\ Systems and Internet
‘ Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

CMPSC 447
C Debugging Review

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab
Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laborato

PENNSTATE

C Program Flaws S

e A lot of unintended behaviors in C programs
cause bugs or flaws

» These may crash the program (seg fault)

» Or cause the program to behave incorrectly

e How do you find and repair flaws in C programs
quickly?

» Not an easy task given the complex semantics of C
concepts, especially without type/memory safety

Systems and Internet Infrastructure Securit

PENNSTATE

Printf Debugging S

e Find where you think there is a problem and print
the relevant variable values using printf

» If you have a segmentation fault, which values do you
print!

e Segmentation fault refers to a pointer referencing an illegal
memory location

» How do you print pointer values!?

» There may be several causes
e Initialization (null pointer)

e Error from another pointer access that modified this pointer

» Any other one!

Systems and Internet Infrastructure Security (SIIS) Laborato

PENNSTATE

Printf Debugging S

e Find where you think there is a problem and print
the relevant variable values

» If you have an erroneous data value, which values do
you print?

e You could print that variable, but it may have been modified
at any time by a stray pointer

» That could be a lot of printf statements
e All statements that impact the value normally

e And any other statement where a pointer operation may have
modified the variable value or some input to the variable

Systems and Internet Infrastructure Security (SIIS) Laborato

PENNSTATE

Debuggers —

e Programs that track the execution of another target
program

e You run the program “in” the debugger

» The debugger can then read the memory of the target

» If you compiled the target with “debugger symbols™” these
are used as a guide to help display the state of the target

» You can use the debugger to run the target incrementally
to “breakpoints” where you can inspect the state

e Debuggers are super useful

Systems and Internet Infrastructure Securit

Debugger Options S

PENNSTATE

e Debuggers are tied to compilers

» gcc compi

» clang com

er: gdb

diler: lldb

» Pretty similar

e Code compiled in clang can be debugged using
either debugger

» Command map: https://lldb.llvm.org/use/map.html

e We will take a walk through lldb today

Systems and Internet Infrastructure Securit

https://lldb.llvm.org/use/map.html

PENNSTATE

lIdb Debugging S

e Program code: gdb demo.c
e Compile for lldb with “-g”

» clang —g gdb_demo.c 00 —o gdb_demo
e Run in the debugger: lldb <executable>

» lldb gdb_demo

e Run the program in the debugger

» r (for "run”)

o EXC _BAD_ACKCESS (type of segmentation fault)

e Stopped at line 63, column 26

Systems and Internet Infrastructure Securit

PENNSTATE

lIdb Debugging S

e Program code: gdb demo.c

e Seg fault debugging
» What happened?

e Let’s find out where we are in the target’s
execution

» bt (for “backtrace”)

e Displays a sequence of functions from crash (#0) back up the
call stack — usually to main

e Recursive calls to tree_size

Systems and Internet Infrastructure Security (SIIS) Laborato

PENNSTATE

lldb Debugging S

e Program code: gdb demo.c

e Seg fault debugging

» What are the variable values?

c¢_ 9

e Print the variable/expression value “p

» Super useful!

» p (for “print”) size (name of variable/expression)

e Response: (int) $0 = |

e “(int)” is the type, “$0” is an identifier to reuse value, “1” is

the value

e Note: p $0+$0 =2

Systems and Internet Infrastructure Security (SIIS) Laborato

PENNSTATE

lIdb Debugging S

e Program code: gdb demo.c

e Seg fault debugging (more)

» What are the variable values?

c¢_ 9

e Print the variable/expression value “p” for the tree
» pt
e Response: (tree_t*) $1 = 0x0

o “(tree_t*)” is the type, “$1” is an identifier to reuse value,
“0x0” is the value

Systems and Internet Infrastructure Securit

PENNSTATE

lIdb Debugging S

e Program code: gdb demo.c

e Seg fault debugging

» What happened in the tree_size function?

e Let’s find out what the variable values are
problematic

» See “t=0x0" in frame #0

» | (for “list”) tree_size (function to list)

e Seeline 63

e Do “list” repeatedly to see the next part of the code

Systems and Internet Infrastructure Security (SIIS) Laborato

PENNSTATE

lIdb Debugging S

e Program code: gdb demo.c

e Look at other functions

» Switch to calling function
o f(for “frame”) | (index in backtrace)

3 Note the movement of the asterisk in the backtrace to frame |

» Can print variable/expression values in each frame

”I”

e “pt’—not null and size is still in frame |

e Or can use “up” or “down” to traverse frames

» Print “t=2>left” and “t2>right” in frame |

Systems and Internet Infrastructure Securit

PENNSTATE
ldb GUI =

e Program code: gdb demo.c

e Graphical debugger
» “‘gui”’ starts it
e Shows the code and variables with values
» Right to expand and left to retract
» Up and down keys to scan the code
» NOTE: Need to run the program before activating
e However, to run commands need to exit (escape)

» May like "gdb —tui instead”

Systems and Internet Infrastructure Securit

lldb Debugging — Part 2 "ENN%TE

e Program code: gdb demo.c

e Let’s look at another example
» Uncomment lines in main

e Recompile and run in lldb again
» How!?

e What happens!

