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Building Exploits
• You have some idea about various kinds of 

exploits that are possible

• Today, we will discuss methods to build exploits 
for some simple programs

• Techniques you will be expected to adapt for 
Project 2
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Classes of Memory Errors
• Most of the exploits we have examined are related 

to flaws that cause memory errors

• Good news is that all these memory errors can be 
classified into three classes

‣ Spatial errors (space)

‣ Temporal errors (time)

‣ Type errors (format)

• This will advise how we produce exploits

‣ As well as how we prevent such flaws
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Finding Targets
• Another aspect of preparing an exploit is finding 

out what to target 

• What do we want to achieve in an attack?
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Finding Targets
• Another aspect of preparing an exploit is finding 

out what to target 

• What do we want to achieve in an attack?

• In general

‣ Confidentiality – something we want to learn

‣ Integrity – something we want to modify

‣ Availability – something we want to prevent from 
happening

• These come in a variety of flavors
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Hijack Control Flow
• Let’s start by hijacking the control flow of a 

process by exploiting a spatial error

‣ E.g., Buffer Overflow

• What do we really need to accomplish that feat?

‣ Flaw

‣ Target

‣ Construct payload – We haven’t done this yet

• In some cases, we may need to prepare the 
conditions to perform the exploit – later 
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Hijack Control Flow
• Let’s start by hijacking the control flow of a 

process by exploiting a spatial error

‣ E.g., Buffer Overflow

• What’s the flaw?
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Hijack Control Flow
• Let’s start by hijacking the control flow of a 

process by exploiting a spatial error

‣ E.g., Buffer Overflow

• How do we know there is an error?  We test  

• Issue is unsafe function – sscanf using command 
input
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Hijack Control Flow
• Let’s start by hijacking the control flow of a 

process by exploiting a spatial error

‣ E.g., Buffer Overflow

• What’s the target - for hijacking control flow?
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Hijack Control Flow
• Find where the return address is on the stack 

relative to the ‘buffer’

‣ Where is the return address?

• Find what the value of the return address should be 

• Run the program to run ”function” in the debugger

• And then locate the return address on the stack using the 
debugger
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Hijack Control Flow
• What should the value of the return address be?

‣ What should the return address reference?

• Function ”main” calls function “function” and returns
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Hijack Control Flow
• What should the value of the return address be?

‣ What should the return address reference?

• Function ”main” calls function “function” and returns

• The return address should reference the 
instruction that is run immediately after ”function” 
returns

‣ Instruction after the associated “call” in the caller 

• “main” in our case
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Hijack Control Flow
• Find where the 

return address is 
on the stack 
relative to the 
‘buffer’

‣ What is address 
of the instruction 
after the call to 
“function”?

• “objdump –dl”

• 0x126e
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Hijack Control Flow
• Find where the return address is on the stack 

relative to the ‘buffer’

‣ What is the address of “main” is the running code?

• 0x5655623c (using debugger)

‣ That is a long way from the location of the return 
address 

• What’s going on?
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Hijack Control Flow
• Find where the return address is on the stack 

relative to the ‘buffer’

‣ The address of “main” is offset depending on where 
the code is loaded in memory

‣ From that offset we can compute the return address
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Hijack Control Flow
• Find where the return address is on the stack 

relative to the ‘buffer’

‣ What is the address of main is the running code?

‣ From that we can compute the return address

‣ What is the return address?

• Address of main (0x5655623c) – address of main in objdump
(0x123c) + address of return target in objdump (0x126e)

• Equals?
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Hijack Control Flow
• Find the return address on the stack

‣ And compute the difference from the “buffer” start 

• Can also display using ”x/32x $esp” – from stack pointer

‣ Where is 0x5655626e?

• Account for endianness (little endian)

• And account for misalignment – 10-byte buffer

‣ 10 bytes + 12 bytes = 22bytes
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Hijack Control Flow
• Create the payload to jump to printf and print 

something under your control

‣ Where is printf?  Use printf@plt from “objdump –dl”

‣ How to find a string in the binary to print?

