
Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

CMPSC 447
C Language Review

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 2

C Program Files
• Program code: gdb_demo.c

• Headers, if any – why header files?

‣ None in this case

‣ What is typically in a header file?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 3

C Program Compilation
• Program code: gdb_demo.c

• Compiler options: gcc and clang

• What is the command line to 
compile gdb_demo.c using gcc or 
clang?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 4

C Program Compilation
• Program code: gdb_demo.c

• Compiler options: gcc and clang

• What is the basic command line to 
compile gdb_demo.c using gcc or 
clang?

‣ gcc –o gdb_demo gdb_demo.c

‣ clang –o gdb_demo gdb_demo.c

• We will use clang in this course

‣ -Wall – enable all compiler warnings



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 5

C Primitives
• People refer to C “primitives” meaning the 

primitive data types in the C language

‣ Int: Integers

‣ Char: Character

• These are the main ones

‣ Integers may vary in their size (memory used)

‣ Also, floats (various types) 

• How do we use these?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 6

C Integers
• Integers are represented in a small number of bytes

‣ Architecture dependent

• Say, four bytes

‣ What is the largest number we can represent?

• Integers may be signed or unsigned

‣ Signed (default): highest order bit represents the ‘sign’

‣ Unsigned: 0 to max

• Can switch between signed and unsigned at will

‣ Compiler may generate a warning



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 7

Pass by Value or Reference
• You can pass integers from one function to another 

as a parameter

‣ void main () { int x=7; foo(x); printf(“%d\n”, x); }

• What is the value is printed?

• What if foo is supposed to modify the value of x?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 8

Pass by Value or Reference
• You can pass integers from one function to another 

as a parameter

‣ void main () { int x=7; foo(x); printf(“%d\n”, x); }

• What is the value is printed?

• What if foo is supposed to modify the value of x?

‣ Pass a reference to x instead

‣ The code above passes x “by value”

‣ void main () { int x=7; foo(&x); printf(“%d\n”, x); }

‣ Is said to pass x “by reference” – What’s the difference?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 9

C Characters
• The “char” data type is a one-byte entity

‣ Often used to represent text (e.g., ascii characters)

‣ But you can use it for any one-byte data 

• You can represent a sequence of chars (or ints) as an 
array – char name[25]; – an array of 25 one-byte chars

‣ Could be a “string” (or not)

‣ Can you identify what differentiates a string from an array 
of characters in general?

• Working with strings in C can be tricky



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 10

Int and Char Pointers
• A key concept in the C language is the pointer

‣ A pointer is a memory reference associated with a type

• Can define or create a pointer

‣ int x, *y; y = &x;

‣ A pointer to y declared “int *y” and a pointer to x is 
created by “&x” and the value of the pointer to x is 
assigned to y “y=&x”

‣ Got it?

• Pointers just store the memory location of the 
referenced object (x in “y=&x”) 



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 11

Int and Char Pointers
• A key concept in the C language is the pointer

‣ A pointer is a memory reference associated with a type

• What does a variable “z” of type “char *” mean?

‣ char *z;



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 12

Int and Char Pointers
• A key concept in the C language is the pointer

‣ A pointer is a memory reference associated with a type

• What does a variable “z” of type “char *” mean?

‣ Depends on the context

‣ Could reference a single char “char *z, a; z=&a;”

‣ Or could reference an array ”char z[25];”

• E.g.,“char a[25], *z; z = a;”

‣ Why no “&” here?

• And “z” may or may not actually reference a string



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 13

Pointer Arithmetic
• Can manipulate pointers as values

‣ char *z; z++;

• What does that do?

• What if z is a pointer to an ”int” type?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 14

Structures
• The C language permits the definition 

of user-defined types as structures

‣ Permits the programmer to define 
memory layouts for related data 

‣ struct x { int a; char *b; };

‣ What does this structure look like in 
memory?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 15

Structures
• What does this structure look like in 

memory?

‣ struct x { int a; char *b; };

• Assuming four-byte integers and 
pointers: four bytes for “a” followed 
by four-bytes for the pointer “b”

‣ Where is the memory referenced by “b”?

‣ Is the type “struct x” stored anywhere?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 16

Structures
• A more complex structure: gdb_demo.c

‣ typedef struct tree_s {

• int val;

• struct tree_s* left;

• struct tree_s* right;

‣ } tree_t;

• Here there are pointers to two fields: 
left and right, referencing structures of 
the same type



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 17

More Structures
• What does this structure look like in 

memory?

‣ struct x { int a; char str[4]; tree_t *t; };



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 18

More Structures
• What does this structure look like in 

memory?

‣ struct x { int a; char str[4]; tree_t *t; };

• Here the four-byte integer is followed 
by a four-byte field and then a four-
byte pointer



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 19

Type Casting
• C allows for programmers to change the type 

associated with a pointer

‣ Called type casting

• What happens when we cast a pointer of type “struct 
x” to a pointer of type “tree_t”?

