\ Systems and Internet
‘ Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

CMPSC 447
Control-Flow Integrity

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab
Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Exploit Vulnerabilities S

e How do you exploit a memory error vulnerability?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Memory Error Exploits =

e First and most common way to take control of a
process — control-flow hijacking

e Write to control memory

» Call the victim with inputs necessary to overflow buffer or
exploit data pointer

» To overwrite the value of a code pointer (e.g., return
address) or data that impacts control (e.g., conditional)

e Direct the process execution to exploit code
» Inject code (if possible) or reuse existing code

» Use compromised pointer to jump to the chosen code

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 4

PENNSTAT

Prevent Overflows =

e How would you prevent adversaries from control-
flow hijacking?

» Use safe string functions correctly (flaw)
» Apply a comprehensive bounds checking defense (access)

» Restrict options for control flows (exploit)

e We will examine the latter two today

Systems and Internet Infrastructure Security (SIIS) Laboratory

S
Check Bounds PENN%T

e How would you check bounds naively?

Systems and Internet Infrastructure Security (SIIS) Laboratory

S
Check Bounds PENN%T

e How would you check bounds naively!?

» Presumably, you need to know the start and end of a
buffer

e Then, you need to check bounds — how and when?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 17

PENNSTAT

Bounds Checks =

e SoftBound

» Records base and bound information for every pointer as
disjoint metadata

» Check and/or update such metadata whenever one
dereferences (uses) a pointer

» Supported by formal proofs of spatial memory safety

e Separating metadata from pointers maintains
compatibility with C runtime

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT
SoftBound S

e Checking Bounds

» Whenever a pointer is used to access memory (i.e.,
dereferenced), SoftBound inserts code (highlighted in grey)
for checking the bounds to detect spatial memory
violations.

check(ptr, ptr_base, ptr_bound, sizeof (xptr));
value = *ptr; // original load

Where check () is defined as:

void check(ptr, base, bound, size) {
if ((ptr < base) || (ptr+size > bound)) {
abort () ;
+
+

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT
SoftBound S

e Need to initialize, maintain, and use bounds
information

» How to create!
» What ops require changes to bounds info!?

» How to lookup bounds info!?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

SoftBound S

e Creating pointers

» New pointers in C are created in two ways:

e (I) explicit memory allocation (i.e. malloc()) and

e (2) taking the address of a global or stack-allocated variable using
the ‘&’ operator.

» |nitialization for malloc

ptr = malloc(size);

ptr_base = ptr;

ptr_bound = ptr + size;

if (ptr == NULL) ptr_bound = NULL;

Systems and Internet Infrastructure Security (SIIS) Laboratory

SoftBound e

e Pointer arithmetic

» When an expression contains pointer arithmetic (e.g.,
ptr+index), array indexing (e.g., &(ptr[index])), or pointer
assighment (e.g., newptr = ptr;), the resulting pointer
inherits the base and bound of the original pointer

newptr = ptr + index; // or &ptr[index]
newptr_base = ptr_base;
newptr_bound = ptr_bound;

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 22

PENNSTATE

SoftBound S

e Pointer metadata retrieval

» SoftBound uses a table data structure to map an address
of a pointer in memory to the metadata for that pointer

» On load

int** ptr;
int* new_ptr;

check(ptr, ptr_base, ptr_bound, sizeof (*ptr));
newptr = *ptr; // original load

newptr_base = table_lookup(ptr)->base;
newptr_bound = table_lookup(ptr)->bound;

» On store

int** ptr;
int* new_ptr;

check(ptr, ptr_base, ptr_bound, sizeof (*ptr));
(*ptr) = new_ptr; // original store

table_lookup(ptr)->base = newptr_base;
table_lookup(ptr)->bound = newptr_bound;

Page 23

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT
SoftBound S

e Downsides

» Has a significant overhead — 67% for 23 benchmark
programs

» Uses extra memory — 64% to 87% depending on
implementation

» Does not support multithreaded programs

e But, achieves full spatial memory safety for C
programs

» We have used in “privilege separation” work (PtrSplit) to
be discussed later

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Fat Pointers S

e |dea

» Associate base and bounds metadata with every pointer

e Problems

» Forgery — overwrite base and bounds when overwrite
pointer

» Limited space — have at most 64 bits to express address
and metadata

» Performance — SoftBound demonstrated that these
operations could be costly

e Solutions!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 25

PENNSTAT

Low-Fat Pointers =

e |dea

» Hardware support for fat pointers

e Solutions

» Forgery — Hardware tags to prevent software from
overwriting without detection

» Limited space — Do not really need entire 64-bit address
space — use 46-bit address space and rest for metadata

