
Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

CMPSC 447
Control-Flow Integrity

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Exploit Vulnerabilities

3

• How do you exploit a memory error vulnerability?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Memory Error Exploits

4

• First and most common way to take control of a
process – control-flow hijacking

• Write to control memory

‣ Call the victim with inputs necessary to overflow buffer or
exploit data pointer

‣ To overwrite the value of a code pointer (e.g., return
address) or data that impacts control (e.g., conditional)

• Direct the process execution to exploit code

‣ Inject code (if possible) or reuse existing code

‣ Use compromised pointer to jump to the chosen code

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 14

Prevent Overflows
• How would you prevent adversaries from control-

flow hijacking?

‣ Use safe string functions correctly (flaw)

‣ Apply a comprehensive bounds checking defense (access)

‣ Restrict options for control flows (exploit)

• We will examine the latter two today

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 16

Check Bounds
• How would you check bounds naively?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 17

Check Bounds
• How would you check bounds naively?

‣ Presumably, you need to know the start and end of a
buffer

• Then, you need to check bounds – how and when?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 18

Bounds Checks
• SoftBound

‣ Records base and bound information for every pointer as
disjoint metadata

‣ Check and/or update such metadata whenever one
dereferences (uses) a pointer

‣ Supported by formal proofs of spatial memory safety

• Separating metadata from pointers maintains
compatibility with C runtime

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 19

SoftBound
• Checking Bounds

‣ Whenever a pointer is used to access memory (i.e.,
dereferenced), SoftBound inserts code (highlighted in grey)
for checking the bounds to detect spatial memory
violations.

allows arbitrary casts. SoftBound associates base and bound meta-
data with every pointer, but records that metadata in a disjoint meta-
data space that is accessed via explicit table lookups. This approach
is conceptually a pointer-based approach, but SoftBound’s disjoint
metadata provides the memory layout compatibility of object-based
approaches. This section describes SoftBound’s key ideas. Sec-
tion 4 formalizes SoftBound and sketches a proof of SoftBound’s
spatial memory safety guarantee. A full discussion of SoftBound’s
specific implementation choices and its handling of all of C’s fea-
tures is deferred to Section 5.

3.1 Pointer Checking and Metadata Propagation
The following description of SoftBound’s transformation assumes
the C code has been translated into a generic intermediate form
that contains only simple operations, uses explicit indexing and
memory access operations, and provides the abstraction of an un-
bounded number of non-memory intermediate values and tempo-
raries that will ultimately be mapped to registers.

Pointer dereference check For every pointer value in the pro-
gram’s intermediate representation, the SoftBound transformation
creates a corresponding base and bound intermediate value. When-
ever a pointer is used to access memory (i.e., dereferenced), Soft-
Bound inserts code (highlighted in grey) for checking the bounds
to detect spatial memory violations:

check(ptr, ptr_base, ptr_bound, sizeof(*ptr));

value = *ptr; // original load

Where check() is defined as:

void check(ptr, base, bound, size) {

if ((ptr < base) || (ptr+size > bound)) {

abort();

}

}

The dereference check explicitly includes the size of the memory
access to ensure that the entire access is in bounds (and not just
the first byte). For example, if a pointer to a single character is cast
to be a pointer to an integer, dereferencing that pointer is a spatial
violation. This dereference check is inserted for all pointer deref-
erences, but such a check is not required when accessing scalar
local or global variables, or when spilling/restoring register values
to/from the stack—we assume that the C compiler generates such
code correctly.

Creating pointers New pointers in C are created in two ways: (1)
explicit memory allocation (i.e. malloc()) and (2) taking the ad-
dress of a global or stack-allocated variable using the & operator.
At every malloc() call site, SoftBound inserts code to set the cor-
responding base and bound. The base value is set to the pointer
returned by malloc(). The bound value is set to either the pointer
plus the size of the allocation (if the pointer is non-NULL) or to
NULL (if the pointer is NULL):

ptr = malloc(size);

ptr_base = ptr;

ptr_bound = ptr + size;

if (ptr == NULL) ptr_bound = NULL;

For pointers to global or stack-allocated objects, the size of the
object is known statically, so SoftBound inserts code to set the base
to the pointer and bound to one byte past the end of the object:

int array[100];

ptr = &array;

ptr_base = &array[0];

ptr_bound = ptr_base + sizeof(array);

Pointer arithmetic and pointer assignment When an expression
contains pointer arithmetic (e.g., ptr+index), array indexing (e.g.,
&(ptr[index])), or pointer assignment (e.g., newptr = ptr;),
the resulting pointer inherits the base and bound of the original
pointer:

newptr = ptr + index; // or &ptr[index]

newptr_base = ptr_base;

newptr_bound = ptr_bound;

No checking is needed during pointer arithmetic because all point-
ers are bounds checked when dereferenced. As is required by C
semantics, creating an out-of-bound pointer is allowed. SoftBound
will detect the spatial violation whenever such a pointer is derefer-
enced. Array indexing in C is equivalent to pointer arithmetic, so
SoftBound applies this same transformation to array indexing.

Structure field accesses Accesses to the fields of a structure are
covered by the above transformations by conversion to separate
pointer arithmetic and dereference operations.

Optional narrowing of pointer bounds The pointer-based ap-
proach adopted by SoftBound enables the ability to easily narrow
the bounds of pointers, which in turn allows SoftBound to pre-
vent internal object overflows. Shrinking of bounds can result in
false violations for particularly pathological C idioms (discussed
below), so SoftBound shrinks pointer bounds only when explicitly
instructed by the programmer to do so (e.g., via a command-line
flag when invoking the compiler).

When instructed to check for overflows within an object, Soft-
Bound shrinks the bounds on a pointer when creating a pointer to
a field of a struct (e.g., when passing a pointer to an element
of a struct to a function). In such cases, SoftBound narrows the
pointer’s bounds to include only the individual field rather than the
entire object.

struct { ... int num; ... } *n;

...

p = &(n->num);

p_base = max(&(n->num), n_base);

p_bound = min(p_base + sizeof(n->num), n_bound);

The above code calculates the maximum base and minimum bound
to ensure that such an operation will never expand the bounds of a
pointer. Pointers to struct fields that are internal arrays (the size
of which are always known statically) are handled similarly:

struct { ... int arr[5]; ... } *n;

...

p = &(n->arr[2]);

p_base = max(&(n->arr), n_base);

p_bound = min(p_base + sizeof(n->arr), n_bound);

Although such narrowing of bounds may results in false posi-
tives, we have not encountered any false violations in any of our 23
benchmarks (approximately 272K lines of code). Yet, some legal
C programs may rely on certain idioms that cause false violations
when narrowing bounds. For example, a program that attempts to
operate on three consecutive fields of the same type (e.g., x, y, and
z coordinates of a point) as a three-element array of coordinates
by taking the address of x will cause a false violation. Another
example of an idiom that can cause false violations comes from
the Linux kernel’s implementation of generic containers such as
linked lists. Linux uses the ANSI C offsetof() macro to create
a container_of() macro, which is used when creating a pointer
to an enclosing container struct based only on a pointer to an in-
ternal struct [31]. Casts in SoftBound do not narrow bounds, so
one idiom that will not cause false violations is casting a pointer to
a struct to a char* or void*.

4

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 20

SoftBound
• Need to initialize, maintain, and use bounds

information

‣ How to create?

‣ What ops require changes to bounds info?

‣ How to lookup bounds info?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 21

SoftBound
• Creating pointers

‣ New pointers in C are created in two ways:

• (1) explicit memory allocation (i.e. malloc()) and

• (2) taking the address of a global or stack-allocated variable using
the ‘&’ operator.

