\ Systems and Internet
‘ Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

CMPSC 447
Current Defenses

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab
Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Defenses =

e Prevent adversaries from being able to successfully
exploit vulnerabilities

» What enables successful exploitation?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 3

PENNSTATE

Vulnerability Definition =

e A vulnerability is a flaw that is accessible to an
adversary who has the ability to exploit that flaw

L)

;$¢ "
SECURITY RISK »

@

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Vulnerability Defenses 2

e A vulnerability is a flaw that is accessible to an
adversary who has the ability to exploit that flaw

» So, what is required of an adequate defense to prevent
vulnerability exploitation?

=
A

5‘
B

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Vulnerability Defenses 2

e A vulnerability is a flaw that is accessible to an
adversary who has the ability to exploit that flaw

» So, what is required of an adequate defense to prevent
vulnerability exploitation?

e Prevent one or more of these preconditions

» Flaw — prevent memory error

» Access — do not allow adversary input to unsafe
operations

» Exploit — prevent exploit from enabling adversary to
achieve their goals

e Think about how each defense relates to these

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 6

PENNSTAT

Preventing Buffer Overflows =

e How do you prevent buffer overflow attacks!?

e Block any of the necessary conditions

v

Check buffer bounds
» Use a safe function to read input

» Prevent unauthorized modification of the return address without
detection

» Prevent execution of stack memory

» Make it impractical for the adversary to find the code she wants
to execute, such as “execve”

e Main focus of current defenses is to mitigate spatial errors

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 7

PENNSTAT

Preventing Buffer Overflows =

e Block any of the necessary conditions for a vulnerability

» Check buffer bounds (flaw)

» Use a safe function to read input (flaw)

» Prevent unauthorized modification of the return address
without detection (exploit)

» Prevent execution of stack memory (exploit)

» Make it impractical for the adversary to find the code she wants
to execute, such as “execve” (access)

e We spoke about safe programming techniques to reduce
the number of flaws

» Defenses aim to prevent access or exploit options

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 8

PENNSTAT

Buffer Overflow Attack o

¥
execve e Remember this exploit
6 flas T e The adversary’s goal is
(“/bin/sh™) to get execve to run to
generate a command
ret shell
| e To do this the adversary
) uses execve from libc —
. . | i.e., reuses code that is
stack frame already there
for main

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Stack Canary Defense S

e Place a “canary” value on
the stack to detect
attempted overwrites of

buffer the return address
EEEEEEE—— e Canary value is
canary randomized
th e And checked prior to
any return
2

e How does this prevent

stack frame overflows from

f : exploiting the return
Oor main address!?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Stack Canary Defense e

y e How does this prevent
e overflows from
¢ exploiting the return
execve Z address?
(“/bin/sh”) / e Overflow exploits of the
b return address from
canary | buffer must over
ret / overwrite the canary
| h e But, the canary value is
2) unpredictable — and
d changes on each run
stack frame| ¢
f : ‘ e So, the check will detect
or main ‘ the canary value has

changed

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Stack Canary Defense 2
execve e e Limitations of the stack
(“/bin/sh”) , canary defense!
b
canarz i
ret /
| Y
2 |
stack frame| ¢
for main | -

Systems and Internet Infrastructure Security (SIIS) Laboratory

S : PENNSTATE
Stack Canary Limitations =
c e Limitations of the stack
execve . canary defense!?
(“/bin/sh”) , e Must not leak the canary
b value
canary i
ret ! e Butitis on the stack
| ; » Readable memory
2) e What’s an attack that
stack framel ° may leak the canary?
d
for main | .

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Buffer Overread/Disclosure S

e A buffer overread (disclosure) attack enables an
adversary to read memory outside of a region

» Benign task: Copy from “buffer X” to “buffer Y”
» Read beyond the memory region of “buffer X”
» To access other objects’ data

» And copy into “buffer Y”

o If “buffer X” is on the stack, could possibly read
other stack data, including the canary value

» Once the adversary has read the canary value, they can
produce overflow payloads that restore the canary

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Stack Canary Limitations =

execve

(‘“/bin/sh”)

canary
ret

|
2

stack frame
for main

Systems and Internet Infrastructure Security (SIIS) Laboratory

SO VW ~5 — 0O~ 20 < 0O 0O X O

w un 0 T A Q8

Limitations of the stack
canary defense!?