» Performance — Hardware instructions to perform desired
operations inline

e Result: Memory error protection for 3% overhead

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 26

PENNSTAT

Low-Fat Pointers S

e Checking — similar to SoftBound

if ((ptr.A >= ptr.base) && (ptr.A <= ptr.bound))
perform load or store

else
jump to error handler

e Tagging — common technique from long ago
» Hardware differentiates data (and code) from references
» Utilize 8 bits of 64-bit pointer for “type” of pointer

e Encoding
» Base and bounds within the remaining |10 bits

» Not many. Optimize use! Align regions

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Direct Control of Program v

e Once an adversary can specify the value of a code
pointer, they can direct the program’s execution
(control flow)

» Return address (call stack) — choose next code to run on
return instruction

» Function pointer (stack or heap) — chooses next code to
run when invoked

e What exploit options do adversaries have available!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 33

PENNSTATE

Prevent Code-Reuse Attacks =

e Most powerful adversary attack is code-reuse attack

e E.g, Using a ROP chain can execute any code in any
order

» As long as it terminates in a return instruction

» Can also chain calls and jumps

e How would you prevent a program from executing
the victim’s code in unexpected and arbitrary ways!?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Prevent Code-Reuse Attacks =

e How would you prevent a program from executing
gadgets rather than the expected code!

» Control-flow integrity

e Force the program to execute according to an expected CFG

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 35

PENNSTAT

Control Flow Graph =

e Is agraph G=(V,E)
» Graph vertices: V — set of program instructions

» Graph edges: E=(a, b) — meaning b can succeed a in some
execution

e For a function, a CFG relates the instructions and the
possible ordering of instruction executions

e Many of these can be predicted from the code

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Control Flow Graph e

4
o EaCh Iine O: /% i, n are ints, and char b[12] x*/
1: if (A > 0) {
corresponds to one 2 no=i+2;
3: if (n == 7)
Or more 4 - b[Il+i] = 7a7;
instructions 5: else {
6: n=1+8;
o 7: if (n < 12)
e Non-trivial edges 3: bln] = ’a’;
9: }
» Linel = |1 10:}
» Line3 >5
» Line7—>9

e All flow edges
known from code

Systems and Internet Infrastructure Security (SIIS) Laboratory

CFG Ambiguity e

e There is ambiguity about the target of some
Instructions

» Called indirect control flows
e Those instructions are
» Returns

» Indirect Calls

» Indirect Jumps

e Their targets are computed at runtime

» Can you give an example! How to limit to the CFG?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 38

PENNSTAT

Control-Flow Integrity =

Our Mechanism

if(**esp != nop IMM,) halt
return

CFG excerpt

NB: Need to ensure bit patterns for nops
appear nowhere else in code memory

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Control-Flow Integrity =

More Complex CFGs

Maybe statically all we know is that CFG excerpt
F, can call any int— int function A » B,

call
Fa \ C,

% Fg succ(Aqan) = {B4, C4}

nop IMM,

if(*fp != nop IMM) halt
call fp

|:
% nop IMM,

Construction: All targets of a computed jump must have
the same destination id (IMM) in their nop instruction

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Control-Flow Integrity =

Imprecise Return Information

Q: What if F; can return

CFG excerpt
to many functions ? D

- A
A: Imprecise CFG call+1
P \ 5

& t
DcaII+1 e

Fg

:

if(**esp != nop IMM,) halt

SUCC(Bret) = {Acall+1’ Dcall+1}

CFG Integrity:
Changes to the
return PC are only to
valid successor
PCs, per succ().

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Destination Equivalence e

e Eliminate impossible return targets

» Two destinations are said to be equivalent if they connect to
a common source in the CFG.

func_1:
call %eax |[~: T
R1: NN
IR R ret
call func_i s . ..
R func_j:
R3: ret

Figure 4. Destination equivalence effect on ret instructions (a dashed line
represents an indirect call while a solid line stands for a direct call)

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Destination Equivalence S

e Eliminate impossible return targets

» Can R2 be a return target of func_j?

func_1:
call %%eax |<: T
R1: NN
NN R ret
call func_i RN ..
RO: func_j:
R3: ret

Figure 4. Destination equivalence effect on ret instructions (a dashed line
represents an indirect call while a solid line stands for a direct call)

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Control-Flow Integrity =

No “Zig-Zag” Imprecision

Solution |: Allow the imprecision Solution |I: Duplicate code
to remove zig-zags

CFG excerpt CFG excerpt

A % B A, < B

call>< call \
A C Cia

Ecal Eca ™ — Cie

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Restricted Pointer Indexing e

e One table for call and return for each function

Call Site i Target Table 1 %
eax
° »| func_j |—] func_j:
ca.11 *Joeax Target Table]
Ri: \ [esp]
Ri - ® — ret

e Why can’t func_j return to R2 with this approach!?