‣ Initialization for malloc

allows arbitrary casts. SoftBound associates base and bound meta-
data with every pointer, but records that metadata in a disjoint meta-
data space that is accessed via explicit table lookups. This approach
is conceptually a pointer-based approach, but SoftBound’s disjoint
metadata provides the memory layout compatibility of object-based
approaches. This section describes SoftBound’s key ideas. Sec-
tion 4 formalizes SoftBound and sketches a proof of SoftBound’s
spatial memory safety guarantee. A full discussion of SoftBound’s
specific implementation choices and its handling of all of C’s fea-
tures is deferred to Section 5.

3.1 Pointer Checking and Metadata Propagation
The following description of SoftBound’s transformation assumes
the C code has been translated into a generic intermediate form
that contains only simple operations, uses explicit indexing and
memory access operations, and provides the abstraction of an un-
bounded number of non-memory intermediate values and tempo-
raries that will ultimately be mapped to registers.

Pointer dereference check For every pointer value in the pro-
gram’s intermediate representation, the SoftBound transformation
creates a corresponding base and bound intermediate value. When-
ever a pointer is used to access memory (i.e., dereferenced), Soft-
Bound inserts code (highlighted in grey) for checking the bounds
to detect spatial memory violations:

check(ptr, ptr_base, ptr_bound, sizeof(*ptr));

value = *ptr; // original load

Where check() is defined as:

void check(ptr, base, bound, size) {

if ((ptr < base) || (ptr+size > bound)) {

abort();

}

}

The dereference check explicitly includes the size of the memory
access to ensure that the entire access is in bounds (and not just
the first byte). For example, if a pointer to a single character is cast
to be a pointer to an integer, dereferencing that pointer is a spatial
violation. This dereference check is inserted for all pointer deref-
erences, but such a check is not required when accessing scalar
local or global variables, or when spilling/restoring register values
to/from the stack—we assume that the C compiler generates such
code correctly.

Creating pointers New pointers in C are created in two ways: (1)
explicit memory allocation (i.e. malloc()) and (2) taking the ad-
dress of a global or stack-allocated variable using the & operator.
At every malloc() call site, SoftBound inserts code to set the cor-
responding base and bound. The base value is set to the pointer
returned by malloc(). The bound value is set to either the pointer
plus the size of the allocation (if the pointer is non-NULL) or to
NULL (if the pointer is NULL):

ptr = malloc(size);

ptr_base = ptr;

ptr_bound = ptr + size;

if (ptr == NULL) ptr_bound = NULL;

For pointers to global or stack-allocated objects, the size of the
object is known statically, so SoftBound inserts code to set the base
to the pointer and bound to one byte past the end of the object:

int array[100];

ptr = &array;

ptr_base = &array[0];

ptr_bound = ptr_base + sizeof(array);

Pointer arithmetic and pointer assignment When an expression
contains pointer arithmetic (e.g., ptr+index), array indexing (e.g.,
&(ptr[index])), or pointer assignment (e.g., newptr = ptr;),
the resulting pointer inherits the base and bound of the original
pointer:

newptr = ptr + index; // or &ptr[index]

newptr_base = ptr_base;

newptr_bound = ptr_bound;

No checking is needed during pointer arithmetic because all point-
ers are bounds checked when dereferenced. As is required by C
semantics, creating an out-of-bound pointer is allowed. SoftBound
will detect the spatial violation whenever such a pointer is derefer-
enced. Array indexing in C is equivalent to pointer arithmetic, so
SoftBound applies this same transformation to array indexing.

Structure field accesses Accesses to the fields of a structure are
covered by the above transformations by conversion to separate
pointer arithmetic and dereference operations.

Optional narrowing of pointer bounds The pointer-based ap-
proach adopted by SoftBound enables the ability to easily narrow
the bounds of pointers, which in turn allows SoftBound to pre-
vent internal object overflows. Shrinking of bounds can result in
false violations for particularly pathological C idioms (discussed
below), so SoftBound shrinks pointer bounds only when explicitly
instructed by the programmer to do so (e.g., via a command-line
flag when invoking the compiler).

When instructed to check for overflows within an object, Soft-
Bound shrinks the bounds on a pointer when creating a pointer to
a field of a struct (e.g., when passing a pointer to an element
of a struct to a function). In such cases, SoftBound narrows the
pointer’s bounds to include only the individual field rather than the
entire object.

struct { ... int num; ... } *n;

...

p = &(n->num);

p_base = max(&(n->num), n_base);

p_bound = min(p_base + sizeof(n->num), n_bound);

The above code calculates the maximum base and minimum bound
to ensure that such an operation will never expand the bounds of a
pointer. Pointers to struct fields that are internal arrays (the size
of which are always known statically) are handled similarly:

struct { ... int arr[5]; ... } *n;

...

p = &(n->arr[2]);

p_base = max(&(n->arr), n_base);

p_bound = min(p_base + sizeof(n->arr), n_bound);

Although such narrowing of bounds may results in false posi-
tives, we have not encountered any false violations in any of our 23
benchmarks (approximately 272K lines of code). Yet, some legal
C programs may rely on certain idioms that cause false violations
when narrowing bounds. For example, a program that attempts to
operate on three consecutive fields of the same type (e.g., x, y, and
z coordinates of a point) as a three-element array of coordinates
by taking the address of x will cause a false violation. Another
example of an idiom that can cause false violations comes from
the Linux kernel’s implementation of generic containers such as
linked lists. Linux uses the ANSI C offsetof() macro to create
a container_of() macro, which is used when creating a pointer
to an enclosing container struct based only on a pointer to an in-
ternal struct [31]. Casts in SoftBound do not narrow bounds, so
one idiom that will not cause false violations is casting a pointer to
a struct to a char* or void*.

4

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 22

SoftBound
• Pointer arithmetic

‣ When an expression contains pointer arithmetic (e.g.,
ptr+index), array indexing (e.g., &(ptr[index])), or pointer
assignment (e.g., newptr = ptr;), the resulting pointer
inherits the base and bound of the original pointer

allows arbitrary casts. SoftBound associates base and bound meta-
data with every pointer, but records that metadata in a disjoint meta-
data space that is accessed via explicit table lookups. This approach
is conceptually a pointer-based approach, but SoftBound’s disjoint
metadata provides the memory layout compatibility of object-based
approaches. This section describes SoftBound’s key ideas. Sec-
tion 4 formalizes SoftBound and sketches a proof of SoftBound’s
spatial memory safety guarantee. A full discussion of SoftBound’s
specific implementation choices and its handling of all of C’s fea-
tures is deferred to Section 5.

3.1 Pointer Checking and Metadata Propagation
The following description of SoftBound’s transformation assumes
the C code has been translated into a generic intermediate form
that contains only simple operations, uses explicit indexing and
memory access operations, and provides the abstraction of an un-
bounded number of non-memory intermediate values and tempo-
raries that will ultimately be mapped to registers.

Pointer dereference check For every pointer value in the pro-
gram’s intermediate representation, the SoftBound transformation
creates a corresponding base and bound intermediate value. When-
ever a pointer is used to access memory (i.e., dereferenced), Soft-
Bound inserts code (highlighted in grey) for checking the bounds
to detect spatial memory violations:

check(ptr, ptr_base, ptr_bound, sizeof(*ptr));

value = *ptr; // original load

Where check() is defined as:

void check(ptr, base, bound, size) {

if ((ptr < base) || (ptr+size > bound)) {

abort();

}

}

The dereference check explicitly includes the size of the memory
access to ensure that the entire access is in bounds (and not just
the first byte). For example, if a pointer to a single character is cast
to be a pointer to an integer, dereferencing that pointer is a spatial
violation. This dereference check is inserted for all pointer deref-
erences, but such a check is not required when accessing scalar
local or global variables, or when spilling/restoring register values
to/from the stack—we assume that the C compiler generates such
code correctly.