Only protects the return
address

PENNSTAT

Stack Canary Limitations S

e Obvious limitation: only protects the return address

» What about other local variables?

int authenticated = 0;

char packet[1000];

while (l!authenticated) {
PacketRead (packet);
if (Authenticate(packet))
authenticated = 1;
}
if (authenticated)

ProcessPacket (packet);

Page 17

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Stack Canary Limitations =

e Packet overflows overwrite the authenticated value

packet

authenticated

old ebp
CANARY
ret

stack frame

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Other Approaches S

e What is a more straightforward way of checking that
the return address hasn’t been tampered!?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Other Approaches S

e What is a more straightforward way of checking that
the return address hasn’t been tampered!?

e Just check that the value hasn’t been tampered

e Store it somewhere else safe from tampering and check

Systems and Internet Infrastructure Security (SIIS) Laboratory

Shadow Stack PENN%TE

e Method for maintaining return targets for each
function call reliably

e On call

» Push return address on the regular stack

» Also, push the return address on the shadow stack

e On return

» Validate the return address on the regular stack with the
return address on the shadow stack

e Why might this work? Normal program code cannot
modify the shadow stack memory directly

Systems and Internet Infrastructure Security (SIIS) Laboratory

Shadow Stack PENN%T

e Intel Control-Flow Enforcement Technology (CET)
» Has been announced

» Awvailable in | It generation Intel cores (Tiger Lake)

e Goal is to enforce shadow stack in hardware

» Throw an exception when a return does not correspond
to a call site

e Challenge: Exceptions

» There are cases where call-return does not match

» E.g., Tail calls, thread libraries (setjmp, longjmp)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 22

PENNSTAT

Preventing Buffer Overflows =

e Block any of the necessary conditions
» Check buffer bounds (flaw)

» Use a safe function to read input (flaw)

» Prevent unauthorized modification of the return address
without detection (exploit)

» Prevent execution of stack or heap memory (exploit)

» Make it impractical for the adversary to find the code she wants
to execute, such as “execve” (access)

e We spoke about safe programming techniques to reduce
the number of flaws

» Defenses aim to prevent access or exploit options

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 28

PENNSTAT

Buffer Overflow Attack =

e Suppose there is a
buffer overflow flaw

execve
. e |nject code on stack
(“/bin/sh”) 1
e Set return address
ret to point to the stack

I
2 e How to hide the

location of the buffer
(payload) from the
adversary?

stack frame
for main

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Information Hiding =

e Prevent access by placing data/code at unpredictable
locations

» Unpredictable == random

e Could randomize the location of all code and data, but
would be expensive

e What is a cheap way to randomize a lot of code or data?

Systems and Internet Infrastructure Security (SIIS) Laboratory

Group by Segment

e Move the code and data so that you
cannot predict where gadgets will be

» What is the best way to make
unpredictable?

e Randomize code and data location for each
instruction and variable

» What is the easiest way to make
unpredictable?

e Just move the base address of the segment

e Called Address Space Layout Randomization

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT
| kv

PENNSTAT

i

e Createa memory segment
» Heap
» Stack

» Code (Library)

e Compute (randomize) the base address

» High order bits — fixed — segment needs to be placed in the
expected relative position

» Some middle bits — random — this is where ASLR is applied

» Low order bits — align — must be at least page aligned

e Limits the “entropy” of the randomization

» Number of possible locations - 2" where n is entropy in "bits”

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 32

PENNSTAT

Buffer Overflow Attack =

e Suppose there is a
ouffer overflow flaw

execve
. e |nject code on stack
(“/bin/sh”) ’
e Set return address
ret to point to the stack

I
) e With ASLR on the

stack segment

stack frame

for main e Cannot predict the

payload’s address

Systems and Internet Infrastructure Security (SIIS) Laboratory

Limitations of ASLR e

e What is the risk to ASLR?
» Memory Disclosure
e Consider a buffer overread

» E.g., Heartbleed

e Instead of reading a key value

» What would you read to attack ASLR?

