
Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

CMPSC 447
Current Defenses

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 3

Defenses
• Prevent adversaries from being able to successfully

exploit vulnerabilities

‣ What enables successful exploitation?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 4

Vulnerability Definition
• A vulnerability is a flaw that is accessible to an

adversary who has the ability to exploit that flaw

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 5

Vulnerability Defenses
• A vulnerability is a flaw that is accessible to an

adversary who has the ability to exploit that flaw

‣ So, what is required of an adequate defense to prevent
vulnerability exploitation?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 6

Vulnerability Defenses
• A vulnerability is a flaw that is accessible to an

adversary who has the ability to exploit that flaw

‣ So, what is required of an adequate defense to prevent
vulnerability exploitation?

• Prevent one or more of these preconditions

‣ Flaw – prevent memory error

‣ Access – do not allow adversary input to unsafe
operations

‣ Exploit – prevent exploit from enabling adversary to
achieve their goals

• Think about how each defense relates to these

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 7

Preventing Buffer Overflows
• How do you prevent buffer overflow attacks?

• Block any of the necessary conditions

‣ Check buffer bounds

‣ Use a safe function to read input

‣ Prevent unauthorized modification of the return address without
detection

‣ Prevent execution of stack memory

‣ Make it impractical for the adversary to find the code she wants
to execute, such as “execve”

• Main focus of current defenses is to mitigate spatial errors

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 8

Preventing Buffer Overflows
• Block any of the necessary conditions for a vulnerability

‣ Check buffer bounds (flaw)

‣ Use a safe function to read input (flaw)

‣ Prevent unauthorized modification of the return address
without detection (exploit)

‣ Prevent execution of stack memory (exploit)

‣ Make it impractical for the adversary to find the code she wants
to execute, such as “execve” (access)

• We spoke about safe programming techniques to reduce
the number of flaws

‣ Defenses aim to prevent access or exploit options

Systems and Internet Infrastructure Security (SIIS) Laboratory Page
9

Buffer Overflow Attack

stack frame
for main

2
1

ret

execve
(“/bin/sh”)

• Remember this exploit

• The adversary’s goal is
to get execve to run to
generate a command
shell

• To do this the adversary
uses execve from libc –
i.e., reuses code that is
already there

Systems and Internet Infrastructure Security (SIIS) Laboratory Page
10

Stack Canary Defense

stack frame
for main

2
1

• Place a “canary” value on
the stack to detect
attempted overwrites of
the return address

• Canary value is
randomized

• And checked prior to
any return

• How does this prevent
overflows from
exploiting the return
address?

ret
canary

buffer

Systems and Internet Infrastructure Security (SIIS) Laboratory Page
11

Stack Canary Defense

stack frame
for main

2
1

• How does this prevent
overflows from
exploiting the return
address?

• Overflow exploits of the
return address from
buffer must over
overwrite the canary

• But, the canary value is
unpredictable – and
changes on each run

• So, the check will detect
the canary value has
changed

ret
canary

execve
(“/bin/sh”)

e
x
e
c
v
e
“
/
b
i
n
/
s
h
”
a
d
d
r
e
s
s

Systems and Internet Infrastructure Security (SIIS) Laboratory Page
12

Stack Canary Defense

stack frame
for main

2
1

• Limitations of the stack
canary defense?

ret
canary

execve
(“/bin/sh”)

e
x
e
c
v
e
“
/
b
i
n
/
s
h
”
a
d
d
r
e
s
s

Systems and Internet Infrastructure Security (SIIS) Laboratory Page
13

Stack Canary Limitations

stack frame
for main

2
1

• Limitations of the stack
canary defense?

• Must not leak the canary
value

• But it is on the stack
‣ Readable memory

• What’s an attack that
may leak the canary?

ret
canary

execve
(“/bin/sh”)

e
x
e
c
v
e
“
/
b
i
n
/
s
h
”
a
d
d
r
e
s
s

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 14

Buffer Overread/Disclosure
• A buffer overread (disclosure) attack enables an

adversary to read memory outside of a region

‣ Benign task: Copy from “buffer X” to “buffer Y”

‣ Read beyond the memory region of “buffer X”

‣ To access other objects’ data

‣ And copy into “buffer Y”

• If “buffer X” is on the stack, could possibly read
other stack data, including the canary value

‣ Once the adversary has read the canary value, they can
produce overflow payloads that restore the canary

Systems and Internet Infrastructure Security (SIIS) Laboratory Page
15

Stack Canary Limitations

stack frame
for main

2
1

• Limitations of the stack
canary defense?