Creating pointers New pointers in C are created in two ways: (1)
explicit memory allocation (i.e. malloc()) and (2) taking the ad-
dress of a global or stack-allocated variable using the & operator.
At every malloc() call site, SoftBound inserts code to set the cor-
responding base and bound. The base value is set to the pointer
returned by malloc(). The bound value is set to either the pointer
plus the size of the allocation (if the pointer is non-NULL) or to
NULL (if the pointer is NULL):

ptr = malloc(size);

ptr_base = ptr;

ptr_bound = ptr + size;

if (ptr == NULL) ptr_bound = NULL;

For pointers to global or stack-allocated objects, the size of the
object is known statically, so SoftBound inserts code to set the base
to the pointer and bound to one byte past the end of the object:

int array[100];

ptr = &array;

ptr_base = &array[0];

ptr_bound = ptr_base + sizeof(array);

Pointer arithmetic and pointer assignment When an expression
contains pointer arithmetic (e.g., ptr+index), array indexing (e.g.,
&(ptr[index])), or pointer assignment (e.g., newptr = ptr;),
the resulting pointer inherits the base and bound of the original
pointer:

newptr = ptr + index; // or &ptr[index]

newptr_base = ptr_base;

newptr_bound = ptr_bound;

No checking is needed during pointer arithmetic because all point-
ers are bounds checked when dereferenced. As is required by C
semantics, creating an out-of-bound pointer is allowed. SoftBound
will detect the spatial violation whenever such a pointer is derefer-
enced. Array indexing in C is equivalent to pointer arithmetic, so
SoftBound applies this same transformation to array indexing.

Structure field accesses Accesses to the fields of a structure are
covered by the above transformations by conversion to separate
pointer arithmetic and dereference operations.

Optional narrowing of pointer bounds The pointer-based ap-
proach adopted by SoftBound enables the ability to easily narrow
the bounds of pointers, which in turn allows SoftBound to pre-
vent internal object overflows. Shrinking of bounds can result in
false violations for particularly pathological C idioms (discussed
below), so SoftBound shrinks pointer bounds only when explicitly
instructed by the programmer to do so (e.g., via a command-line
flag when invoking the compiler).

When instructed to check for overflows within an object, Soft-
Bound shrinks the bounds on a pointer when creating a pointer to
a field of a struct (e.g., when passing a pointer to an element
of a struct to a function). In such cases, SoftBound narrows the
pointer’s bounds to include only the individual field rather than the
entire object.

struct { ... int num; ... } *n;

...

p = &(n->num);

p_base = max(&(n->num), n_base);

p_bound = min(p_base + sizeof(n->num), n_bound);

The above code calculates the maximum base and minimum bound
to ensure that such an operation will never expand the bounds of a
pointer. Pointers to struct fields that are internal arrays (the size
of which are always known statically) are handled similarly:

struct { ... int arr[5]; ... } *n;

...

p = &(n->arr[2]);

p_base = max(&(n->arr), n_base);

p_bound = min(p_base + sizeof(n->arr), n_bound);

Although such narrowing of bounds may results in false posi-
tives, we have not encountered any false violations in any of our 23
benchmarks (approximately 272K lines of code). Yet, some legal
C programs may rely on certain idioms that cause false violations
when narrowing bounds. For example, a program that attempts to
operate on three consecutive fields of the same type (e.g., x, y, and
z coordinates of a point) as a three-element array of coordinates
by taking the address of x will cause a false violation. Another
example of an idiom that can cause false violations comes from
the Linux kernel’s implementation of generic containers such as
linked lists. Linux uses the ANSI C offsetof() macro to create
a container_of() macro, which is used when creating a pointer
to an enclosing container struct based only on a pointer to an in-
ternal struct [31]. Casts in SoftBound do not narrow bounds, so
one idiom that will not cause false violations is casting a pointer to
a struct to a char* or void*.

4

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 23

SoftBound
• Pointer metadata retrieval

‣ SoftBound uses a table data structure to map an address
of a pointer in memory to the metadata for that pointer

‣ On load

‣ On store

Another case in which SoftBound does not narrow bounds
is when when creating a pointer to an element of an array.
Although tightening the bounds is such cases may often match the
programmer’s intent, C programs occasionally use array element
pointers to denote a sub-interval of an array. For example, a
program might use memset to zero only a portion of an array using
memset(&arr[4], 0, size) or use the C++ sort function to
sort a sub-array using sort(&arr[4], &arr[10]).

3.2 In-Memory Pointer Metadata Encoding
The above transformation only handled pointers as intermediate
values (i.e., values that can be mapped to registers). Pointers must
also be stored to and retrieved from memory. SoftBound uses a
table data structure to map an address of a pointer in memory to
the metadata for that pointer. SoftBound inserts a table lookup to
retrieve the base and bounds from the disjoint metadata space at
every load of a pointer value:

int** ptr;

int* new_ptr;

...

check(ptr, ptr_base, ptr_bound, sizeof(*ptr));

newptr = *ptr; // original load

newptr_base = table_lookup(ptr)->base;

newptr_bound = table_lookup(ptr)->bound;

Correspondingly, SoftBound inserts a table update for every store
of a pointer value:

int** ptr;

int* new_ptr;

...

check(ptr, ptr_base, ptr_bound, sizeof(*ptr));

(*ptr) = new_ptr; // original store

table_lookup(ptr)->base = newptr_base;

table_lookup(ptr)->bound = newptr_bound;

Only load and stores of pointers are instrumented; loads and stores
of non-pointer value are unaffected. Even though loads and stores
of pointers are only a fraction of all memory operations, fast table
lookups and updates are key to reducing overall overheads. The
implementation section (Section 5) explores two implementations
of the lookup table.

3.3 Metadata Propagation with Function Calls
When pointers are passed as arguments or returned from functions,
their base and bound metadata must also travel with them. If all
pointer arguments were passed and returned on the stack (i.e., via
memory and not registers), the above table-lookup approach for
handling in-memory metadata would suffice. However, the function
calling conventions of most ISAs specify that function arguments
are generally passed in registers.

To address this issue, SoftBound uses procedure cloning [12]
to transform every function declaration and function call site to in-
clude additional arguments for base and bound. For each pointer
argument, base and bound arguments are added to the end of the
list of the function’s arguments. As part of this transformation, the
function name is appended with a SoftBound-specific unique iden-
tifier, specifying this function has been transformed by SoftBound.
For example, the code:

int func(char* s)

{ ... }

int value = func(ptr);

is transformed to:

int sb_func(char* s, void* s_base, void* s_bound)

{ ... }

int value = sb_func(ptr, ptr_base, ptr_bound);

Functions that return a pointer are changed to return a three-
element structure by value that contains the pointer, its base, and
its bound.

The transformation at the call site is performed entirely based
on the arguments being passed to the function. Thus, this approach
works when the definition and call site are in different files, which
is necessary to support traditional separate compilation and exter-
nal libraries. In fact, even if the function prototype is unspecified
and incomplete (which is surprisingly common in actual C code),
as long as the arguments passed in the C code are correct, the trans-
formation will work as expected. This general approach has the
additional benefit that the transformation is independent of the tar-
get ISA and the generated code obeys the system’s standard call-
ing conventions (albeit with additional parameters). Support of safe
variable argument functions is discussed in Section 5.