Systems and Internet Infrastructure Security (SIIS) Laboratory

Other Problems with CFI "ENN%TE

e CFl enforcement has overhead - Can we reduce!?

e lIdea: only check CFl for the last N branches

» kBouncer inspects the last 16 indirect branches taken each
time the program invokes a system call

e Why 16! Uses Intel’s Last Branch Record (LBR), which can store
|6 records

» ROPecker also checks forward for future gadget
sequences (short sequences ending in indirection)

e These hacks can be circumvented by extending the
ROP chains

» Bottom line — no shortcuts

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Control-Flow Graph =

e Computing an accurate estimate of a CFG is intractable in
general

» Indirect calls (forward edges)

» Returns (backward edges)
e Depends on predicting the value of a pointer

» le., solving the points-to problem (undecidable)

e OK, maybe this is hard for function pointers (indirect
calls), but this should be easy for returns, right?

» You return to one of the possible callers

e Generally, yes, but there are exceptions

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Forward Edges =

e How do we compute the possible targets for function
pointers?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Forward Edges =

e How do we compute the possible targets for function
pointers?

e What are the possible legal targets of function pointers (i.e.,
indirect call sites)?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Forward Edges =

e How do we compute the possible targets for function
pointers?

e What are the possible legal targets of function pointers (i.e.,
indirect call sites)?

» (I) Any function start
» Called coarse-grained CFl

» As this is the maximal set of legal function pointer targets, it is
coarse

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 52

PENNSTATE

Coarse-grained CF| =

void (*fpl)() =

void (*pr)().

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Forward Edges =

e How do we compute the possible targets for function
pointers?

e What are the possible legal targets of function pointers (i.e.,
indirect call sites)?

» (l) Any function
» Called coarse-grained CFl

» As this is the maximal set of legal function pointer targets, it is
coarse

e This approach was applied by researchers —and then
broken (easily) by other researchers

» What are some options that would be more accurate?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 54

PENNSTAT

Signature-based CFl S

e How do we compute the possible targets for function
pointers?

e What are the expected targets of an indirect call?

» (2) Functions with the same type signature as the function pointer

» Suppose you have a function pointer “int (*fn)(char *b, int n)”

e Which functions should be assigned to that function pointer?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Signature-based CFl S

e How do we compute the possible targets for function
pointers?

e What are the expected targets of an indirect call?

» (2) Functions with the same type signature as the function pointer

» Suppose you have a function pointer “int (*fn)(char *b, int n)”

e Which functions should be assigned to that function pointer?

e Compute the set of functions that share that signature assuming any of
these can be a target

» Fewer than all functions
» Intuitively seems like an overapproximation

» Can a function “void foo(void)” be assigned to “fn” above!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 58

Taint-based CF PENN%T

e How do we compute the possible targets for function
pointers?

e What are the expected targets of an indirect call?

» (3) Function targets that may reach indirect call sites
» fn = function a; //find definitions for function pointers

» . fn(x); I/ uses of function pointers (indirect calls)

» And determine which assignments can reach which uses

e Problem
» Taint analysis with points-to analysis may greatly overapproximate

» Taint analysis without points-to analysis is not guaranteed to catch
all

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 59

Assumptions

No arithmetic operation
void = &foo;
fptr

J

int (*fp)()

T

PENNSTAT
|_Ziw)

s on function pointers

No data pointers to function pointers

struct X

int fieldoO

int (*£pl)()

int foo(void)
{
return x;

}

|

void *ptr int (*£p2)()

int (*ar[])()
[0]

7

[1]

[2]

int bar(void)
{
return y;

}

|

3.
function pointer types

Systems and Internet Infrastructure Security (SIIS) Laboratory

No type casts from data pointer types (int *) to

Page 65

PENNSTATE

Example: FreeBSD —

The average number of targets per indirect branch
140K

10

Coarse-grained CFl Signature-based CFl Taint-based CFl
[CFI CCS’05] [MCFI PLDI’ 14] [IEEE Euro S&P’16]

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 66

PENNSTAT

Distribution of Taint Targets v

Distribution of the number of targets for indirect branches

10 | . _
F FreeBSD|]

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Take Away S

e Memory errors are the classic vulnerabilities in C
programs (buffer overflow)

e Need two steps to exploit memory errors

» lllegal memory write — often, but not always, initiated by
overflow

» Direct control flow — to adversary-chosen code

e Defenses have been proposed to prevent both steps
» Bounds checks via bounds metadata and/or fat pointers

» Control-flow integrity has been suggested as the way to
block ROP attacks

Systems and Internet Infrastructure Security (SIIS) Laboratory

