSXW���
LI�[�! ����

LI�[A�� �����������
SULQW��<RX�ZLQ��

HOVH�
SULQW��<RX�ORVH��

HOVH�
SULQW��<RX�ORVH��

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 42

Analysis Quiz
• #7 – What are the path constraints for the

following code to “you win”?

if (x < 10) {
if (x > 0)

return "you lose";
else

return "you win”
}
else

return "you lose”

• 10 > x > 0

• x > 0

• x < 10

• x >= 10

• x < 0

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 43

Analysis Quiz
• #7 – What are the path constraints for the

following code to “you win”?

if (x < 10) {
if (x > 0)

return "you lose";
else

return "you win”
}
else

return "you lose”

• 10 > x > 0

• x > 0

• x < 10

• x >= 10

• x < 0

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 44

Analysis Quiz
• #8 - Suppose your program has 2 systems calls,

consisting of (1) open a file and (2) read its data. If
an adversary controls both the file contents and
the directory in which the file is stored, both of
these system calls are part of the program's attack
surface.

• True/False

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 45

Analysis Quiz
• #8 - Suppose your program has 2 systems calls,

consisting of (1) open a file and (2) read its data. If
an adversary controls both the file contents and
the directory in which the file is stored, both of
these system calls are part of the program's attack
surface.

• True/False

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Filesystem Attacks

• What is the threat that enables link traversal
and file squatting attacks?

‣ Common to both

• In both cases, the adversary has write
permission to a directory that a victim uses in
name resolution

‣ Could be any directory used in resolution, not just
the last one

‣ Enables the adversary to plant links and/or files

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Attack Surface
• Insight: Only a small fraction system calls expect to

use adversary-controlled input

‣ Any new attack surface is often the source of
vulnerabilities

47

Apache httpd
httpd_t

mmap()open()
read() accept()

???

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Attack Surface
• Insight: Only a small fraction system calls expect to

use adversary-controlled input

‣ Attack surface set of program entry points (system call
instances in your program) accessible to an adversary

‣ Know this definition!

48

Apache httpd
httpd_t

mmap()open()
read() accept()

???

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 49

From Midterm Review
• At least

‣ Confused Deputy

‣ Stack and Heap Exploits

‣ Safe String API use

‣ Memory error types and associated attacks

• No ROP gadgets or MITRE ATT&CK

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 50

Take Away
• Review for final from the quiz questions and their

answers

• Scope of exam includes these questions

‣ And a little more

• Review midterm too

‣ Consider combination between memory safety and
defenses/analyses

• E.g., Spatial safety and static analysis

• Think about variants of these questions to give yourself a
broader understanding

• Good luck!