3.4 Comparison with CCured’s WILD Pointers
In many respects, SoftBound’s pointer representation is merely a
more compatible and more efficient implementation of CCured’s
WILD pointers. Like CCured’s WILD pointers, SoftBound
provides memory safety even in the context of arbitrary casts.
CCured’s WILD pointers accomplish this by (1) including a base

field with each pointer, (2) including a size field at the beginning of
each allocation, and (3) using tag bits at the end of each allocation
to indicate which bytes in the allocation are pointers. These tag
bits are written whenever storing to such an object (set to one
when storing a valid pointer, set to zero otherwise) and read on
every pointer load. As formally shown [35], this approach prevents
corruption of the base pointer metadata stored inline within the
objects, even if those objects are accessed via arbitrarily cast
pointers. The key to this guarantee is that such stores will also set
the tag to zero and that all pointer loads check this tag.

WILD pointers have three key disadvantages. First, WILD
pointers introduce source code compatibility issues because they
change memory layout in programmer-visible ways. Second,
WILD pointer’s base pointer must point to the start of an
allocation, thus disallowing sub-object bounds information and
failing to detect sub-object overflows. Third, all stores to a WILD
object must update the metadata bits, adding runtime overhead. For
these reasons (and the fact that WILD pointers disrupt CCured’s
whole-program type inference), all performance results for CCured
are presented for benchmarks in which the need for WILD pointers
was totally eliminated by program source modifications, program
annotations, or insertion of unsafe trusted casts [35].

SoftBound’s pointer representation improves upon WILD point-
ers while maintaining their spatial safety properties. First, Soft-
Bound’s metadata is recorded in a disjoint metadata space, avoid-
ing the memory layout incompatibility of WILD pointers. Second,
by using base/bound metadata that is totally decoupled from the
pointer in memory, SoftBound avoids the object size header and
tag bits, which in turn allows SoftBound to address the second de-
ficiency of WILD pointers by allowing arbitrary sub-object bound-
ing to detect sub-object overflows. Third, as SoftBound’s metadata
is disjoint, normal program memory operations cannot corrupt the
metadata, eliminating both the tag bits and the need for every store
operation to update these tag bits. With these improvements over
WILD pointers, SoftBound pointer representation is highly com-
patible, provides reasonable performance overheads, and provides
spatial safety even in the presence of arbitrary casts. The next sec-
tion provides a formal proof that shows SoftBound’s pointers pro-
vide the same well-formed memory guarantees (and thus spatial
safety guarantees) as CCured’s WILD pointers.

5

Another case in which SoftBound does not narrow bounds
is when when creating a pointer to an element of an array.
Although tightening the bounds is such cases may often match the
programmer’s intent, C programs occasionally use array element
pointers to denote a sub-interval of an array. For example, a
program might use memset to zero only a portion of an array using
memset(&arr[4], 0, size) or use the C++ sort function to
sort a sub-array using sort(&arr[4], &arr[10]).

3.2 In-Memory Pointer Metadata Encoding
The above transformation only handled pointers as intermediate
values (i.e., values that can be mapped to registers). Pointers must
also be stored to and retrieved from memory. SoftBound uses a
table data structure to map an address of a pointer in memory to
the metadata for that pointer. SoftBound inserts a table lookup to
retrieve the base and bounds from the disjoint metadata space at
every load of a pointer value:

int** ptr;

int* new_ptr;

...

check(ptr, ptr_base, ptr_bound, sizeof(*ptr));

newptr = *ptr; // original load

newptr_base = table_lookup(ptr)->base;

newptr_bound = table_lookup(ptr)->bound;

Correspondingly, SoftBound inserts a table update for every store
of a pointer value:

int** ptr;

int* new_ptr;

...

check(ptr, ptr_base, ptr_bound, sizeof(*ptr));

(*ptr) = new_ptr; // original store

table_lookup(ptr)->base = newptr_base;

table_lookup(ptr)->bound = newptr_bound;

Only load and stores of pointers are instrumented; loads and stores
of non-pointer value are unaffected. Even though loads and stores
of pointers are only a fraction of all memory operations, fast table
lookups and updates are key to reducing overall overheads. The
implementation section (Section 5) explores two implementations
of the lookup table.

3.3 Metadata Propagation with Function Calls
When pointers are passed as arguments or returned from functions,
their base and bound metadata must also travel with them. If all
pointer arguments were passed and returned on the stack (i.e., via
memory and not registers), the above table-lookup approach for
handling in-memory metadata would suffice. However, the function
calling conventions of most ISAs specify that function arguments
are generally passed in registers.

To address this issue, SoftBound uses procedure cloning [12]
to transform every function declaration and function call site to in-
clude additional arguments for base and bound. For each pointer
argument, base and bound arguments are added to the end of the
list of the function’s arguments. As part of this transformation, the
function name is appended with a SoftBound-specific unique iden-
tifier, specifying this function has been transformed by SoftBound.
For example, the code:

int func(char* s)

{ ... }

int value = func(ptr);

is transformed to:

int sb_func(char* s, void* s_base, void* s_bound)

{ ... }

int value = sb_func(ptr, ptr_base, ptr_bound);

Functions that return a pointer are changed to return a three-
element structure by value that contains the pointer, its base, and
its bound.

The transformation at the call site is performed entirely based
on the arguments being passed to the function. Thus, this approach
works when the definition and call site are in different files, which
is necessary to support traditional separate compilation and exter-
nal libraries. In fact, even if the function prototype is unspecified
and incomplete (which is surprisingly common in actual C code),
as long as the arguments passed in the C code are correct, the trans-
formation will work as expected. This general approach has the
additional benefit that the transformation is independent of the tar-
get ISA and the generated code obeys the system’s standard call-
ing conventions (albeit with additional parameters). Support of safe
variable argument functions is discussed in Section 5.

3.4 Comparison with CCured’s WILD Pointers
In many respects, SoftBound’s pointer representation is merely a
more compatible and more efficient implementation of CCured’s
WILD pointers. Like CCured’s WILD pointers, SoftBound
provides memory safety even in the context of arbitrary casts.
CCured’s WILD pointers accomplish this by (1) including a base

field with each pointer, (2) including a size field at the beginning of
each allocation, and (3) using tag bits at the end of each allocation
to indicate which bytes in the allocation are pointers. These tag
bits are written whenever storing to such an object (set to one
when storing a valid pointer, set to zero otherwise) and read on
every pointer load. As formally shown [35], this approach prevents
corruption of the base pointer metadata stored inline within the
objects, even if those objects are accessed via arbitrarily cast
pointers. The key to this guarantee is that such stores will also set
the tag to zero and that all pointer loads check this tag.

WILD pointers have three key disadvantages. First, WILD
pointers introduce source code compatibility issues because they
change memory layout in programmer-visible ways. Second,
WILD pointer’s base pointer must point to the start of an
allocation, thus disallowing sub-object bounds information and
failing to detect sub-object overflows. Third, all stores to a WILD
object must update the metadata bits, adding runtime overhead. For
these reasons (and the fact that WILD pointers disrupt CCured’s
whole-program type inference), all performance results for CCured
are presented for benchmarks in which the need for WILD pointers
was totally eliminated by program source modifications, program
annotations, or insertion of unsafe trusted casts [35].

