
Systems and Internet Infrastructure Security Laboratory (SIIS) Page 1

CMPSC 447
Confused Deputy

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Android External Storage
• Android has its apps use “external storage” (used to be

an SD-card) to store its code and configurations

‣ A shared filesystem space for use by apps

• Problem: Multiple apps can write files in the same
directories

‣ Why could that be a problem?

2

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Android External Storage
• Android has its apps use “external storage” (used to be

an SD-card) to store its code and configurations

‣ A shared filesystem space for use by apps

• Problem: Multiple apps can write files in the same
directories

‣ Why could that be a problem?

• A malicious app that knows the name of a file that will be
created by another app can create that file in advance

‣ E.g., for library files

‣ E.g., for symbolic links

‣ Why could these cause an issue?

3

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

File Open
• Problem: Processes need resources from system

‣ Just a simple open(filepath, …) right?

‣ But, adversaries can cause victims to access resources of
their choosing

‣ And if your program has some valuable privileges, an
adversary may want to trick you into using them to
implement a malicious operation

4

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A Webserver’s Story …
• Consider a university department webserver …

GET /~student1/index.html HTTP/1.1

Apache
Webserver

student2/p
ublic_html

student1/p
ublic_html

faculty1/p
ublic_html

/etc/
passwd

Link

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Attack Video

Systems and Internet Infrastructure Security Laboratory (SIIS) PageSystems and Internet Infrastructure Security Laboratory (SIIS) Page

What Just Happened?

Webserver

Password
File

Web Pages

Authenticate

Passwd
File

Web PagesAuthenticate

OK Not
OK

Passwd
File

Web PagesServe
Webpage

OK
Not
OK

• Program acts as a confused deputy

‣ when expecting

‣ when expecting

Serve
Webpage

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Talk Outline
• Problem: Processes need resources from system

8CSE543 - Introduction to Computer and Network Security Page

Integrity (and Secrecy) Threat
• Confused Deputy
‣ Process is tricked into performing an operation on

an adversary’s behalf that the adversary could not
perform on their own
• Write to (read from) a privileged file

�X

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Confused Deputy Attacks

9

Untrusted Search
Path

CWE-426

Untrusted Library
Load

CWE-426

File / IPC
squatting
CWE-283

Directory Traversal
CWE-22

PHP File Inclusion
CWE-98

Link Following
CWE-59

TOCTTOU Races
CWE-362

Signal Races
CWE-479

Confused
Deputy
Attacks

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Lesson

• Opening a file is fraught with danger

‣ We must be careful when using an input that may
be adversary controlled when opening a file

• Or anything else

10

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Name Resolution
• Processes often use names to obtain access to

system resources

• A nameserver (e.g.,OS) performs name resolution using
namespace bindings (e.g., directory) to convert a name
(e.g., filename) into a system resource (e.g., file)

‣ Filesystem, System V IPC, …

13

/ var mail rootP
open(“/var/
mail/root”)

Name
(filename) Bindings (directories)

Resource
(file)

Namespace (filesystem)

/ var mail root

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

mailvar

Link Traversal Attack

• Adversary controls links to direct a victim to a
resource not normally accessible to the adversary

• Victim expects adversary-accessible resource, gets a
protected resource instead

14

open(“/var/
mail/root”) / rootvar mailvar mail/

etc passwdpasswd

rootrootVroot

Amail

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

File Squatting Attack

• Adversary controls final resource enabling the
adversary to control input that the victim may
depend on

• Victim expects protected resource, gets an
adversary-controlled resource instead

15

mailvaropen(“/var/
mail/root”) / rootvar mailvar mail/ root

owner rootowner mail

root

Amail

Vroot

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Common Threat
• What is the threat that enables link traversal

and file squatting attacks?

‣ Common to both

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Common Threat
• What is the threat that enables link traversal

and file squatting attacks?

‣ Common to both

• In both cases, the adversary has write
permission to a directory that a victim uses in
name resolution

‣ Could be any directory used in resolution, not just
the last one

‣ Enables the adversary to plant links and/or files

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Threat Example
• An adversary may be authorized to write to a

directory you use in resolving a file path

• E.g., groups and others may have write permission
to a directory

‣ Consider the directory /tmp

‣ ls –la /tmp

• drwxrwxrwx --- root root --- .

• Means?

18

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Threat Example
• Suppose your program asks to open the file

path “/tmp/just_a_normal_file_here”

‣ What file will you open?

19

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

File Squatting
• Suppose your program wants to create a

new file at “/tmp/just_a_normal_file_here”

‣ What file will you open?

• An adversary could have created this file already (file
squat) and given you permissions, so that you can use it

‣ Can be difficult to verify the origins of a file

‣ Causes your program to use a file under adversary
control when you expect your own file

20

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Link Traversal
• Suppose your program is asked to open the file

path “/tmp/just_a_normal_file_here”

‣ What file will you open?

