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Defenses =

e Prevent adversaries from being able to successfully
exploit vulnerabilities

»  What enables successful exploitation?
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PENNSTATE

Vulnerability Definition =

e A vulnerability is a flaw that is accessible to an
adversary who has the ability to exploit that flaw
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Vulnerability Defenses 2

e A vulnerability is a flaw that is accessible to an
adversary who has the ability to exploit that flaw

» So, what is required of an adequate defense to prevent
vulnerability exploitation?
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Vulnerability Defenses 2

e A vulnerability is a flaw that is accessible to an
adversary who has the ability to exploit that flaw

» So, what is required of an adequate defense to prevent
vulnerability exploitation?

e Prevent one or more of these preconditions

» Flaw — prevent memory error

» Access — do not allow adversary input to unsafe
operations

» Exploit — prevent exploit from enabling adversary to
achieve their goals

e Think about how each defense relates to these
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Preventing Buffer Overflows =

e How do you prevent buffer overflow attacks!?

e Block any of the necessary conditions

v

Check buffer bounds
»  Use a safe function to read input

» Prevent unauthorized modification of the return address without
detection

»  Prevent execution of stack memory

»  Make it impractical for the adversary to find the code she wants
to execute, such as “execve”

e Main focus of current defenses is to mitigate spatial errors
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Preventing Buffer Overflows =

e Block any of the necessary conditions for a vulnerability

»  Check buffer bounds (flaw)

»  Use a safe function to read input (flaw)

» Prevent unauthorized modification of the return address
without detection (exploit)

»  Prevent execution of stack memory (exploit)

»  Make it impractical for the adversary to find the code she wants
to execute, such as “execve” (access)

e We spoke about safe programming techniques to reduce
the number of flaws

» Defenses aim to prevent access or exploit options
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Buffer Overflow Attack o

¥
execve e Remember this exploit
6 flas T e The adversary’s goal is
(“/bin/sh™) to get execve to run to
generate a command
ret shell
| e To do this the adversary
) uses execve from libc —
. . | i.e., reuses code that is
stack frame already there
for main
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Stack Canary Defense S

e Place a “canary” value on
the stack to detect
attempted overwrites of

buffer the return address
EEEEEEE—— e Canary value is
canary randomized
th e And checked prior to
any return
2

e How does this prevent

stack frame overflows from

f : exploiting the return
Oor main address!?
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Stack Canary Defense e

y e How does this prevent
e overflows from
¢ exploiting the return
execve Z address?
(“/bin/sh”) / e Overflow exploits of the
b return address from
canary | buffer must over
ret / overwrite the canary
| h e But, the canary value is
2 ) unpredictable — and
d changes on each run
stack frame| ¢
f : ‘ e So, the check will detect
or main ‘ the canary value has

changed
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Stack Canary Defense 2
execve e e Limitations of the stack
(“/bin/sh”) , canary defense!
b
canarz i
ret /
| Y
2 |
stack frame| ¢
for main | -
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Stack Canary Limitations =
c e Limitations of the stack
execve . canary defense!?
(“/bin/sh”) , e Must not leak the canary
b value
canary i
ret ! e Butitis on the stack
| ; » Readable memory
2 ) e What’s an attack that
stack framel ° may leak the canary?
d
for main | .
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Buffer Overread/Disclosure S

e A buffer overread (disclosure) attack enables an
adversary to read memory outside of a region

» Benign task: Copy from “buffer X” to “buffer Y”
» Read beyond the memory region of “buffer X”
» To access other objects’ data

» And copy into “buffer Y”

o If “buffer X” is on the stack, could possibly read
other stack data, including the canary value

» Once the adversary has read the canary value, they can
produce overflow payloads that restore the canary
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Stack Canary Limitations =

execve

(‘“/bin/sh”)

canary
ret

|
2

stack frame
for main
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Only protects the return
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Stack Canary Limitations S

e Obvious limitation: only protects the return address

»  What about other local variables?

int authenticated = 0;

char packet[1000];

while (l!authenticated) {
PacketRead (packet);
if (Authenticate(packet))
authenticated = 1;
}
if (authenticated)

ProcessPacket (packet);

Page 17

Systems and Internet Infrastructure Security (SIIS) Laboratory




PENNSTAT

Stack Canary Limitations =

e Packet overflows overwrite the authenticated value

packet

authenticated

old ebp
CANARY
ret

stack frame
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Other Approaches S

e What is a more straightforward way of checking that
the return address hasn’t been tampered!?
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Other Approaches S

e What is a more straightforward way of checking that
the return address hasn’t been tampered!?

e Just check that the value hasn’t been tampered

e Store it somewhere else safe from tampering and check
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Shadow Stack PENN%TE

e Method for maintaining return targets for each
function call reliably

e On call

»  Push return address on the regular stack

» Also, push the return address on the shadow stack

e On return

» Validate the return address on the regular stack with the
return address on the shadow stack

e Why might this work? Normal program code cannot
modify the shadow stack memory directly
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Shadow Stack PENN%T

e Intel Control-Flow Enforcement Technology (CET)
» Has been announced

» Awvailable in | It generation Intel cores (Tiger Lake)

e Goal is to enforce shadow stack in hardware

» Throw an exception when a return does not correspond
to a call site

e Challenge: Exceptions

» There are cases where call-return does not match

» E.g., Tail calls, thread libraries (setjmp, longjmp)
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Preventing Buffer Overflows =

e Block any of the necessary conditions
»  Check buffer bounds (flaw)