SoftBound’s pointer representation improves upon WILD point-
ers while maintaining their spatial safety properties. First, Soft-
Bound’s metadata is recorded in a disjoint metadata space, avoid-
ing the memory layout incompatibility of WILD pointers. Second,
by using base/bound metadata that is totally decoupled from the
pointer in memory, SoftBound avoids the object size header and
tag bits, which in turn allows SoftBound to address the second de-
ficiency of WILD pointers by allowing arbitrary sub-object bound-
ing to detect sub-object overflows. Third, as SoftBound’s metadata
is disjoint, normal program memory operations cannot corrupt the
metadata, eliminating both the tag bits and the need for every store
operation to update these tag bits. With these improvements over
WILD pointers, SoftBound pointer representation is highly com-
patible, provides reasonable performance overheads, and provides
spatial safety even in the presence of arbitrary casts. The next sec-
tion provides a formal proof that shows SoftBound’s pointers pro-
vide the same well-formed memory guarantees (and thus spatial
safety guarantees) as CCured’s WILD pointers.

5

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 24

SoftBound
• Downsides

‣ Has a significant overhead – 67% for 23 benchmark
programs

‣ Uses extra memory – 64% to 87% depending on
implementation

‣ Does not support multithreaded programs

• But, achieves full spatial memory safety for C
programs

‣ We have used in “privilege separation” work (PtrSplit) to
be discussed later

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 25

Fat Pointers
• Idea

‣ Associate base and bounds metadata with every pointer

• Problems

‣ Forgery – overwrite base and bounds when overwrite
pointer

‣ Limited space – have at most 64 bits to express address
and metadata

‣ Performance – SoftBound demonstrated that these
operations could be costly

• Solutions?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 26

Low-Fat Pointers
• Idea

‣ Hardware support for fat pointers

• Solutions

‣ Forgery – Hardware tags to prevent software from
overwriting without detection

‣ Limited space – Do not really need entire 64-bit address
space – use 46-bit address space and rest for metadata

‣ Performance – Hardware instructions to perform desired
operations inline

• Result: Memory error protection for 3% overhead

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 27

Low-Fat Pointers
• Checking – similar to SoftBound

• Tagging – common technique from long ago

‣ Hardware differentiates data (and code) from references

‣ Utilize 8 bits of 64-bit pointer for “type” of pointer

• Encoding

‣ Base and bounds within the remaining 10 bits

‣ Not many. Optimize use? Align regions

The alternative is to design our systems to automatically
prevent spatial safety errors, protecting against silent cor-
ruption of the system or violations of program semantics.
This can be done at the language level with bounds checked
arrays (e.g. Java), at the compiler or runtime level by main-
taining object base and bounds information, or at the hard-
ware level. Many recent systems explore the use of fat point-
ers that extend the pointer representation with base and
bounds information so that the runtime or hardware can pre-
vent spatial safety violations (Sec. 2.1). Software level solu-
tions typically come with high runtime overheads (50–120%)
or weak protection guarantees limiting ubiquitous adoption.

Object capability systems [14, 17, 45, 34, 28, 40] are at-
tractive for both their potential to enable programmer con-
trol of access rights and their support for least privilege. Us-
ing hardware supported tags [36, 18, 34, 23, 20] (Sec. 3.1),
we can make fat pointers unforgeable so that they can serve
as a basis for the descriptors used in hardware-based capa-
bility systems.

In this paper we assume that the safety benefits of fat
pointers [27, 33, 31] and the security benefits of capabilities
[29, 42] are well established from prior work, but that their
costs have typically been considered too high for ubiquitous
use in the past [19, 10]. To that end, we address how they
might be efficiently implemented in hardware. Specifically,
we explore (1) compact representations for fat pointers that
limit their impact on memory footprint (3% worst case), (2)
parallel hardware support for bounds checking that guar-
antees there is no runtime overhead for checking, and (3)
hardware enforcement and management that allow the fat
pointers to serve as object capabilities. That is, we spend
hardware to eliminate the overheads of spatial safety check-
ing. We evaluate the area and delay complexity of the hard-
ware fat-pointer operations using an FPGA implementation.

Our novel contributions include:
• Design and evaluation of a new, compact fat-pointer

encoding and implementation (BIMA) that has signif-
icantly lower gate depth (small cycle time) operations
than previous work (e.g. [7]) while simultaneously re-
taining: (1) compact representation in memory, (2)
low memory loss due to fragmentation (<3%), and (3)
precise spatial bounds detection.

• Hardware that enforces the BIMA bounds checking
and update, making the fat pointers unforgeable and
non-bypassable. This allows the 64b pointer to serve as
an object capability, achieving significant savings over
schemes that required three full 64b words to encode
a capability address, base, and bound (e.g. [43]).

• Pipeline organization that allows the BIMA encoding
to run just as fast as the baseline processor without
spatial safety checking.

2. BACKGROUND

2.1 Fat Pointer
Many modern systems have explored the maintenance and

checking of explicit object base and bounds in order to main-
tain spatial safety. That is, rather than simply representing
a pointer with its address, the system includes the base and
bound address in the pointer representation, for a total of
three words. Since this makes the pointer larger, it is of-
ten referred to as a fat-pointer scheme (e.g. [27], [33]). By
checking against the base and bound during memory oper-

ations, the system can detect any spatial safety violations
and prevent them from occurring:

if ((ptr.A >= ptr.base) && (ptr.A <= ptr.bound))
perform load or store

else
jump to error handler

The Secure Virtual Architecture (SVA) [11] lists fat point-
ers as a potential future direction for further performance
improvement of OS kernel safety enforcement. Many schemes
have introduced the pointers in the compiler when running
on conventional hardware. These incur significant runtime
and space overheads. Examples include: PAriCheck (9.5%
average memory overhead and 49% runtime overhead on
SPEC2000) [50], Baggy Bounds (worst-case 100% memory
overhead; 15% average memory overhead and 60% runtime
overhead on SPEC2000) [2], SoftBound (worst-case 200%
memory overhead; 64% average memory overhead and 67%
runtime overhead on SPEC and Olden benchmarks) [31],
and CRED (26–130% runtime overhead) [39]. Other soft-
ware schemes sacrifice guaranteed protection against all out-
of-bound references in order to improve performance, such
as Lightweight Bounds Checks (8.5% average memory over-
head and 23% runtime overhead on SPEC2000) [21]. Fur-
thermore, since these schemes depend on software mainte-
nance and checking of guards, they are not suitable for use
as capabilities since they only assist with voluntary confine-
ment rather than providing mandatory access confinement.
HardBound is a hardware approach that attempts to main-

tain data structure layout compatibility by placing the bound
information in a shadow space and reduces runtime over-
head to 10–20% [15] but has a worst-case memory overhead
of 200%. Moreover, the hardbound design is described only
down to the micro-architectural level, providing no quan-
tification of added gate count or necessary gate delay. In-
tel has recently announced a hardware-assisted approach for
runtime memory bounds management [1] that appears very
similar to HardBound.
Apart from the explicit fat-pointer approach for memory

safety, some tagging mechanisms have been proposed that
use metadata to perform spatial checks [12, 9]. The most
lightweight version of these, uses a few extra bits per word
to limit accidental spatial violations but not guarantee pro-
tection, while the more complete require over 100% area
overhead and can have over 100% runtime overhead.
In contrast, our scheme has a worst-case 3% memory loss

due to fragmentation (Sec. 4.5) and no runtime overhead
(Sec. 5) while providing spatial safety semantics similar to
HardBound and hardware enforcement that makes it suit-
able for supporting capabilities. Furthermore, we provide a
gate-level design that allows us to quantify gate count and
gate delays.
While most of the prior work was performed on x86 archi-

tectures, we will be using a RISC architecture as our base-
line. As a crude estimate of the work performed by the fat-
pointer checking with dedicated hardware, we identify the
instruction sequences required to provide the same protec-
tion as our fat-pointer scheme in Tab. 1 and use instruction
trace simulations for the SPEC2006 benchmarks (App. A) to
calculate the impact on dynamic instruction count (Fig. 1).
This is an overestimate in that a good compiler will opti-
mize away some of these checks as redundant (e.g. [32]).
Nonetheless, this illustrates the work performed by our fat-

