
Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

CMPSC 447
C Debugging Review

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 2

C Program Flaws
• A lot of unintended behaviors in C programs

cause bugs or flaws

‣ These may crash the program (seg fault)

‣ Or cause the program to behave incorrectly

• How do you find and repair flaws in C programs
quickly?

‣ Not an easy task given the complex semantics of C
concepts, especially without type/memory safety

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 3

Printf Debugging
• Find where you think there is a problem and print

the relevant variable values using printf

‣ If you have a segmentation fault, which values do you
print?

• Segmentation fault refers to a pointer referencing an illegal
memory location

‣ How do you print pointer values?

‣ There may be several causes

• Initialization (null pointer)

• Error from another pointer access that modified this pointer

‣ Any other one?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 4

Printf Debugging
• Find where you think there is a problem and print

the relevant variable values

‣ If you have an erroneous data value, which values do
you print?

• You could print that variable, but it may have been modified
at any time by a stray pointer

‣ That could be a lot of printf statements

• All statements that impact the value normally

• And any other statement where a pointer operation may have
modified the variable value or some input to the variable

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 5

Debuggers
• Programs that track the execution of another target

program

• You run the program “in” the debugger

‣ The debugger can then read the memory of the target

‣ If you compiled the target with “debugger symbols” these
are used as a guide to help display the state of the target

‣ You can use the debugger to run the target incrementally
to “breakpoints” where you can inspect the state

• Debuggers are super useful

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 6

Debugger Options
• Debuggers are tied to compilers

‣ gcc compiler: gdb

‣ clang compiler: lldb

‣ Pretty similar

• Code compiled in clang can be debugged using
either debugger

‣ Command map: https://lldb.llvm.org/use/map.html

• We will take a walk through lldb today

https://lldb.llvm.org/use/map.html

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 7

lldb Debugging
• Program code: gdb_demo.c

• Compile for lldb with “-g”

‣ clang –g gdb_demo.c –O0 –o gdb_demo

• Run in the debugger: lldb <executable>

‣ lldb gdb_demo

• Run the program in the debugger

‣ r (for ”run”)

• EXC_BAD_ACCESS (type of segmentation fault)

• Stopped at line 63, column 26

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 8

lldb Debugging
• Program code: gdb_demo.c

• Seg fault debugging

‣ What happened?

• Let’s find out where we are in the target’s
execution

‣ bt (for “backtrace”)

• Displays a sequence of functions from crash (#0) back up the
call stack – usually to main

• Recursive calls to tree_size

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 9

lldb Debugging
• Program code: gdb_demo.c

• Seg fault debugging

‣ What are the variable values?

• Print the variable/expression value “p”

‣ Super useful!

‣ p (for “print”) size (name of variable/expression)

• Response: (int) $0 = 1

• “(int)” is the type, “$0” is an identifier to reuse value, “1” is
the value

• Note: p $0+$0 = 2

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 10

lldb Debugging
• Program code: gdb_demo.c

• Seg fault debugging (more)

‣ What are the variable values?

• Print the variable/expression value “p” for the tree

‣ p t

• Response: (tree_t *) $1 = 0x0

• “(tree_t *)” is the type, “$1” is an identifier to reuse value,
“0x0” is the value

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 11

lldb Debugging
• Program code: gdb_demo.c

• Seg fault debugging

‣ What happened in the tree_size function?

• Let’s find out what the variable values are
problematic

‣ See “t=0x0” in frame #0

‣ l (for “list”) tree_size (function to list)

• See line 63

• Do “list” repeatedly to see the next part of the code

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 12

lldb Debugging
• Program code: gdb_demo.c

• Look at other functions

‣ Switch to calling function

• f (for “frame”) 1 (index in backtrace)

‣ Note the movement of the asterisk in the backtrace to frame 1

‣ Can print variable/expression values in each frame

• “p t” – not null and size is still ”1” in frame 1

• Or can use “up” or “down” to traverse frames

‣ Print “tàleft” and “tàright” in frame 1

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 13

lldb GUI
• Program code: gdb_demo.c

• Graphical debugger

‣ “gui” starts it

• Shows the code and variables with values

‣ Right to expand and left to retract

‣ Up and down keys to scan the code

‣ NOTE: Need to run the program before activating

• However, to run commands need to exit (escape)

‣ May like ”gdb –tui instead”

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 15

lldb Debugging – Part 2
• Program code: gdb_demo.c

• Let’s look at another example

‣ Uncomment lines in main

• Recompile and run in lldb again

‣ How?