• Only protects the return
address

ret
canary

execve
(“/bin/sh”)

e
x
e
c
v
e
“
/
b
i
n
/
s
h
”
a
d
d
r
e
s
s

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 17

Stack Canary Limitations
• Obvious limitation: only protects the return address

‣ What about other local variables?

int authenticated = 0;

char packet[1000];

while (!authenticated) {

PacketRead(packet);

if (Authenticate(packet))

authenticated = 1;

}

if (authenticated)

ProcessPacket(packet);

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

• Packet overflows overwrite the authenticated value

Stack Canary Limitations

stack frame

CANARY
old ebp

authenticated

packet

ret

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 19

Other Approaches
• What is a more straightforward way of checking that

the return address hasn’t been tampered?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 20

Other Approaches
• What is a more straightforward way of checking that

the return address hasn’t been tampered?

• Just check that the value hasn’t been tampered

• Store it somewhere else safe from tampering and check

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 21

Shadow Stack
• Method for maintaining return targets for each

function call reliably

• On call

‣ Push return address on the regular stack

‣ Also, push the return address on the shadow stack

• On return

‣ Validate the return address on the regular stack with the
return address on the shadow stack

• Why might this work? Normal program code cannot
modify the shadow stack memory directly

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 22

Shadow Stack
• Intel Control-Flow Enforcement Technology (CET)

‣ Has been announced

‣ Available in 11th generation Intel cores (Tiger Lake)

• Goal is to enforce shadow stack in hardware

‣ Throw an exception when a return does not correspond
to a call site

• Challenge: Exceptions

‣ There are cases where call-return does not match

‣ E.g., Tail calls, thread libraries (setjmp, longjmp)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 28

Preventing Buffer Overflows
• Block any of the necessary conditions

‣ Check buffer bounds (flaw)

‣ Use a safe function to read input (flaw)

‣ Prevent unauthorized modification of the return address
without detection (exploit)

‣ Prevent execution of stack or heap memory (exploit)

‣ Make it impractical for the adversary to find the code she wants
to execute, such as “execve” (access)

• We spoke about safe programming techniques to reduce
the number of flaws

‣ Defenses aim to prevent access or exploit options

Systems and Internet Infrastructure Security (SIIS) Laboratory Page
29

Buffer Overflow Attack

stack frame
for main

2
1

ret

execve
(“/bin/sh”)

• Suppose there is a
buffer overflow flaw

• Inject code on stack

• Set return address
to point to the stack

• How to hide the
location of the buffer
(payload) from the
adversary?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 30

Information Hiding
• Prevent access by placing data/code at unpredictable

locations

‣ Unpredictable == random

• Could randomize the location of all code and data, but
would be expensive

• What is a cheap way to randomize a lot of code or data?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 31

Group by Segment
• Move the code and data so that you

cannot predict where gadgets will be

‣ What is the best way to make
unpredictable?

• Randomize code and data location for each
instruction and variable

‣ What is the easiest way to make
unpredictable?

• Just move the base address of the segment

• Called Address Space Layout Randomization

CSE543 - Introduction to Computer and Network Security Page

ASLR

31

Text

Data

Stack

Heap

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 32

ASLR
• Create a memory segment

‣ Heap

‣ Stack

‣ Code (Library)

• Compute (randomize) the base address

‣ High order bits – fixed – segment needs to be placed in the
expected relative position

‣ Some middle bits – random – this is where ASLR is applied

‣ Low order bits – align – must be at least page aligned

• Limits the “entropy” of the randomization

‣ Number of possible locations - 2n where n is entropy in ”bits”

Systems and Internet Infrastructure Security (SIIS) Laboratory Page
33

Buffer Overflow Attack

stack frame
for main

2
1

ret

execve
(“/bin/sh”)

• Suppose there is a
buffer overflow flaw

• Inject code on stack

• Set return address
to point to the stack

• With ASLR on the
stack segment

• Cannot predict the
payload’s address

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 34

Limitations of ASLR
• What is the risk to ASLR?