• An adversary could have created this as a symbolic link to any
file in the system

• And it is difficult/expensive to verify that this is not a symbolic
link

‣ lstat – provides file system information (like “stat”) for the file
referenced by a link if the path name refers to a link

‣ RACES: But, adversary could place a file at the time of the
lstat check and replace with a link before the open

‣ Causes your program to access an adversary-chosen file

21

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

TOCTTOU Races
• Time-of-check-to-time-of-use Race Attacks

• Check System Calls

‣ Does the requesting party have access to the file? (stat,
access)

‣ Is the file accessed via a symbolic link? (lstat)

• Use System Calls

‣ Convert the file name to a file descriptor (open)

‣ Modify the file metadata (chown, chmod)

• Can an adversary modify the filesystem in between?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Talk Outline
• Problem: Processes need resources from system

‣ Adversaries can redirect victims to resources chosen by adversary

‣ Adversaries may control names, namespaces, and resources

• Goal: Protect program during resource retrieval

‣ Enforce rules to prevent retrieval of obviously exploitable resources

‣ Deduce adversary control automatically to guide enforcement

• Status:

‣ Enforce: Process Firewall kernel mechanism [EuroSys 2013]

‣ Deduce: Enforce relative to program control of “name flows” [submitted]

‣ Background work: [ASIACCS 2012], [USENIX Security 2012], [SACMAT 2014]

23Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Vulnerability Classes
• Our focus is on a group of vulnerabilities that

happen when programs access resources

• Programs require a variety of resources to function

‣ Regular files: store input and output

‣ Interprocess communication channels

‣ Signals: notifications from OS

• How hard can fetching resources securely be?

‣ Just a simple open(filename), right?

‣ Wrong!

3
Wednesday, April 23, 14

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• Adversary controls the name to direct victim to an
adversary inaccessible (high integrity) resource

GET
1.html

Directory Traversal

9

V: Apache
Webserver

A

passwd

1.html

Wednesday, April 23, 14

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Talk Outline
• Problem: Processes need resources from system

‣ Adversaries can redirect victims to resources chosen by adversary

‣ Adversaries may control names, namespaces, and resources

• Goal: Protect program during resource retrieval

‣ Enforce rules to prevent retrieval of obviously exploitable resources

‣ Deduce adversary control automatically to guide enforcement

• Status:

‣ Enforce: Process Firewall kernel mechanism [EuroSys 2013]

‣ Deduce: Enforce relative to program control of “name flows” [submitted]

‣ Background work: [ASIACCS 2012], [USENIX Security 2012], [SACMAT 2014]

24Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Vulnerability Classes
• Our focus is on a group of vulnerabilities that

happen when programs access resources

• Programs require a variety of resources to function

‣ Regular files: store input and output

‣ Interprocess communication channels

‣ Signals: notifications from OS

• How hard can fetching resources securely be?

‣ Just a simple open(filename), right?

‣ Wrong!

3
Wednesday, April 23, 14

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

• Adversary controls the name to direct victim to an
adversary inaccessible (high integrity) resource

• Victim expects adversary accessible (low integrity)
resource

Directory Traversal

9

V: Apache
Webserver

A

passwd

1.html

GET
../../

etc/passwd

Malicious
Name

Wednesday, April 23, 14

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Common Threat
• What is the threat that enables directory

traversal attacks?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Common Threat
• What is the threat that enables directory

traversal attacks?

• In this case, the victim uses adversary input to
construct file names

‣ Any parts of file names

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

File Name Input
• Suppose your program uses network input to

construct a file name

‣ What can go wrong?

27

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

File Name Input
• Suppose your program uses network input to

construct a file name

‣ What can go wrong?

• Suppose your program appends network
input to the path “/tmp/” to open the file
/tmp/<input>

‣ Safe?

28

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Common Threat
• What is the threat that enables directory

traversal attacks?

• Suppose your program appends input to the
path “/tmp/” to open the file /tmp/<input>

‣ Safe?

‣ No. An adversary could input: “../etc/shadow”

• What file will be opened?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Overall Lesson
• What is the takeaway lesson from all these

vulnerabilities?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Overall Lesson
• What is the takeaway lesson from all these

vulnerabilities?

‣ Any time you use adversary-controlled inputs in
your programs you must be careful to vet that input

• The same for using program input and filesystem
resources as input

‣ Does this correspond to any security principle you
learned in CMPSC 443?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Overall Lesson
• What is the takeaway lesson from all lthese

vulnerabilities?

‣ Any time you use adversary-controlled inputs in
processing you must be careful to vet that input

‣ Does this correspond to any security principle you
learned in CMPSC 443?

• How about Biba integrity?

• Low-water mark integrity?

• Clark-Wilson integrity?

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Current Defenses
• Are there defenses to prevent such attacks?

