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C Program Flaws
• A lot of unintended behaviors in C programs 

cause bugs or flaws

‣ These may crash the program (seg fault)

‣ Or cause the program to behave incorrectly

• How do you find and repair flaws in C programs 
quickly?

‣ Not an easy task given the complex semantics of C 
concepts, especially without type/memory safety
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Printf Debugging
• Find where you think there is a problem and print 

the relevant variable values using printf

‣ If you have a segmentation fault, which values do you 
print?

• Segmentation fault refers to a pointer referencing an illegal 
memory location

‣ How do you print pointer values?

‣ There may be several causes

• Initialization (null pointer)

• Error from another pointer access that modified this pointer

‣ Any other one?
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Printf Debugging
• Find where you think there is a problem and print 

the relevant variable values

‣ If you have an erroneous data value, which values do 
you print?

• You could print that variable, but it may have been modified 
at any time by a stray pointer 

‣ That could be a lot of printf statements

• All statements that impact the value normally

• And any other statement where a pointer operation may have 
modified the variable value or some input to the variable
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Debuggers
• Programs that track the execution of another target 

program

• You run the program “in” the debugger

‣ The debugger can then read the memory of the target

‣ If you compiled the target with “debugger symbols” these 
are used as a guide to help display the state of the target

‣ You can use the debugger to run the target incrementally 
to “breakpoints” where you can inspect the state

• Debuggers are super useful
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Debugger Options
• Debuggers are tied to compilers

‣ gcc compiler: gdb

‣ clang compiler: lldb

‣ Pretty similar

• Code compiled in clang can be debugged using 
either debugger

‣ Command map: https://lldb.llvm.org/use/map.html

• We will take a walk through lldb today

https://lldb.llvm.org/use/map.html
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lldb Debugging
• Program code: gdb_demo.c

• Compile for lldb with “-g”

‣ clang –g gdb_demo.c –O0 –o gdb_demo

• Run in the debugger: lldb <executable>

‣ lldb gdb_demo

• Run the program in the debugger

‣ r (for ”run”)

• EXC_BAD_ACCESS (type of segmentation fault)

• Stopped at line 63, column 26
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lldb Debugging
• Program code: gdb_demo.c

• Seg fault debugging

‣ What happened?

• Let’s find out where we are in the target’s 
execution

‣ bt (for “backtrace”)

• Displays a sequence of functions from crash (#0) back up the 
call stack – usually to main

• Recursive calls to tree_size
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lldb Debugging
• Program code: gdb_demo.c

• Seg fault debugging

‣ What are the variable values?

• Print the variable/expression value “p” 

‣ Super useful!

‣ p (for “print”) size (name of variable/expression)

• Response: (int) $0 = 1

• “(int)” is the type, “$0” is an identifier to reuse value, “1” is 
the value

• Note: p $0+$0 = 2
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lldb Debugging
• Program code: gdb_demo.c

• Seg fault debugging (more)

‣ What are the variable values?

• Print the variable/expression value “p” for the tree

‣ p t

• Response: (tree_t *) $1 = 0x0

• “(tree_t *)” is the type, “$1” is an identifier to reuse value, 
“0x0” is the value
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lldb Debugging
• Program code: gdb_demo.c

• Seg fault debugging

‣ What happened in the tree_size function?

• Let’s find out what the variable values are 
problematic

‣ See “t=0x0” in frame #0

‣ l (for “list”) tree_size (function to list)

• See line 63

• Do “list” repeatedly to see the next part of the code
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lldb Debugging
• Program code: gdb_demo.c

• Look at other functions

‣ Switch to calling function 

• f (for “frame”) 1 (index in backtrace) 

‣ Note the movement of the asterisk in the backtrace to frame 1

‣ Can print variable/expression values in each frame

• “p t” – not null and size is still ”1” in frame 1

• Or can use “up” or “down” to traverse frames

‣ Print “tàleft”  and “tàright” in frame 1



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 13

lldb GUI
• Program code: gdb_demo.c

• Graphical debugger

‣ “gui” starts it

• Shows the code and variables with values

‣ Right to expand and left to retract

‣ Up and down keys to scan the code

‣ NOTE: Need to run the program before activating

• However, to run commands need to exit (escape)

‣ May like ”gdb –tui instead”
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lldb Debugging – Part 2
• Program code: gdb_demo.c

• Let’s look at another example

‣ Uncomment lines in main

• Recompile and run in lldb again

‣ How?