• What happens?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 16

lldb Debugging – Part 2
• Program code: gdb_demo.c

• Nothing much is happening – let’s see in debugger

‣ Ctrl-C to stop the execution

‣ Then what?

• Next – rerun last command and up for history

‣ Print variable values as before

• Print what you need from the debugger– no need
to recompile

‣ Print *new - get value at memory location of “new”

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 17

lldb Debugging – Part 2
• Program code: gdb_demo.c

• Now that we have narrowed down the problem
area, want to run the program directly to there

• Set a breakpoint

‣ b (break) tree_remove_root – at a function

‣ b (break) gdb_demo.c:84 or b 84 – at a line in a file

‣ “b” lists all breakpoints

• How to run inside that function?

‣ ”Next” runs the next instruction in the same function

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 18

lldb Debugging – Part 2
• Program code: gdb_demo.c

• Answer: Use “step” to follow a call into the callee

• Follow control flow in the debugger

‣ Next (n): run the next line in the same function

‣ Step (s): run the next line in the same function unless a
function call

• Run into the callee

‣ Continue (c): run to the next breakpoint

• Don’t forget to use list to see rest of the code

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 19

lldb Debugging – Part 2
• Program code: gdb_demo.c

• Find the cause

‣ Divide and conquer

• Debug from beginning to tree_size at function level

• Then drill down

‣ Program stops running in second tree_remove_root

• What does the tree data structure look like

‣ Print root, *root, root->left, root->right

• Draw the tree to see it

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 20

lldb Debugging – Part 2
• Draw the tree

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 21

lldb Debugging – Part 2
• Draw the tree

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 22

lldb Debugging – Part 2
• Program code: gdb_demo.c

• More on breakpoints

‣ Disable: br dis #

‣ Enable: br en #

• Temporary breakpoints

‣ Break at this location once: tb

• Conditional breakpoints – only break when true

‣ b 45 if (t->left->right == 0)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 23

lldb Debugging – Part 2
• Program code: gdb_demo.c

• Let’s see how tree_remove_root operates

• Step through program states with the debugger

‣ See the state of the tree

‣ See the relationships among nodes (left and right)

‣ See how the code modifies these relationships

• Tree is modified such that

‣ Node 3 becomes new root

‣ What problem in the code causes the flaw?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 24

lldb Debugging – Part 2
• Program code: gdb_demo.c

• What problem in the code causes the flaw?

‣ Issue - modify node 3’s fields (as new) before its child
(prev, as node 2)

• What can you do to assess the impact

‣ Can assign variables to new values in the debugger too

‣ Using print (p) as a result of an expression

• p prev->right = 0x0

• Then, can continue the execution - next (n), step
(s), or continue (c)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 25

lldb Debugging – Part 2
• Program code: gdb_demo.c

• Continue running after changing assignment

‣ Looks good at return of function (via next)

‣ Let’s try to run to the end

• Which command to do that?

• Oh, no – another segmentation fault

• Stops in tree_remove_root

‣ Remember we are in the second invocation of tree_remove_root

- after removing the first root

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 26

lldb Debugging – Part 2
• Program code: gdb_demo.c

• Find the cause of the segmentation fault

‣ The variable new is null

• Why does this create a segmentation fault?

• What should you do to fix that?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 27

lldb Debugging – Part 2
• Program code: gdb_demo.c

• Note that we found the causes, and the basic idea
for the fixes of two flaws in one run of the
program

‣ With the debugger (thanks, debugger)

• With no code modifications (e.g., add printfs) and
no recompilation required to find the second flaw

‣ Didn’t even have to restart the program

‣ Only needed to undo the impact of the first flaw and
check the state at the fault of the second flaw

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 28

Take Away
• Your C programs may contain flaws after they

compile successfully

‣ Cause the program to crash or give erroneous results

• Flaws may be due to either

‣ Erroneous variable values or pointer values

• Debuggers for C are powerful and feature-rich

‣ We have just scratched the surface

‣ Learn a command a day

• And we will need them later to understand exploits