‣ Memory Disclosure

• Consider a buffer overread

‣ E.g., Heartbleed

• Instead of reading a key value

‣ What would you read to attack ASLR?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 35

Disclosure Attacks on ASLR
• Adversary harvests pointers stored on the data pages

of the application that are necessarily readable

in JIT-ROP defenses by preventing indirect memory
disclosure through code-pointer hiding.

• Novel techniques. We introduce compiler transfor-
mations that extend execute-only memory to protect
against the new class of indirect information disclosure.
We also present a new way to implement execute-only
memory that leverages hardware-accelerated memory
protections.

• Covering statically & dynamically generated code.
We introduce the first technique that extends coverage
of execute-only memory to secure just-in-time (JIT)
compiled code.

• Realistic and extensive evaluation. We provide a full-
fledged prototype implementation of Readactor that
diversifies applications, and present the results of a
detailed evaluation. We report an average overhead
of 6.4% on compute-intensive benchmarks. Moreover,
our solution scales beyond benchmarks to programs as
complex as Google’s popular Chromium web browser.

II. RETURN-ORIENTED PROGRAMMING

In general, code-reuse attacks execute benign and legitimate
code to perform illegal actions. To do so, the adversary exploits
a memory corruption error (such as a buffer overflow) to transfer
control to existing instruction sequences that are chained
together to perform the malicious behavior.

The most common code-reuse technique is return-oriented
programming (ROP) [53]. The basic idea of ROP is to invoke
short instruction sequences (gadgets, in ROP parlance) one after
another. To successfully launch an attack, the adversary first
needs to identify—using an offline static analysis phase—which
gadgets and library functions satisfy the attack goal. Once all
gadgets are identified, the adversary injects pointers into the
data area of the application, where each pointer references a
gadget.

For a conventional stack-overflow vulnerability, the adver-
sary writes the pointers onto the stack and overwrites the return
address of the vulnerable function with the address of the first
gadget. This can be achieved by overflowing a stack-allocated
buffer and writing a new pointer address to the stack slot
containing the return address.

Once the vulnerable function executes a return instruction,
the control flow is redirected to the first gadget, which itself
ends with a return instruction. Return instructions play an
important role1 as they are responsible for chaining multiple
sequences together. This attack principle has been shown to
be Turing-complete, meaning that the adversary can perform
arbitrary, malicious computations [53].

III. THE THREAT OF MEMORY DISCLOSURE

Simple code randomization such as address space layout
randomization (ASLR) complicates ROP attacks by randomiz-
ing the base addresses of code segments. Hence, the adversary
must guess where the required instruction sequences reside
in memory. Recent research has shown that randomization

1ROP does not necessarily require return instructions, but can leverage
indirect jumps or calls to execute a chain of ROP gadgets [12, 14].

JMP label

CALL Func_A

Code page 1

Readable-writable
Readable-executable

Direct
disclosure

Adversary

Function pointer 2

Return address

Stack / Heap

label:
asm_ins
asm_ins
...

Func_A:
asm_ins
asm_ins
...

Code page 2 Code page 3

Indirect
disclosure

Data pages

Function pointer 1

Code pages

Figure 1: Direct and indirect memory disclosure.

at the level of functions, basic blocks, or individual instruc-
tions enhances security (see [40] for a detailed overview of
fine-grained code randomization) relative to ASLR because
these approaches randomize the internal code structure of an
application.

However, the adversary can sometimes use memory disclo-
sure vulnerabilities to learn the memory layout and randomized
locations of machine code in an application. Using this
information, the adversary can reliably infer the runtime
addresses of instruction sequences and bypass the underlying
code randomization. In general, the adversary can launch direct
and indirect memory disclosure attacks; Figure 1 illustrates
both classes of disclosure.