‣ struct x { int a; char str[4]; tree_t *t; };

‣ struct x *ptr, x1; ptr = &x1;

‣ tree_t *tptr; tptr = (tree_t *)ptr;

• This is legal in C!



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 20

Type Casting
• What happens when we cast a pointer of type “struct 

x” to a pointer of type “tree_t”?

‣ struct x { int a; char str[4]; tree_t *t; };

‣ struct x *ptr, x1; ptr = &x1;

‣ tree_t *tptr; tptr = (tree_t *)ptr;

• In this case, field “a” and “t” are unchanged 

‣ But the field “str” is converted to a tree_t pointer “left”

• You can do this all you want! (you will see in Project 1)

• And the structures need not even be the same size



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 21

Function Pointers
• C allows you to specify pointers to code as well as 

data in your programs – typically referring to the start 
of a function although not required

‣ Called function pointers

‣ Who has used function pointers?

• Suppose we have a function – int foo( int x ) 

‣ Can declare a variable to reference such a function

‣ int(*fnptr)(int) = foo;

‣ What’s the variable declared here?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 22

Function Pointers
• C allows you to specify pointers to code as well as 

data in your programs – typically referring to the start 
of a function although not required

‣ Called function pointers

‣ Who has used function pointers?

• Suppose we have a function – int foo( int *x ) 

‣ Can declare a variable to reference such a function

‣ int(*fnptr)(int *) = foo;

‣ And invoke: int a=7, b=0; b=(*fnptr)(&a);



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Process Address Space

• Text: static code

• Data: also called heap

‣ static variables

‣ dynamically allocated data 
(malloc, new)

• Stack: program 
execution stacks

Text

Data

Stack

lower
memory
address

higher
memory
address



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Program Stack

*Slide by Robert Seacord



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 25

Stack Frames
• Call stacks store both program data and program 

runtime information

‣ Return addresses of functions

‣ Reference to prior stack frame

• Suppose we have the code

‣ int main() { fn(1, 2); exit(0); }

• What would the stack look like when ”fn” is called, 
initializes a local variable “var”, and returns?

‣ Keep in mind: stack grows downward 



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 26

Stack Frames
• Call stack sequence

stack frame
for mainebp

esp

Before call

stack frame
for mainebp

esp

2
1

ret

At call

stack frame
for main

esp

ebp

2
1

ret
old ebp

var

At invocation



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 27

Stack Frames

stack frame
for mainebp

esp

2
1

ret

At call

stack frame
for main

esp

ebp

2
1

ret
old ebp

var

At invocation

stack frame
for mainebp

esp

2
1

ret
old ebp

var

At return



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 28

Stack Issues
• Stack stores data and metadata about runtime

‣ Code addresses and stack frame addresses

• When function returns, the code executes from the 
return address

‣ And stack frame is set to prior frame (value of “old ebp”)

• All local variables and parameters passed between 
functions are stored on the stack

‣ Any type of variable can be present on the stack

• Stack data persists after return

‣ Stack frames are overwritten rather than erased



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 29

Heap
• The data created via dynamic memory allocation 

resides in the heap segment

• Such data is created by memory allocation system calls

‣ E.g., malloc, calloc

• And reclaimed by the programmer using deallocation 
system calls

‣ E.g., free

‣ NOTE: No garbage collection in C

• Again, the programmer is responsible for how 
memory is used by their programs



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 30

Heap
• The heap is a contiguous virtual memory region 

in which memory can be dynamically allocated

‣ tree_t *t = (tree_t *)malloc(sizeof(tree_t));

• What does the above accomplish?

• To track allocation state, heap metadata must 
also be stored 

‣ E.g., location of objects and their sizes as well as free 
slots in the heap and their sizes

‣ Sometimes this metadata is also stored with the 
objects – like the stack



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 31

Heap Structure (Depends)
• Where the heap metadata is stored is allocator-

specific

‣ One option…

Object Object
Meta
Data

Meta
Data

Meta
Data



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 32

Heap Issues
• Heap may store data and metadata about allocation

‣ Used and free slots and sizes

• Heap memory must be reclaimed by the programmer

‣ If you forget to reclaim that creates a “memory leak”

• Heap memory may be used in any function

‣ Thus, you must keep track of whether pointers to heap 
memory reference allocated or deallocated regions

• Heap objects may be referenced through globals, 
pointers in other heap objects, or stack pointers



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 33

Your Questions
• Anything you have been curious about in the C 

language that I have not discussed?



Systems and Internet Infrastructure Security (SIIS) Laboratory Page 35

Take Away
• The C language gives programmers a lot of 

latitude to manage the use of memory in their 
programs

‣ This enables you to write more efficient programs

• But, this latitude can enable you to create 
unintended functionality

‣ That can lead to flaws – e.g., segmentation faults

‣ And some of these bugs may be exploitable

• We will examine methods to reduce flaws and 
prevent exploitation of flaws