• Command 'strings’ – see the man page

‣ strings –t x stack | less
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Hijack Control Flow
• Let’s create a payload to hijack control by 

overwriting the return address 

‣ To print a string from the binary

• To create the payload 

‣ Insert filler to reach the return address

‣ Add the new return address (printf@plt) at 0x10a0

• Note: changed the from the prior figure where printf@plt at 
0x1080

‣ And the reference to a string at 0x342 
“__libc_start_main” 
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Hijack Control Flow
• Create the payload 

‣ Actually, code is loaded at an offset

• So, need to account for the offset in the payload

‣ Add the new return address (printf@plt) at offset 
0x1080 à 0x56555000 + 0x10a0 = 0x565560a0

• Little endian \xa0\x60\x55\x56

‣ And the reference to the format string at offset 0x342 
à 0x56555000 + 0x342 = 0x56555342

• Little endian \x42\x53\x55\x56 or “BSUV” in ascii
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Hijack Control Flow
• Let’s create a payload to hijack control by 

overwriting the return address 

‣ To print a string from the binary

• Use the shell command “printf” to make payloads

‣ Ideally : printf ‘<filler_bytes><encoded_address_plt> 
<encoded_address_arg>’ > payload_file

• 22 filler bytes (10 for buffer and 12 to return address)

• printf@plt (little endian) - \xa0\x60\x55\x56

• Reference to format string - \x42\x53\x55\x56
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Hijack Control Flow
• Run the exploit in gdb 

• Replaces the return address with printf@plt
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Hijack Control Flow
• Run the exploit in gdb 

• Calls printf@plt as expected

‣ But creates a segmentation fault L - need to debug
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Hijack Control Flow
• Let’s step more slowly – by instruction (stepi)

‣ From the end of “function” at “return 0;   }”

• Crash occurs at instruction 0x565560a4 in 
printf@plt before call to printf

‣ Illegal memory address for %ebx

• Why did I look there?  
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Hijack Control Flow
• Let’s step more slowly – by instruction (stepi)

‣ From the end of “function” at “return 0;   }”

‣ References register %ebx – weird value – 0x69667265

• Bytes below 0x80 are often ascii – “ifre” – what is that?
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Hijack Control Flow
• Good news is that this scenario is about the worst 

case

‣ Filler overwrote a value we need 

• Solution: rewrite what’s on the stack already

‣ Additional problem (not shown): argument not in the 
right place 

• Solution: move by four bytes until it is in the right place

‣ Then, after these fixes it works!  Hooray!

• You will attack the heap, which is easier typically

‣ As we will see
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Hijack Control Flow
• Need to restore the bytes on the stack - 0x56558fcc

‣ So, make that the filler

‣ Can’t arbitrarily overwrite the bytes between sometimes

• Be on the lookout for that
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Hijack Control Flow
• Need to move the string address - 0x5655342

‣ By four bytes – from old spot

‣ Should not be an issue for the heap
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Hijack Control Flow
• Run the exploit in gdb

• Prints the string – Hooray!

‣ All done - Turn it in
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GDB PEDA
• GDB Python Exploit Development Assistance

‣ https://github.com/longld/peda

• More direct user interface for tracking exploit 
execution and related info

‣ I suspect you will prefer this over the “old school” 
GDB-only usage – at least for fixing exploits

‣ Although more directed at stack exploits than the 
heap

• Let’s look at the failed payload and debugging that

‣ This time with GDB PEDA

https://github.com/longld/peda
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Debugging w/ GDB PEDA
• Basic User Interface

‣ At start

• Shows

‣ Registers

‣ Disassembled code

‣ Stack

‣ GDB info

• Highlights type of data: 
code, data, or value
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Debugging w/ GDB PEDA
• Basic User Interface

‣ At start

• Shows

‣ EAX - input

‣ EIP – current inst

‣ Stack – return addr

‣ Line number

• Let’s go tot “next”
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Debugging w/ GDB PEDA
• After buffer overflow

‣ After “sscanf”