In a direct memory disclosure attack, the adversary is
able to directly read code pointers from code pages. Such
pointers are typically embedded in direct branch instructions
such as direct jumps and calls. The top of Figure 1 shows how
the adversary can access a single code page (code page 1),
dynamically disassemble it, and identify other code pages
(pages 2 and 3) via direct call and jump instructions. By
performing this recursive disassembly process on-the-fly, the
adversary can directly disclose all gadgets needed to relocate
a ROP attack to match the diversified code [59].

Two protection methods have been proposed to prevent
direct memory disclosure: rewriting inter-page references and
redirecting attempts to read code pages. In the first approach,
direct code references in calls and jumps between code pages
are replaced by indirect branches to prevent the adversary
from following these code pointers [6]. A conceptually simpler
alternative is to prevent read access to code pages that are not
currently executing [7], e.g., code page 2 and 3 in Figure 1.

Unfortunately, obfuscating code pointers between pages
does not prevent indirect memory disclosure attacks, where
the adversary only harvests code pointers stored on the data
pages of the application which are necessarily readable (e.g., the
stack and heap). Examples of such pointers are return addresses
and function pointers on the stack, and code pointers in C++
virtual method tables (vtables). We conducted experiments that
indicate that the adversary can bypass countermeasures that

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 36

Preventing Buffer Overflows
• Block any of the necessary conditions for a vulnerability

‣ Check buffer bounds (flaw)

‣ Use a safe function to read input (flaw)

‣ Prevent unauthorized modification of the return address
without detection (exploit)

‣ Prevent execution of stack or heap memory (exploit)

‣ Make it impractical for the adversary to find the code she wants
to execute, such as “execve” (access)

• We spoke about safe programming techniques to reduce
the number of flaws

‣ Defenses aim to prevent access or exploit options

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 37

DEP … W xor X
• An approach to prevent code

injection on the stack is to make
the stack non-executable

• Technique is called DEP
(Windows) and W xor X (Linux)

• Idea: Each memory region is
either writable (like data) or
executable (like code), but not
both

• Prevents code injection on stack,
but not invoking functions directly

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 38

How To Use DEP
• Set the program memory regions to be either

writable or executable, but not both

‣ Writable: ???

‣ Executable: ???

‣ Of course, some can be read-only and not executable

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 39

How To Use DEP
• Set the program memory regions to be either

writable or executable, but not both

‣ Writable: Stack and heap and global data

‣ Executable: Code

‣ Of course, some can be read-only and not executable

• Bottom line is that we can remove the execute
permission from stack and heap memory pages

‣ And prevent writing of code pages

‣ To prevent all forms of code-injection attacks

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 40

DEP Limitations
• Big limitation: code injection is not necessary to

construct adversary-controlled exploit code

‣ Attacks that bypass DEP?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

• How can we invoke execve without code injection?

‣ Use the code directly

• The difference is subtle, but significant

44

Code-Reuse Attacks

stack frame
for main

“/sh”
“/bin”

ret

execve@plt
ptr to “/bin/sh”

stack frame
for main

execve@plt

“/bin/sh”

ptr to “/bin/sh”
0

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 45

Disable DEP
• How would we use code reuse to disable DEP?

• Goal is to allow execution of writable memory (i.e.,
change page permissions)

‣ There’s a system call for that

int mprotect(void *addr, size_t len, int prot);

‣ Sets protection for region of memory starting at address

‣ Invoke this system call to allow execution on stack and
then start executing from the injected code

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 46

Current State of Defenses
• Limited

• Protect very little data directly

‣ Return addresses (canary or shadow stack)

• Only prevents a subset of exploits

‣ Code-reuse attacks still possible with DEP

• Prone to circumvention

‣ Disclosures can compromise canary and ASLR defenses

‣ Can disable DEP using mprotect

• But, these defenses have modest overhead

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 47

Take Away
• Today, we examined defenses that are available by

default on current systems

• These defenses aim to prevent vulnerabilities from
being exploited

‣ Even if the software has flaws

‣ By denying the other preconditions of a vulnerability

• (1) Access to the flaw and (2) Ability to exploit the flaw

• Key goals – low overhead and compatibility

‣ Attacks – code injection and return address hijack

‣ Limited scope of protection and may be circumvented

