
Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

CMPSC 447
Exploit Methods

Part One

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 2

Building Exploits
• You have some idea about various kinds of

exploits that are possible

• Today, we will discuss methods to build exploits
for some simple programs

• Techniques you will be expected to adapt for
Project 2

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 3

Classes of Memory Errors
• Most of the exploits we have examined are related

to flaws that cause memory errors

• Good news is that all these memory errors can be
classified into three classes

‣ Spatial errors (space)

‣ Temporal errors (time)

‣ Type errors (format)

• This will advise how we produce exploits

‣ As well as how we prevent such flaws

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 4

Finding Targets
• Another aspect of preparing an exploit is finding

out what to target

• What do we want to achieve in an attack?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 5

Finding Targets
• Another aspect of preparing an exploit is finding

out what to target

• What do we want to achieve in an attack?

• In general

‣ Confidentiality – something we want to learn

‣ Integrity – something we want to modify

‣ Availability – something we want to prevent from
happening

• These come in a variety of flavors

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 6

Hijack Control Flow
• Let’s start by hijacking the control flow of a

process by exploiting a spatial error

‣ E.g., Buffer Overflow

• What do we really need to accomplish that feat?

‣ Flaw

‣ Target

‣ Construct payload – We haven’t done this yet

• In some cases, we may need to prepare the
conditions to perform the exploit – later

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 7

Hijack Control Flow
• Let’s start by hijacking the control flow of a

process by exploiting a spatial error

‣ E.g., Buffer Overflow

• What’s the flaw?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 8

Hijack Control Flow
• Let’s start by hijacking the control flow of a

process by exploiting a spatial error

‣ E.g., Buffer Overflow

• How do we know there is an error? We test

• Issue is unsafe function – sscanf using command
input

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 9

Hijack Control Flow
• Let’s start by hijacking the control flow of a

process by exploiting a spatial error

‣ E.g., Buffer Overflow

• What’s the target - for hijacking control flow?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 10

Hijack Control Flow
• Find where the return address is on the stack

relative to the ‘buffer’

‣ Where is the return address?

• Find what the value of the return address should be

• Run the program to run ”function” in the debugger

• And then locate the return address on the stack using the
debugger

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 11

Hijack Control Flow
• What should the value of the return address be?

‣ What should the return address reference?

• Function ”main” calls function “function” and returns

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 12

Hijack Control Flow
• What should the value of the return address be?

‣ What should the return address reference?

• Function ”main” calls function “function” and returns

• The return address should reference the
instruction that is run immediately after ”function”
returns

‣ Instruction after the associated “call” in the caller

• “main” in our case

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 13

Hijack Control Flow
• Find where the

return address is
on the stack
relative to the
‘buffer’

‣ What is address
of the instruction
after the call to
“function”?

• “objdump –dl”

• 0x126e

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 14

Hijack Control Flow
• Find where the return address is on the stack

relative to the ‘buffer’

‣ What is the address of “main” is the running code?

• 0x5655623c (using debugger)

‣ That is a long way from the location of the return
address

• What’s going on?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 15

Hijack Control Flow
• Find where the return address is on the stack

relative to the ‘buffer’

‣ The address of “main” is offset depending on where
the code is loaded in memory

‣ From that offset we can compute the return address

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 16

Hijack Control Flow
• Find where the return address is on the stack

relative to the ‘buffer’

‣ What is the address of main is the running code?

‣ From that we can compute the return address

‣ What is the return address?

• Address of main (0x5655623c) – address of main in objdump
(0x123c) + address of return target in objdump (0x126e)

• Equals?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 17

Hijack Control Flow
• Find the return address on the stack

‣ And compute the difference from the “buffer” start

• Can also display using ”x/32x $esp” – from stack pointer

‣ Where is 0x5655626e?

• Account for endianness (little endian)

• And account for misalignment – 10-byte buffer

‣ 10 bytes + 12 bytes = 22bytes

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 18

Hijack Control Flow
• Create the payload to jump to printf and print

something under your control

‣ Where is printf? Use printf@plt from “objdump –dl”

‣ How to find a string in the binary to print?