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 33

Direct Control of Program
• Once an adversary can specify the value of a code

pointer, they can direct the program’s execution
(control flow)

‣ Return address (call stack) – choose next code to run on
return instruction

‣ Function pointer (stack or heap) – chooses next code to
run when invoked

• What exploit options do adversaries have available?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 34

Prevent Code-Reuse Attacks
• Most powerful adversary attack is code-reuse attack

• E.g., Using a ROP chain can execute any code in any
order

‣ As long as it terminates in a return instruction

‣ Can also chain calls and jumps

• How would you prevent a program from executing
the victim’s code in unexpected and arbitrary ways?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 35

Prevent Code-Reuse Attacks
• How would you prevent a program from executing

gadgets rather than the expected code?

‣ Control-flow integrity

• Force the program to execute according to an expected CFG

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 36

Control Flow Graph
• Is a graph G=(V,E)

‣ Graph vertices: V – set of program instructions

‣ Graph edges: E=(a, b) – meaning b can succeed a in some
execution

• For a function, a CFG relates the instructions and the
possible ordering of instruction executions

• Many of these can be predicted from the code

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 37

Control Flow Graph
• Each line

corresponds to one
or more
instructions

• Non-trivial edges

‣ Line 1 à 11

‣ Line 3 à 5

‣ Line 7 à 9

• All flow edges
known from code

21. (8pts) In the code below, the following questions about symbolic execution.

0: /* i, n are ints, and char b[12] */
1: if (i > 0) {
2: n = i + 2;
3: if (n == 7)
4: b[n+i] = ’a’;
5: else {
6: n = i + 8;
7: if (n < 12)
8: b[n] = ’a’;
9: }
10: }

(a) (3pts) Specify the symbolic path constraints in terms of i for lines 3, 5, and 7.

(b) (3pts) How can knowledge of these symbolic path constraints aid in fuzz testing?

(c) (2pts) Is there an error in this program?

5

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 38

CFG Ambiguity
• There is ambiguity about the target of some

instructions

‣ Called indirect control flows

• Those instructions are

‣ Returns

‣ Indirect Calls

‣ Indirect Jumps

• Their targets are computed at runtime

‣ Can you give an example? How to limit to the CFG?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 39

Control-Flow Integrity

8

Our Mechanism

FA FB

return
call fp

Acall

Acall+1

B1

Bret

CFG excerpt

nop IMM1

if(*fp != nop IMM1) halt

nop IMM2

if(**esp != nop IMM2) halt

NB: Need to ensure bit patterns for nops
appear nowhere else in code memory

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 40

Control-Flow Integrity

9

More Complex CFGs

Maybe statically all we know is that
FA can call any int int function

FA

FB

call fp

Acall
B1

CFG excerpt

C1

FC

nop IMM1

if(*fp != nop IMM1) halt

nop IMM1

Construction: All targets of a computed jump must have

the same destination id (IMM) in their nop instruction

succ(Acall) = {B1, C1}

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 41

Control-Flow Integrity

10

Imprecise Return Information

Q: What if FB can return

 to many functions ?

Bret

Acall+1

CFG excerpt

Dcall+1

FB

FA

return

call FB

FD

call FB

nop IMM2

if(**esp != nop IMM2) halt

nop IMM2

succ(Bret) = {Acall+1, Dcall+1}

CFG Integrity:

Changes to the
PC are only to
valid successor
PCs, per succ().

A: Imprecise CFG

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 42

Destination Equivalence
• Eliminate impossible return targets

‣ Two destinations are said to be equivalent if they connect to
a common source in the CFG.

ret

func_j:

ret

func_i:

R2:

call func_j
R3:

R1:
call %eax

call func_i

Figure 4. Destination equivalence effect on ret instructions (a dashed line
represents an indirect call while a solid line stands for a direct call)

effect on the ret instructions. In this figure, there are one
indirect call instruction and two direct call instructions.
The indirect call may invoke both functions func i and
func j while the two direct calls execute func i and
func j, respectively. R1, R2 and R3 are the corresponding
three return addresses. From the figure, the function func i
can return to R1 and R2, and the function func j can
return to R1 and R3. Because of the destination equivalence
effect, R1, R2 and R3 are all equivalent in this example.
More specifically, since R2 is equivalent to R1 and R1 is
equivalent to R3, based on the transitivity of the equivalence
relation, R2 is equivalent to R3. The destination equivalence
effect also indicates that a return address has the same index
in each target table that contains it. This is obvious since
only one index can be assigned to a specific destination.
In our example, R1, R2 and R3 forms one equivalent
group, and two ret instructions in func i and func j can
return to them. If one table per function is used to enforce
the control-flow integrity, we can use a table “R1, R2,
error” for the ret instruction in func i, and another table
“R1, error, R3” for the ret instruction in func j, where
error denotes a special destination to trap an impossible
control transfer. Therefore, our one-table-per-function-based
control-flow integrity enforcement policy is more precise
than the one originally proposed in [1], where R1, R2 and
R3 will bear the same label ID and both ret instructions
can legitimately transfer control to all of them. In particular,
in [1], the function func i can legally return to R3 and
func j can legally return to R2. In comparison, our scheme
can flexibly handle the destination equivalence effect and
make these two paths simply impossible in HyperSafe.

III. IMPLEMENTATION
We have implemented a prototype of HyperSafe and

applied it to protect two open-source Type-I hypervisors,
i.e., BitVisor [46] (with ∼190K SLOC) 4 and Xen [5] (with
∼230K SLOC). In particular, the first technique – non-
bypassable memory lockdown – is implemented by directly
extending their memory management modules. For the sec-
ond technique – restricted pointer indexing, we choose to
extend the open-source LLVM compiler so that we can

4In our prototype, we disabled the VPN support in BitVisor as it is not
relevant.

enable it by simply re-compiling the hypervisor code with
the modified compiler. Our development environment is a
standard 64 bit Ubuntu 9.10 desktop. As mentioned earlier,
the BitVisor port is a full implementation, while the Xen port
only contains the non-bypassable memory lockdown feature,
which nevertheless guarantees the nontrivial code integrity
of Xen. Meanwhile, our current prototype integrates the
trusted booting software, i.e., tboot [49], to protect the load-
time integrity. After the hypervisor is successfully loaded,
HyperSafe will then ensure its runtime integrity. In the
following, we focus on the BitVisor port as an example to
present our implementation details.

