
Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

CMPSC 447
Buffer Overflow
Vulnerabilities

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 2

Buffer Overflow
• Early example of a method to exploit a “memory

error” in a C program

• Discovered in the 1970s

• Leveraged by the Morris Worm in 1988 – first
large-scale exploit

• Leveraged by subsequent attacks in the early
2000s that led to security rethink

• Still a problem today – Check out CVEs for
“buffer overflow”

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 3

Memory Error
• A memory error allows a program statement to

access memory outside of that allocated for the
variables processed in the statement

• Common case: Buffer overflow

‣ The C language allows writes to memory addresses
specified by pointers

• char buf[10] – buf can be used as a pointer

‣ C functions enable writing based on the size of the input
or a length value

• strcpy and strncpy

‣ However, does not ensure writes only within the buffer

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 4

Morris Worm
• Robert Morris, a 23-year old Cornell PhD student

‣ Wrote a small (99 line) program

‣ Launched on November 3, 1988

‣ Simply disabled the Internet

• Used a buffer overflow in a program called fingerd

‣ To get adversary-controlled code running

• Then spread to other hosts – cracked passwords
and leveraged open LAN configurations

• Covered its tracks (set is own process name to sh,
prevented accurate cores, re-forked itself)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Process Address Space

• Text: static code

• Data: also called heap

‣ static variables

‣ dynamically allocated data
(malloc, new)

• Stack: program
execution stacks

Text

Data

Stack

lower
memory
address

higher
memory
address

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Program Stack

• For implementing procedure calls and returns

• Keep track of program execution and state by
storing

‣ local variables

‣ arguments to the called procedure (callee)

‣ return address of the calling procedure (caller)

‣ ...

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Program Stack

*Slide by Robert Seacord

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Stack Frames
• Stack grows from high mem to low mem addresses

• The stack pointer points to the current “top of the
stack” – last thing pushed on the stack (that matters)

• ESP in Intel architectures

• The frame pointer points to the start of the current
frame

‣ also called the base pointer

• EBP in Intel architectures

• The stack is modified during

‣ function calls, function prologue, function epilogue and
operations on stack variables (locals and args)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

A Running Example

void function(int a, int b) {

char buffer[12];

gets(buffer);

return;

}

void main() {

int x;

x = 0;

function(1,2);

x = 1;

printf("%d\n",x);

}

Run “gcc –S –o example.s example.c” to
see its assembly code

Systems and Internet Infrastructure Security (SIIS) Laboratory Page
10

Function Calls

function (1,2)

pushl $2

pushl $1

call function

push the 2nd arg to stack

push the 1st arg to stack

push the ret addr onto the stack,
and jumps to the function

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Function Calls: Stacks

Before After

stack frame
for mainebp

esp
stack frame

for mainebp

esp

2
1

ret

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Function Initialization

void function(int a, int b) {

pushl %ebp

movl %esp, %ebp

subl $12, %esp

saves the prior frame pointer

sets the new frame pointer

allocate space for local
variables

Function prologue

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Function Initialization: Stacks

Before After

stack frame
for mainebp

esp

2
1

ret

stack frame
for main

esp

ebp

2
1

ret
old ebp

buffer

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Function Return

return;

movl %ebp, %esp

popl %ebp

ret

restores the old stack pointer

restores the prior frame pointer

gets the return address at
current stack pointer, and
jumps to it

Function epilogue

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Function Return: Stacks

Before After

stack frame
for mainebp

esp

2
1

ret
old ebp

buffer

stack frame
for main

esp

ebp

2
1

ret
old ebp

buffer

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Return to Calling Function

In main again – following return…

pushl $2

pushl $1

call function

restores the stack
pointer for caller

addl $8, %esp

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Return to Calling Function: Stacks

Before After

stack frame
for mainebp

esp

2
1

ret
old ebp

buffer

stack frame
for mainebp

esp 2
1

ret
old ebp

buffer

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

A Running Example
void function(int a, int b) {

char buffer[12];

gets(buffer);

return;

}

void main() {

int x;

x = 0;

function(1,2);

x = 1;

printf("%d\n",x);

}

stack frame
for main

esp

ebp

2
1

ret
old ebp

buffer

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Overwriting the Return Address

void function(int a, int b) {

char buffer[12];

gets(buffer);

int* ret = (int *)buffer+?;