• For filesystem inputs (file squat and link traversal)

‣ Yes, but the defenses are not comprehensive

• For using inputs to construct filenames (directory
traversal)

‣ No, you are on your own

‣ Some research defenses have been proposed, but need
to know about the program

• May need programmers to do more in the future

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Open_No_Symlink Defense
• Check for symbolic link

(lstat)

• Check for lstat-open race

• Check for inode recycling

• Do checks for each path
component (safe_open)

‣ /, var, mail, …

• What if you want to use
symlinks – just safely?

34

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Problem - Inefficient
• Checking retrieved resources is expensive
‣ Single open() requires 4 * path length additional syscalls

‣ Programmers omit checks to improve performance

• Example: Apache documentation recommended switching off
resource access checks

35

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Defenses
• Variants of the “open” system call

‣ Flag “O_NOFOLLOW” – do not follow any symbolic
links (prevent link traversal)

• Does not help if you need to follow symbolic links

• May not be available on your system

‣ Flag “O_EXCL” and “O_CREAT” – do not open unless
the new file is created (prevent file squatting)

• Does not help if the file may or may not be created already

• These lack flexibility for protection in general

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

More Advanced Defenses
• The “openat” system call

‣ Can open the directory (dirfd) separately from opening the file
(path) to check the safety of part of the name resolution (for
dirfd) and prevent further use of links

‣ Supports O_NOFOLLOW

• int openat(int dirfd, const char *path, int oflag, ...);

‣ Helps if resolution of directory “dirfd” is unsafe, but is limited if
resolution of the “path” is unsafe

• Check “dirfd” with the “fstat” syscall – “stat” for descriptors

• The “openat2” system call

‣ More flags limiting “how” name resolution is done for “path”

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Attacks Easily Overlooked

• Manual checks can
easily overlook
vulnerabilities

• Misses file squat at
line 03!

45

01 /* filename = /var/mail/root */
02 /* First, check if file already exists */
03 fd = open (filename, flg);
04 if (fd == -1) {
05 /* Create the file */
06 fd = open(filename, O_CREAT|O_EXCL);
07 if (fd < 0) {
08 return errno;
09 }
10 }
11 /* We now have a file. Make sure
12 we did not open a symlink. */
13 struct stat fdbuf, filebuf;
14 if (fstat (fd, &fdbuf) == -1)
15 return errno;
16 if (lstat (filename, &filebuf) == -1)
17 return errno;
18 /* Now check if file and fd reference the same file,
19 file only has one link, file is plain file. */
20 if ((fdbuf.st_dev != filebuf.st_dev
21 || fdbuf.st_ino != filebuf.st_ino
22 || fdbuf.st_nlink != 1
23 || filebuf.st_nlink != 1
24 || (fdbuf.st_mode & S_IFMT) != S_IFREG)) {
25 error (_("%s must be a plain file
26 with one link"), filename);
27 close (fd);
28 return EINVAL;
29 }
30 /* If we get here, all checks passed.
31 Start using the file */
32 read(fd, ...)

Squat during
create (resource)

Symbolic link

Hard link,
race conditions

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Runtime Testing [STING]
• We actively change the namespace whenever an

adversary can write to a directory in resolution

‣ Fundamental problem: adversaries may be able to write
directories used in name resolution

• Use adversary model to identify program
adversaries and vulnerable directories

48

V
Detect

Adversary
Access

Detect
Exploit
Success

open(name, …)
fd to /etc/passwd

read(fd, …)
Using malicious fd

Vulnerable!

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

root

STING Launch Phase

49

Adversary
(group mail)

fd = open(“/var/mail/root”, O_APPEND)

/

var

root
(symbolic link)

etc

passwd

mail

Victim
(user root)

User-space

Kernel

4. Continue system call

delete(“/var/mail/root”);
symlink(“/etc/passwd”,

“/var/mail/root”)

1. Find bindings
2. Find adversary access

3. Launch attack
(modify namespace)

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

root

STING Detect Phase

50

write(fd)

/

var

root
(symbolic link)

passwd

etc

passwd

mail

Victim
(user root)

User-space

Kernel

1. Victim accepts resource
2. Record vulnerability
3. Rollback namespace
4. Restart system call

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

STING Detects TOCTTOU Races

• STING can deterministically create races, as it is
in the OS

54

AdversaryVictim

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Results - Vulnerabilities

55

Both old
and new
programs
Special

users to
root

Known
but

unfixed!

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Take Away
• Programs can be exploited when retrieving system

resources

‣ Because adversaries may share access to resources and/or
namespaces

‣ Called Confused Deputy Attacks – trick a program into
performing an operation of an adversary’s choosing

• Adversaries may control two kinds of inputs
‣ Filesystem configuration - where directories are shared

‣ Program inputs – where could be from an untrusted party

• Can improve security through careful use of syscall
APIs and through better runtime testing

62