Systems and Internet Infrastructure Securit

lldb Debugging — Part 2 "ENN%TE

e Program code: gdb demo.c

e Nothing much is happening — let’s see in debugger
» Ctrl-C to stop the execution

» Then what!
e Next — rerun last command and up for history

» Print variable values as before

e Print what you need from the debugger— no need
to recompile

» Print *new - get value at memory location of “new”

Systems and Internet Infrastructure Securit

PENNSTATE

lldb Debugging — Part 2 S

e Program code: gdb demo.c

e Now that we have narrowed down the problem
area, want to run the program directly to there

e Set a breakpoint
» b (break) tree_remove root — at a function

» b (break) gdb demo.c:84 or b 84 —at a line in a file

» “b” lists all breakpoints

e How to run inside that function?

» “Next” runs the next instruction in the same function

Systems and Internet Infrastructure Securit

ldb Debugging — Part 2 -

e Program code: gdb demo.c
e Answer: Use “step” to follow a call into the callee

e Follow control flow in the debugger
» Next (n): run the next line in the same function

» Step (s): run the next line in the same function unless a
function call

e Run into the callee

» Continue (c): run to the next breakpoint

e Don’t forget to use list to see rest of the code

Systems and Internet Infrastructure Securit

ldb Debugging — Part 2 -

e Program code: gdb demo.c

e Find the cause

» Divide and conquer
e Debug from beginning to tree_size at function level

e Then drill down
» Program stops running in second tree_remove_root
¢ What does the tree data structure look like

» Print root, *root, root->left, root->right

e Draw the tree to see it

Systems and Internet Infrastructure Securit

ldb Debugging — Part 2 -

e Draw the tree

& B

ldb Debugging — Part 2 -

e Draw the tree

lldb Debugging — Part 2 "ENN%TE

e Program code: gdb demo.c

e More on breakpoints
» Disable: br dis #
» Enable: br en #
e Temporary breakpoints

» Break at this location once: tb

e Conditional breakpoints — only break when true

» b 45 if (t->left->right == 0)

Systems and Internet Infrastructure Securit

ldb Debugging — Part 2 g

e Program code: gdb demo.c
e Let’s see how tree_remove_root operates

o Step through program states with the debugger
» See the state of the tree
» See the relationships among nodes (left and right)
» See how the code modifies these relationships
e Tree is modified such that
» Node 3 becomes new root

» What problem in the code causes the flaw?

Systems and Internet Infrastructure Securit

lldb Debugging — Part 2 "ENN%TE

e Program code: gdb demo.c

e What problem in the code causes the flaw?

» Issue - modify node 3’s fields (as new) before its child
(prev, as node 2)

e What can you do to assess the impact
» Can assign variables to new values in the debugger too
» Using print (p) as a result of an expression
e p prev->right = 0x0

e Then, can continue the execution - next (n), step
(s), or continue (c)

Systems and Internet Infrastructure Securit

ldb Debugging — Part 2 g

e Program code: gdb demo.c

e Continue running after changing assignment
» Looks good at return of function (via next)
» Let’s try to run to the end

¢ Which command to do that!?

e Oh, no — another segmentation fault

e Stops in tree_remove_root

> Remember we are in the second invocation of tree_remove_root

- after removing the first root

Systems and Internet Infrastructure Security (SIIS) Laborato Page 25

ldb Debugging — Part 2 -

e Program code: gdb demo.c

e Find the cause of the segmentation fault

» The variable new is null
e Why does this create a segmentation fault?

e What should you do to fix that!

Systems and Internet Infrastructure Security (SIIS) Laborato Page 26

ldb Debugging — Part 2 -

e Program code: gdb demo.c

e Note that we found the causes, and the basic idea
for the fixes of two flaws in one run of the
program

» With the debugger (thanks, debugger)

e With no code modifications (e.g., add printfs) and
no recompilation required to find the second flaw

» Didn’t even have to restart the program

» Only needed to undo the impact of the first flaw and
check the state at the fault of the second flaw

Systems and Internet Infrastructure Securit

PENNSTATE

Take Away —

e Your C programs may contain flaws after they
compile successfully

» Cause the program to crash or give erroneous results

e Flaws may be due to either
» Erroneous variable values or pointer values

e Debuggers for C are powerful and feature-rich
» We have just scratched the surface

» Learn a command a day

e And we will need them later to understand exploits

Systems and Internet Infrastructure Security (SIIS) Laborato Page 28