Systems and Internet Infrastructure Security (SIIS) Laboratory

Disclosure Attacks on ASLR PENN%T

e Adversary harvests pointers stored on the data pages
of the application that are necessarily readable

Adversary
Data pages

Indirect » Function pointer 2 CTTTTTTTTTTTTTToy
disclosure ro-----f==== d
» Return address .
» Function pointer 1} -,
[0 Readable-writable : - -
| |
O Readable-executable Stack / Heap | e s i
| |
| |
| |
| |
| |

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 35

PENNSTAT

Preventing Buffer Overflows =

e Block any of the necessary conditions for a vulnerability
» Check buffer bounds (flaw)

» Use a safe function to read input (flaw)

» Prevent unauthorized modification of the return address
without detection (exploit)

» Prevent execution of stack or heap memory (exploit)

» Make it impractical for the adversary to find the code she wants
to execute, such as “execve” (access)

e We spoke about safe programming techniques to reduce
the number of flaws

» Defenses aim to prevent access or exploit options

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 36

DEP ... W xor X PN

e An approach to prevent code
injection on the stack is to make
the stack non-executable

e Technique is called DEP
(Windows) and W xor X (Linux)

e |dea: Each memory region is
either writable (like data) or

executable (like code), but not
both

e Prevents code injection on stack,
but not invoking functions directly

Systems and Internet Infrastructure Security (SIIS) Laboratory

How To Use DEP e

e Set the program memory regions to be either
writable or executable, but not both

» Writable: ???
» Executable: ?2?

» Of course, some can be read-only and not executable

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 38

How To Use DEP e

e Set the program memory regions to be either
writable or executable, but not both

» Writable: Stack and heap and global data
» Executable: Code

» Of course, some can be read-only and not executable

e Bottom line is that we can remove the execute
permission from stack and heap memory pages

» And prevent writing of code pages

» To prevent all forms of code-injection attacks

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 39

DEP Limitations -

e Big limitation: code injection is not necessary to
construct adversary-controlled exploit code

» Attacks that bypass DEP?

Systems and Internet Infrastructure Security (SIIS) Laboratory

Code-Reuse Attacks PENN%T

e How can we invoke execve without code injection?

» Use the code directly

e The difference is subtle, but significant

execve@plt o ”
ptr to “/bin/sh” /bin/sh
ret execve

“/bin” ptr to “‘/bin/sh”
“/Sh” O

stack frame stack frame
for main for main

Systems and Internet Infrastructure Security (SIIS) Laboratory

. PENNSTAT
Disable DEP =

e How would we use code reuse to disable DEP?

e Goal is to allow execution of writable memory (i.e.,
change page permissions)

» There’s a system call for that
int mprotect(void *addr, size t len, int prot);
» Sets protection for region of memory starting at address

» Invoke this system call to allow execution on stack and
then start executing from the injected code

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Current State of Defenses S

e Limited
e Protect very little data directly

» Return addresses (canary or shadow stack)
e Only prevents a subset of exploits

» Code-reuse attacks still possible with DEP
e Prone to circumvention

» Disclosures can compromise canary and ASLR defenses

» Can disable DEP using mprotect

e But, these defenses have modest overhead

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Take Away S

e Today, we examined defenses that are available by
default on current systems

e These defenses aim to prevent vulnerabilities from
being exploited

» Even if the software has flaws

» By denying the other preconditions of a vulnerability

e (I) Access to the flaw and (2) Ability to exploit the flaw
e Key goals — low overhead and compatibility

» Attacks — code injection and return address hijack

» Limited scope of protection and may be circumvented

Systems and Internet Infrastructure Security (SIIS) Laboratory