• Command 'strings’ – see the man page

‣ strings –t x stack | less

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 19

Hijack Control Flow
• Let’s create a payload to hijack control by

overwriting the return address

‣ To print a string from the binary

• To create the payload

‣ Insert filler to reach the return address

‣ Add the new return address (printf@plt) at 0x10a0

• Note: changed the from the prior figure where printf@plt at
0x1080

‣ And the reference to a string at 0x342
“__libc_start_main”

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 20

Hijack Control Flow
• Create the payload

‣ Actually, code is loaded at an offset

• So, need to account for the offset in the payload

‣ Add the new return address (printf@plt) at offset
0x1080 à 0x56555000 + 0x10a0 = 0x565560a0

• Little endian \xa0\x60\x55\x56

‣ And the reference to the format string at offset 0x342
à 0x56555000 + 0x342 = 0x56555342

• Little endian \x42\x53\x55\x56 or “BSUV” in ascii

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 21

Hijack Control Flow
• Let’s create a payload to hijack control by

overwriting the return address

‣ To print a string from the binary

• Use the shell command “printf” to make payloads

‣ Ideally : printf ‘<filler_bytes><encoded_address_plt>
<encoded_address_arg>’ > payload_file

• 22 filler bytes (10 for buffer and 12 to return address)

• printf@plt (little endian) - \xa0\x60\x55\x56

• Reference to format string - \x42\x53\x55\x56

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 22

Hijack Control Flow
• Run the exploit in gdb

• Replaces the return address with printf@plt

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 24

Hijack Control Flow
• Run the exploit in gdb

• Calls printf@plt as expected

‣ But creates a segmentation fault L - need to debug

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 25

Hijack Control Flow
• Let’s step more slowly – by instruction (stepi)

‣ From the end of “function” at “return 0; }”

• Crash occurs at instruction 0x565560a4 in
printf@plt before call to printf

‣ Illegal memory address for %ebx

• Why did I look there?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 26

Hijack Control Flow
• Let’s step more slowly – by instruction (stepi)

‣ From the end of “function” at “return 0; }”

‣ References register %ebx – weird value – 0x69667265

• Bytes below 0x80 are often ascii – “ifre” – what is that?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 27

Hijack Control Flow
• Good news is that this scenario is about the worst

case

‣ Filler overwrote a value we need

• Solution: rewrite what’s on the stack already

‣ Additional problem (not shown): argument not in the
right place

• Solution: move by four bytes until it is in the right place

‣ Then, after these fixes it works! Hooray!

• You will attack the heap, which is easier typically

‣ As we will see

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 28

Hijack Control Flow
• Need to restore the bytes on the stack - 0x56558fcc

‣ So, make that the filler

‣ Can’t arbitrarily overwrite the bytes between sometimes

• Be on the lookout for that

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 29

Hijack Control Flow
• Need to move the string address - 0x5655342

‣ By four bytes – from old spot

‣ Should not be an issue for the heap

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 30

Hijack Control Flow
• Run the exploit in gdb

• Prints the string – Hooray!

‣ All done - Turn it in

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 31

GDB PEDA
• GDB Python Exploit Development Assistance

‣ https://github.com/longld/peda

• More direct user interface for tracking exploit
execution and related info

‣ I suspect you will prefer this over the “old school”
GDB-only usage – at least for fixing exploits

‣ Although more directed at stack exploits than the
heap

• Let’s look at the failed payload and debugging that

‣ This time with GDB PEDA

https://github.com/longld/peda

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 32

Debugging w/ GDB PEDA
• Basic User Interface

‣ At start

• Shows

‣ Registers

‣ Disassembled code

‣ Stack

‣ GDB info

• Highlights type of data:
code, data, or value

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 33

Debugging w/ GDB PEDA
• Basic User Interface

‣ At start

• Shows

‣ EAX - input

‣ EIP – current inst

‣ Stack – return addr

‣ Line number

• Let’s go tot “next”

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 34

Debugging w/ GDB PEDA
• After buffer overflow

‣ After “sscanf”