• Shows

‣ EBX – same, but see 
next instruction

‣ EIP – current inst

‣ Stack – overflow 

‣ Stack – new return 
addr

• Let’s “stepi”
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Debugging w/ GDB PEDA
• After buffer overflow

‣ After “ret”

• Shows

‣ EBX – overwritten by 
filler bytes

‣ EIP – at printf@plt

‣ Stack – references 
string address 

• Let’s “stepi”
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Debugging w/ GDB PEDA
• After buffer overflow

‣ After run “a4”

• Shows

‣ EBX is still filler bytes

‣ Instruction uses ebx for 
an address

‣ Seg Fault

• We can see cause of  
overwriting the stack 
value used to load ebx
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Attack Summary
• Attack Steps 

‣ Find the unsafe function (flaw) and data impacted by 
the function

‣ Relate data impacted and target

• Data is on the stack

• Return address can be the target

‣ Craft payload to modify target 

• Avoid tampering unnecessary data – may cause side effect

• Attack works in debugger

‣ May not always work from the command line (ASLR)
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Heap Attacks
• Heap attacks are somewhat easier for us

‣ Unsafe function (flaw) used on heap data object

• Unsafe functions?

‣ Target may be in the same object

• Project 1 heap object?

• What could be a target?

‣ Payload is simpler

• Less stuff in the object to mess up than the stack often

• Let’s see a simplified example
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Heap Attacks
• Program using heap objects of type “test”
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Heap Attacks
• Can you see the unsafe function in this case?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 41

Heap Attacks
• Can you see the unsafe function in this case?
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Heap Attacks
• What is the target?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 43

Heap Attacks
• Function pointer – why?
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Heap Attacks
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Buffer Overread/Disclosure
• Disclosure attacks use flaws to read memory 

outside the accessed memory region

• Two typical flaws

‣ Adversary controls the length used to read

‣ Adversary controls the input being read

• How are these exploited?
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Buffer Overread/Disclosure
• Adversary controls the length used to read

‣ strncpy( char *dest, char *source, size_t length)

• Suppose data copied into “dest” will be sent back 
to the adversary 

‣ How can an adversary with access to specify the value 
of “length” …

‣ Read unauthorized data outside of the memory region 
of ”source”?
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Buffer Overread/Disclosure
• Adversary controls the length used to read

‣ strncpy( char *dest, char *source, size_t length)

• Suppose data copied into “dest” will be sent back 
to the adversary 

‣ How can an adversary with access to specify the value 
of “length” …?

‣ Read unauthorized data outside of the memory region 
of ”source”, if not null terminated?

• Ans: Specify length beyond the end of memory 
region of source – e.g., Heartbleed
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Buffer Overread/Disclosure
• Adversary controls the input (source) being read

‣ strncpy( char *dest, char *source, size_t length)

• Suppose data copied into “dest” will be sent back 
to the adversary 

‣ How can an adversary with access to specify the value 
of “source” …

‣ Read unauthorized data outside of the memory region 
of ”source”?
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Buffer Overread/Disclosure
• Adversary controls the input (source) being read

‣ strncpy( char *dest, char *source, size_t length)

• Suppose data copied into “dest” will be sent back 
to the adversary 

‣ How can an adversary with access to specify the value 
of “source” …

‣ Read unauthorized data outside of the memory region 
of ”source”?

• Ans: Perhaps the adversary can create a source 
value that is not a legal string (e.g., no null-
terminator)
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Buffer Overread/Disclosure
• Adversary controls the input (source) being read

‣ strncpy( char *dest, char *source, size_t length)

• Suppose data copied into “dest” will be sent back 
to the adversary 

‣ How can an adversary with access to specify the value 
of “source” …

‣ Read unauthorized data outside of the memory region 
of ”source”?

• What string library calls may fill the source buffer 
with data without a null-terminator?  Most of them
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Take Away
• Today, we examined the basics of building an 

exploit

‣ Experience helps you gain confidence

‣ Start Project 2

‣ Bring us questions (or post on Piazza)

• Demonstrated the steps to construct a stack 
buffer overflow exploit

‣ And describe heap overflows

‣ And disclosure attacks