»  Use a safe function to read input (flaw)

» Prevent unauthorized modification of the return address
without detection (exploit)

»  Prevent execution of stack or heap memory (exploit)

»  Make it impractical for the adversary to find the code she wants
to execute, such as “execve” (access)

e We spoke about safe programming techniques to reduce
the number of flaws

» Defenses aim to prevent access or exploit options
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Buffer Overflow Attack =

e Suppose there is a
buffer overflow flaw

execve
. e |nject code on stack
(“/bin/sh”) 1
e Set return address
ret to point to the stack

I
2 e How to hide the

location of the buffer
(payload) from the
adversary?

stack frame
for main
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Information Hiding =

e Prevent access by placing data/code at unpredictable
locations

»  Unpredictable == random

e Could randomize the location of all code and data, but
would be expensive

e What is a cheap way to randomize a lot of code or data?
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Group by Segment

e Move the code and data so that you
cannot predict where gadgets will be

»  What is the best way to make
unpredictable?

e Randomize code and data location for each
instruction and variable

»  What is the easiest way to make
unpredictable?

e Just move the base address of the segment

e Called Address Space Layout Randomization
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i

e Createa memory segment
» Heap
» Stack

» Code (Library)

e Compute (randomize) the base address

»  High order bits — fixed — segment needs to be placed in the
expected relative position

»  Some middle bits — random — this is where ASLR is applied

» Low order bits — align — must be at least page aligned

e Limits the “entropy” of the randomization

»  Number of possible locations - 2" where n is entropy in "bits”
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Buffer Overflow Attack =

e Suppose there is a
ouffer overflow flaw

execve
. e |nject code on stack
(“/bin/sh”) ’
e Set return address
ret to point to the stack

I
) e With ASLR on the

stack segment

stack frame

for main e Cannot predict the

payload’s address
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Limitations of ASLR e

e What is the risk to ASLR?
» Memory Disclosure
e Consider a buffer overread

» E.g., Heartbleed

e Instead of reading a key value

»  What would you read to attack ASLR?
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Disclosure Attacks on ASLR PENN%T

e Adversary harvests pointers stored on the data pages
of the application that are necessarily readable

Adversary
Data pages

Indirect » Function pointer 2 CTTTTTTTTTTTTTToy
disclosure ro-----f==== d
» Return address .
» Function pointer 1} -,
[0 Readable-writable : - -
| |
O Readable-executable Stack / Heap | e s i
| |
| |
| |
| |
| |
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Preventing Buffer Overflows =

e Block any of the necessary conditions for a vulnerability
»  Check buffer bounds (flaw)

»  Use a safe function to read input (flaw)

» Prevent unauthorized modification of the return address
without detection (exploit)

»  Prevent execution of stack or heap memory (exploit)

»  Make it impractical for the adversary to find the code she wants
to execute, such as “execve” (access)

e We spoke about safe programming techniques to reduce
the number of flaws

» Defenses aim to prevent access or exploit options
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DEP ... W xor X PN

e An approach to prevent code
injection on the stack is to make
the stack non-executable

e Technique is called DEP
(Windows) and W xor X (Linux)

e |dea: Each memory region is
either writable (like data) or

executable (like code), but not
both

e Prevents code injection on stack,
but not invoking functions directly
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How To Use DEP e

e Set the program memory regions to be either
writable or executable, but not both

»  Writable: ???
» Executable: ?2?

» Of course, some can be read-only and not executable
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How To Use DEP e

e Set the program memory regions to be either
writable or executable, but not both

»  Writable: Stack and heap and global data
» Executable: Code

» Of course, some can be read-only and not executable

e Bottom line is that we can remove the execute
permission from stack and heap memory pages

» And prevent writing of code pages

» To prevent all forms of code-injection attacks
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DEP Limitations -

e Big limitation: code injection is not necessary to
construct adversary-controlled exploit code

» Attacks that bypass DEP?
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Code-Reuse Attacks PENN%T

e How can we invoke execve without code injection?

» Use the code directly

e The difference is subtle, but significant

execve@plt o ”
ptr to “/bin/sh” /bin/sh
ret execve

“/bin” ptr to “‘/bin/sh”
“/Sh” O

stack frame stack frame
for main for main
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Disable DEP =

e How would we use code reuse to disable DEP?

e Goal is to allow execution of writable memory (i.e.,
change page permissions)

» There’s a system call for that
int mprotect(void *addr, size t len, int prot);
» Sets protection for region of memory starting at address

» Invoke this system call to allow execution on stack and
then start executing from the injected code
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Current State of Defenses S

e Limited
e Protect very little data directly

» Return addresses (canary or shadow stack)
e Only prevents a subset of exploits

» Code-reuse attacks still possible with DEP
e Prone to circumvention

» Disclosures can compromise canary and ASLR defenses

» Can disable DEP using mprotect

e But, these defenses have modest overhead
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Take Away S

e Today, we examined defenses that are available by
default on current systems

e These defenses aim to prevent vulnerabilities from
being exploited

» Even if the software has flaws

» By denying the other preconditions of a vulnerability

e (I) Access to the flaw and (2) Ability to exploit the flaw
e Key goals — low overhead and compatibility

» Attacks — code injection and return address hijack

» Limited scope of protection and may be circumvented
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