• Shows

‣ EBX – same, but see
next instruction

‣ EIP – current inst

‣ Stack – overflow

‣ Stack – new return
addr

• Let’s “stepi”

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 35

Debugging w/ GDB PEDA
• After buffer overflow

‣ After “ret”

• Shows

‣ EBX – overwritten by
filler bytes

‣ EIP – at printf@plt

‣ Stack – references
string address

• Let’s “stepi”

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 36

Debugging w/ GDB PEDA
• After buffer overflow

‣ After run “a4”

• Shows

‣ EBX is still filler bytes

‣ Instruction uses ebx for
an address

‣ Seg Fault

• We can see cause of
overwriting the stack
value used to load ebx

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 37

Attack Summary
• Attack Steps

‣ Find the unsafe function (flaw) and data impacted by
the function

‣ Relate data impacted and target

• Data is on the stack

• Return address can be the target

‣ Craft payload to modify target

• Avoid tampering unnecessary data – may cause side effect

• Attack works in debugger

‣ May not always work from the command line (ASLR)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 38

Heap Attacks
• Heap attacks are somewhat easier for us

‣ Unsafe function (flaw) used on heap data object

• Unsafe functions?

‣ Target may be in the same object

• Project 1 heap object?

• What could be a target?

‣ Payload is simpler

• Less stuff in the object to mess up than the stack often

• Let’s see a simplified example

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 39

Heap Attacks
• Program using heap objects of type “test”

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 40

Heap Attacks
• Can you see the unsafe function in this case?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 41

Heap Attacks
• Can you see the unsafe function in this case?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 42

Heap Attacks
• What is the target?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 43

Heap Attacks
• Function pointer – why?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 44

Heap Attacks

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 45

Buffer Overread/Disclosure
• Disclosure attacks use flaws to read memory

outside the accessed memory region

• Two typical flaws

‣ Adversary controls the length used to read

‣ Adversary controls the input being read

• How are these exploited?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 46

Buffer Overread/Disclosure
• Adversary controls the length used to read

‣ strncpy(char *dest, char *source, size_t length)

• Suppose data copied into “dest” will be sent back
to the adversary

‣ How can an adversary with access to specify the value
of “length” …

‣ Read unauthorized data outside of the memory region
of ”source”?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 47

Buffer Overread/Disclosure
• Adversary controls the length used to read

‣ strncpy(char *dest, char *source, size_t length)

• Suppose data copied into “dest” will be sent back
to the adversary

‣ How can an adversary with access to specify the value
of “length” …?

‣ Read unauthorized data outside of the memory region
of ”source”, if not null terminated?

• Ans: Specify length beyond the end of memory
region of source – e.g., Heartbleed

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 48

Buffer Overread/Disclosure
• Adversary controls the input (source) being read

‣ strncpy(char *dest, char *source, size_t length)

• Suppose data copied into “dest” will be sent back
to the adversary

‣ How can an adversary with access to specify the value
of “source” …

‣ Read unauthorized data outside of the memory region
of ”source”?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 49

Buffer Overread/Disclosure
• Adversary controls the input (source) being read

‣ strncpy(char *dest, char *source, size_t length)

• Suppose data copied into “dest” will be sent back
to the adversary

‣ How can an adversary with access to specify the value
of “source” …

‣ Read unauthorized data outside of the memory region
of ”source”?

• Ans: Perhaps the adversary can create a source
value that is not a legal string (e.g., no null-
terminator)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 50

Buffer Overread/Disclosure
• Adversary controls the input (source) being read

‣ strncpy(char *dest, char *source, size_t length)

• Suppose data copied into “dest” will be sent back
to the adversary

‣ How can an adversary with access to specify the value
of “source” …

‣ Read unauthorized data outside of the memory region
of ”source”?

• What string library calls may fill the source buffer
with data without a null-terminator? Most of them

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 51

Take Away
• Today, we examined the basics of building an

exploit

‣ Experience helps you gain confidence

‣ Start Project 2

‣ Bring us questions (or post on Piazza)

• Demonstrated the steps to construct a stack
buffer overflow exploit

‣ And describe heap overflows

‣ And disclosure attacks