• What happens?
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lldb Debugging – Part 2
• Program code: gdb_demo.c

• Nothing much is happening – let’s see in debugger

‣ Ctrl-C to stop the execution

‣ Then what?

• Next – rerun last command and up for history

‣ Print variable values as before 

• Print what you need from the debugger– no need 
to recompile

‣ Print *new - get value at memory location of “new”
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lldb Debugging – Part 2
• Program code: gdb_demo.c

• Now that we have narrowed down the problem 
area, want to run the program directly to there

• Set a breakpoint

‣ b (break) tree_remove_root – at a function

‣ b (break) gdb_demo.c:84 or b 84 – at a line in a file

‣ “b” lists all breakpoints

• How to run inside that function?

‣ ”Next” runs the next instruction in the same function
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lldb Debugging – Part 2
• Program code: gdb_demo.c

• Answer: Use “step” to follow a call into the callee

• Follow control flow in the debugger

‣ Next (n): run the next line in the same function

‣ Step (s): run the next line in the same function unless a 
function call

• Run into the callee

‣ Continue (c): run to the next breakpoint

• Don’t forget to use list to see rest of the code
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lldb Debugging – Part 2
• Program code: gdb_demo.c

• Find the cause

‣ Divide and conquer

• Debug from beginning to tree_size at function level

• Then drill down

‣ Program stops running in second tree_remove_root

• What does the tree data structure look like

‣ Print root, *root, root->left, root->right

• Draw the tree to see it
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lldb Debugging – Part 2
• Draw the tree
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lldb Debugging – Part 2
• Draw the tree
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lldb Debugging – Part 2
• Program code: gdb_demo.c

• More on breakpoints

‣ Disable: br dis #

‣ Enable: br en #

• Temporary breakpoints

‣ Break at this location once: tb

• Conditional breakpoints – only break when true

‣ b 45 if (t->left->right == 0)
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lldb Debugging – Part 2
• Program code: gdb_demo.c

• Let’s see how tree_remove_root operates

• Step through program states with the debugger

‣ See the state of the tree

‣ See the relationships among nodes (left and right)

‣ See how the code modifies these relationships

• Tree is modified such that

‣ Node 3 becomes new root

‣ What problem in the code causes the flaw?
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lldb Debugging – Part 2
• Program code: gdb_demo.c

• What problem in the code causes the flaw?

‣ Issue - modify node 3’s fields (as new) before its child 
(prev, as node 2)

• What can you do to assess the impact

‣ Can assign variables to new values in the debugger too

‣ Using print (p) as a result of an expression

• p prev->right = 0x0

• Then, can continue the execution - next (n), step 
(s), or continue (c)
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lldb Debugging – Part 2
• Program code: gdb_demo.c

• Continue running after changing assignment

‣ Looks good at return of function (via next)

‣ Let’s try to run to the end

• Which command to do that?

• Oh, no – another segmentation fault

• Stops in tree_remove_root

‣ Remember we are in the second invocation of tree_remove_root

- after removing the first root
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lldb Debugging – Part 2
• Program code: gdb_demo.c

• Find the cause of the segmentation fault

‣ The variable new is null

• Why does this create a segmentation fault?

• What should you do to fix that?
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lldb Debugging – Part 2
• Program code: gdb_demo.c

• Note that we found the causes, and the basic idea 
for the fixes of two flaws in one run of the 
program

‣ With the debugger (thanks, debugger)

• With no code modifications (e.g., add printfs) and 
no recompilation required to find the second flaw

‣ Didn’t even have to restart the program

‣ Only needed to undo the impact of the first flaw and 
check the state at the fault of the second flaw
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Take Away
• Your C programs may contain flaws after they 

compile successfully 

‣ Cause the program to crash or give erroneous results

• Flaws may be due to either

‣ Erroneous variable values or pointer values

• Debuggers for C are powerful and feature-rich

‣ We have just scratched the surface

‣ Learn a command a day 

• And we will need them later to understand exploits