A. Non-Bypassable Memory Lockdown
The key novelty of our system is the non-bypassable

memory lockdown technique for hypervisor integrity protec-
tion, achieved purely based on commodity hardware support.
Specifically, HyperSafe write-protects the hypervisor’s page
tables and turns on the WP bit in CR0 to initiate the memory
lockdown. Our system requires only minimal modifications
to the supported hypervisors, therefore satisfying the sec-
ond design goal (Section II). Specifically, in our BitVisor
prototype, we only added or changed 521 lines of C code
and 9 lines of assembly code. To avoid potential pitfalls in
W⊕X enforcement (Section II), we adjust the link script to
align related sections to avoid mixed pages and at runtime
disallow double mappings.
In our prototype, we reserved the top 128MB physical

memory for BitVisor. This memory is mapped 1 : 1 to
the virtual address 0x40200000. A 32MB memory range,
starting at the virtual address 0x40800000, is reserved as the
shared page table pool from which all the hypervisor’s page
tables are allocated. After secure booting from tboot, the
hypervisor properly initializes the page table data structure,
turns on the WP protection in the CR0 register, and then
enables the paging mode. After entering the paging mode,
every virtual memory access will be automatically translated
through page tables. Because of that, all the page tables
have to be accessible and mapped in the hypervisor’s virtual
address space. In BitVisor, since all the page tables are
allocated from and mapped in the page table pool, we simply
set the whole page table pool as read-only to lock the
page tables. To accommodate benign updates, our system
first traverses through the page table hierarchy to locate the
affected page table entries, and then escorts their updates to
guarantee that existing hypervisor code will not be modified
and no external code will be introduced for execution.
After the page tables have been write-protected, any

write attempts to modify them at runtime (e.g., either by
legitimate hypervisor code or malicious code injected due
to a successful exploitation) will be trapped. Inside the page
fault handler, we will enforce an unlocking logic that simply
preserves the W⊕X property. In the meantime, there also
exist a number of legitimate reasons for the hypervisor to

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 43

Destination Equivalence
• Eliminate impossible return targets

‣ Can R2 be a return target of func_j?

ret

func_j:

ret

func_i:

R2:

call func_j
R3:

R1:
call %eax

call func_i

Figure 4. Destination equivalence effect on ret instructions (a dashed line
represents an indirect call while a solid line stands for a direct call)

effect on the ret instructions. In this figure, there are one
indirect call instruction and two direct call instructions.
The indirect call may invoke both functions func i and
func j while the two direct calls execute func i and
func j, respectively. R1, R2 and R3 are the corresponding
three return addresses. From the figure, the function func i
can return to R1 and R2, and the function func j can
return to R1 and R3. Because of the destination equivalence
effect, R1, R2 and R3 are all equivalent in this example.
More specifically, since R2 is equivalent to R1 and R1 is
equivalent to R3, based on the transitivity of the equivalence
relation, R2 is equivalent to R3. The destination equivalence
effect also indicates that a return address has the same index
in each target table that contains it. This is obvious since
only one index can be assigned to a specific destination.
In our example, R1, R2 and R3 forms one equivalent
group, and two ret instructions in func i and func j can
return to them. If one table per function is used to enforce
the control-flow integrity, we can use a table “R1, R2,
error” for the ret instruction in func i, and another table
“R1, error, R3” for the ret instruction in func j, where
error denotes a special destination to trap an impossible
control transfer. Therefore, our one-table-per-function-based
control-flow integrity enforcement policy is more precise
than the one originally proposed in [1], where R1, R2 and
R3 will bear the same label ID and both ret instructions
can legitimately transfer control to all of them. In particular,
in [1], the function func i can legally return to R3 and
func j can legally return to R2. In comparison, our scheme
can flexibly handle the destination equivalence effect and
make these two paths simply impossible in HyperSafe.

III. IMPLEMENTATION
We have implemented a prototype of HyperSafe and

applied it to protect two open-source Type-I hypervisors,
i.e., BitVisor [46] (with ∼190K SLOC) 4 and Xen [5] (with
∼230K SLOC). In particular, the first technique – non-
bypassable memory lockdown – is implemented by directly
extending their memory management modules. For the sec-
ond technique – restricted pointer indexing, we choose to
extend the open-source LLVM compiler so that we can

4In our prototype, we disabled the VPN support in BitVisor as it is not
relevant.

enable it by simply re-compiling the hypervisor code with
the modified compiler. Our development environment is a
standard 64 bit Ubuntu 9.10 desktop. As mentioned earlier,
the BitVisor port is a full implementation, while the Xen port
only contains the non-bypassable memory lockdown feature,
which nevertheless guarantees the nontrivial code integrity
of Xen. Meanwhile, our current prototype integrates the
trusted booting software, i.e., tboot [49], to protect the load-
time integrity. After the hypervisor is successfully loaded,
HyperSafe will then ensure its runtime integrity. In the
following, we focus on the BitVisor port as an example to
present our implementation details.

A. Non-Bypassable Memory Lockdown
The key novelty of our system is the non-bypassable

memory lockdown technique for hypervisor integrity protec-
tion, achieved purely based on commodity hardware support.
Specifically, HyperSafe write-protects the hypervisor’s page
tables and turns on the WP bit in CR0 to initiate the memory
lockdown. Our system requires only minimal modifications
to the supported hypervisors, therefore satisfying the sec-
ond design goal (Section II). Specifically, in our BitVisor
prototype, we only added or changed 521 lines of C code
and 9 lines of assembly code. To avoid potential pitfalls in
W⊕X enforcement (Section II), we adjust the link script to
align related sections to avoid mixed pages and at runtime
disallow double mappings.
In our prototype, we reserved the top 128MB physical

memory for BitVisor. This memory is mapped 1 : 1 to
the virtual address 0x40200000. A 32MB memory range,
starting at the virtual address 0x40800000, is reserved as the
shared page table pool from which all the hypervisor’s page
tables are allocated. After secure booting from tboot, the
hypervisor properly initializes the page table data structure,
turns on the WP protection in the CR0 register, and then
enables the paging mode. After entering the paging mode,
every virtual memory access will be automatically translated
through page tables. Because of that, all the page tables
have to be accessible and mapped in the hypervisor’s virtual
address space. In BitVisor, since all the page tables are
allocated from and mapped in the page table pool, we simply
set the whole page table pool as read-only to lock the
page tables. To accommodate benign updates, our system
first traverses through the page table hierarchy to locate the
affected page table entries, and then escorts their updates to
guarantee that existing hypervisor code will not be modified
and no external code will be introduced for execution.
After the page tables have been write-protected, any

write attempts to modify them at runtime (e.g., either by
legitimate hypervisor code or malicious code injected due
to a successful exploitation) will be trapped. Inside the page
fault handler, we will enforce an unlocking logic that simply
preserves the W⊕X property. In the meantime, there also
exist a number of legitimate reasons for the hypervisor to

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 44

Control-Flow Integrity

11

No “Zig-Zag” Imprecision

Acall
B1

CFG excerpt

C1

Ecall

Solution I: Allow the imprecision Solution II: Duplicate code
to remove zig-zags

Acall
B1

CFG excerpt

C1A

Ecall C1E

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 45

Restricted Pointer Indexing
• One table for call and return for each function

• Why can’t func_j return to R2 with this approach?

func_j

Ri

call *%eax
Ri:

func_j:

ret

[esp]

eax

Call Site i Callee j

(a) Traditional indirection call

Ri:
call *%eax

 Ri

func_j

ret

func_j:

Target Table i

eax

[esp]
Target Table j

Call Site i Callee j

(b) New indirection call

Figure 3. Traditional indirect call vs. new indirect call in HyperSafe (Note Ri is the return address of the indirect call)

instrumented to convert the index back to the destination
address (e.g., by looking up the index in the table). For that,
we need to take the following two steps:
First, the instructions that introduce the control data into

the hypervisor program must be converted to use the indexes
instead. For simplicity, we call these instructions source
instructions. The source instruction for a return address is
the related call that pushes the return address onto the stack.
As a result, the call instruction will be instrumented into
two instructions: one pushes the index onto the stack and
another jmps to the function entry point. For an indirect
call, its source instruction is an earlier instruction that loads
the function address to the register or memory. Unlike the
return address case, the function pointer can possibly appear
in the data section (e.g., as a member of an initialized global
object or variable). As a result, we can leverage the compiler
to identify and convert them.
Second, the instructions that consume the control data

from the hypervisor program must be converted to translate
the indexes back to their destination addresses. Similarly,
we call these instructions sink instructions. Return addresses
will be used by the ret instructions while function pointers
will be consumed by indirect call/jmp instructions. During
instrumentation, a ret will be converted to a sequence of
instructions to pop the index off the stack, convert it into the
return address, and then return to it. An indirect call/jmp will
be converted to use the index to locate the function entry
point and then continue execution there.
Based on the above instrumentation, an indirect call acts

as a sink instruction for the consumed function pointer
and a source instruction for the dynamically-pushed return
address. Therefore, it will be instrumented twice. There may
also exist other instructions that access the control data but
are not the source and sink instructions. Among them, some
instructions can be left intact if the contents of the control
data are not explicitly examined by them. One example
is the mov instruction that copies the index to and from
registers or memory. Instructions that compare two function
addresses do not need instrumentation either if we assign the
pointer indexes in the order of their addresses. On the other
hand, instructions that examine the contents of control data
must be expanded to convert indexes into original control
data. A general solution is to discover and convert all such
instructions, ideally by the compiler. Fortunately, very few

instructions will touch return addresses on the stack. If they
do, most likely they are implemented in assembly and thus
we can instrument them manually. For function pointers,
most accessing instructions are mov or cmp. In this case,
the contents of the function pointers are not examined and
we can safely keep these instructions as is.
In Figure 3, we show the control flow for an instrumented

call/ret pair in HyperSafe when compared to the original
pair. In the figure, the original call has been instrumented
to fetch the index from eax, convert it to a function entry
point by indexing into its target table, and then jump
to the function. By substituting indexes for control data,
HyperSafe limits the destination of a runtime control transfer
to only those explicitly specified in the target table. In
other words, indirect instructions can only transfer control
to the targets allowed by the CFG. Moreover, because all
the destination addresses are known beforehand from the
hypervisor program binary, these target tables can be pre-
computed offline. At runtime, they are protected by directly
applying the memory lockdown technique.
Furthermore, with the help of the target tables, HyperSafe

can flexibly control the precision of control-flow integrity.
In one extreme case, we can simply use two big tables:
one is for all the ret instructions (with all valid return
addresses) and the other one is for all the indirect call
instructions (with all possible indirectly-called functions’
entry points). This scheme provides the least precision,
resulting in coarse protection: namely a ret can return to
any valid return address in the hypervisor program; and an
indirect call can call any indirectly-called function. On the
other extreme, each indirect call has its own target table,
and all ret instructions inside the same function share one
target table. In other words, each function has a dedicated
table for all of its returns. By doing so, we can provide
the finest control over what targets indirect instructions can
transfer control to. Note that there is no need to use one
target table per return instruction since all the ret instructions
in a function always have the same set of return addresses.
As pointed out in [1], the major factor that impairs the

precision of control-flow integrity is the so called destination
equivalence effect. That is, two destinations are considered
to be equivalent if they connect to a common source in
the CFG. Further, the equivalence relation is transitive. In
Figure 4, we show an example of the destination equivalence

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 46

Other Problems with CFI
• CFI enforcement has overhead - Can we reduce?

• Idea: only check CFI for the last N branches

‣ kBouncer inspects the last 16 indirect branches taken each
time the program invokes a system call

• Why 16? Uses Intel’s Last Branch Record (LBR), which can store
16 records

‣ ROPecker also checks forward for future gadget
sequences (short sequences ending in indirection)

• These hacks can be circumvented by extending the
ROP chains

‣ Bottom line – no shortcuts

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 48

Control-Flow Graph
• Computing an accurate estimate of a CFG is intractable in

general

‣ Indirect calls (forward edges)

‣ Returns (backward edges)

• Depends on predicting the value of a pointer

‣ I.e., solving the points-to problem (undecidable)

• OK, maybe this is hard for function pointers (indirect
calls), but this should be easy for returns, right?

‣ You return to one of the possible callers

• Generally, yes, but there are exceptions

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 50

Forward Edges
• How do we compute the possible targets for function

pointers?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 51

Forward Edges
• How do we compute the possible targets for function

pointers?

• What are the possible legal targets of function pointers (i.e.,
indirect call sites)?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 52

Forward Edges
• How do we compute the possible targets for function

pointers?

• What are the possible legal targets of function pointers (i.e.,
indirect call sites)?

‣ (1) Any function start

‣ Called coarse-grained CFI

‣ As this is the maximal set of legal function pointer targets, it is
coarse

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Coarse-grained CFI

53

void (*fp1)()

void (*fp2)()

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 54

Forward Edges
• How do we compute the possible targets for function

pointers?

• What are the possible legal targets of function pointers (i.e.,
indirect call sites)?

‣ (1) Any function

‣ Called coarse-grained CFI

‣ As this is the maximal set of legal function pointer targets, it is
coarse

• This approach was applied by researchers – and then
broken (easily) by other researchers

‣ What are some options that would be more accurate?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 57

Signature-based CFI
• How do we compute the possible targets for function

pointers?

• What are the expected targets of an indirect call?

‣ (2) Functions with the same type signature as the function pointer

‣ Suppose you have a function pointer “int (*fn)(char *b, int n)”

• Which functions should be assigned to that function pointer?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 58

Signature-based CFI
• How do we compute the possible targets for function

pointers?

• What are the expected targets of an indirect call?

‣ (2) Functions with the same type signature as the function pointer

‣ Suppose you have a function pointer “int (*fn)(char *b, int n)”

• Which functions should be assigned to that function pointer?

• Compute the set of functions that share that signature assuming any of
these can be a target

‣ Fewer than all functions

‣ Intuitively seems like an overapproximation

‣ Can a function “void foo(void)” be assigned to “fn” above?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 59

Taint-based CFI
• How do we compute the possible targets for function

pointers?

• What are the expected targets of an indirect call?

‣ (3) Function targets that may reach indirect call sites

‣ fn = function_a; // find definitions for function pointers

‣ …; fn(x); // uses of function pointers (indirect calls)

‣ And determine which assignments can reach which uses

• Problem

‣ Taint analysis with points-to analysis may greatly overapproximate

‣ Taint analysis without points-to analysis is not guaranteed to catch
all

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Assumptions

1. No arithmetic operations on function pointers

2. No data pointers to function pointers

3. No type casts from data pointer types (int *) to
function pointer types

65

void (*fptr)(int) = &foo;
fptr += 10;

int foo(void)
{
 ...
 return x;
}

int (*fp)()

int (*fp1)()

struct X

int field0

void *ptr

int bar(void)
{
 ...
 return y;
}

int (*fp2)()

[0]

[1]

[2]

int (*ar[])()

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Example: FreeBSD

66

[CFI CCS’05] [MCFI PLDI’14] [IEEE Euro S&P’16]

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Distribution of Taint Targets

67

Distribution of the number of targets for indirect branches

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 73

Take Away
• Memory errors are the classic vulnerabilities in C

programs (buffer overflow)

• Need two steps to exploit memory errors

‣ Illegal memory write – often, but not always, initiated by
overflow

‣ Direct control flow – to adversary-chosen code

• Defenses have been proposed to prevent both steps

‣ Bounds checks via bounds metadata and/or fat pointers

‣ Control-flow integrity has been suggested as the way to
block ROP attacks