*ret = ?;

return;

}

stack frame
for main

esp

ebp

2
1

ret
old ebp

buffer

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Overwriting the Return Address
void function(int a, int b) {

char buffer[12];

gets(buffer);

int* ret = (int *) buffer+16;

*ret = *ret + 1; // assuming one-byte store

return;

}

void main() {

int x;

x = 0;

function(1,2);

x = 1;

printf("%d\n",x);

}

the original return address
the new return address

The output will be 0

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 21

Previous Attack
• Not very realistic

‣ Attackers are usually not allowed to modify code

‣ Threat model: the only thing they can affect is the input

‣ Can they still carry out similar attacks?

• YES, because of possible buffer overflows

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 22

Buffer Overflows
• A buffer overflow occurs when data is written

outside of the boundaries of the memory allocated
to a particular data structure (buffer)

• Happens when buffer boundaries are neglected
and unchecked

• Can be exploited to modify memory after buffer

‣ Stack: return address, local variables, function pointers,
etc.

‣ Heap: data structures and metadata (next time)

• Also, a buffer underflow to modify memory prior

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 23

Smashing the Stack
• Occurs when a buffer overflow overwrites other

data in the program stack

• Successful exploits can overwrite the return
address on the stack enabling the execution of
arbitrary code on the targeted machine

• What happens if we input a large string?

• ./example

‣ ff

• Segmentation fault – why is that?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page
24

What Happened?
void function(int a, int b) {

char buffer[12];

gets(buffer);

return;

}

stack frame
for main

2
1

ret
old ebp

buffer

If the input is large, then gets(buffer)
will write outside the bound of buffer,
and the return address is overwritten
– with “ffff” (in ASCII), which likely is
not a legal code address – seg fault

f
f

f
⁞

Systems and Internet Infrastructure Security (SIIS) Laboratory Page
25

Figure Out A Nasty Input

void function (int a, int b) {
char buffer[12];
gets(buffer);
return;

}

void main() {
int x;
x = 0;
function(1,2);
x = 1;
printf("%d\n",x);

}
A nasty input puts the return

address after x=1.
“Arc” injection – new control flow

stack frame
for main

2
1

ret

Systems and Internet Infrastructure Security (SIIS) Laboratory Page
26

Injecting Code

void function (int a, int b) {
char buffer[12];
gets(buffer);
return;

}

void main() {
int x;
x = 0;
function(1,2);
x = 1;
printf("%d\n",x);

}

The injected code can do anything.
E.g., download and install a worm

stack frame
for main

2
1

ret

Injected
code

Systems and Internet Infrastructure Security (SIIS) Laboratory Page
27

Code Injection

• Attacker creates a malicious argument—a
specially crafted string that contains a pointer
to malicious code provided by the attacker

• When the function returns, control is
transferred to the malicious code

‣ Injected code runs with the permission of the
vulnerable program when the function returns.

‣ Programs running as root or other elevated
privileges are normally targeted

• Programs with the setuid bit on

Systems and Internet Infrastructure Security (SIIS) Laboratory Page
28

Injecting Shell Code

stack frame
for main

2
1

ret

execve
(“/bin/sh”)

• This brings up a shell
(logical view – real later)

• Adversary can execute
any command in the shell

• The shell has the same
privilege as the process

• Often, a process with the
root privilege is attacked

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 29

Injecting Shell Code
• How do you invoke “execve” using injected code?

168 Chapter 6. Software Security—Exploits and Privilege Escalation

Ch.7.	Overflow	of	a	local	variable	on	the	stack.			

An	overflow	of			
buffer	var3		

overwrites	higher		
memory,		including:		

return	addr	

SP		

rest	of	
previous	frame	

increasing	addresses	

old	FP	
	return	addr	

var1	
var2	
var3	

arg1	=	src	
The	overwriIen		
return	address	
may	point	back	
into	injected	code	or	
to	any	other	address	

...
	

Figure 6.5: Buffer overflow of stack-based local variable.

dress if n is large enough. When myfunction() returns, the Instruction Pointer (Program
Counter) is reset from the return address; if the return address value was overwritten by
the string from src, program control still transfers to the (overwriting) value. Now sup-
pose the string src came from malicious program input—both intentionally longer than
var3, and with string content specifically created (by careful one-time effort) to overwrite
the stack return address with a prepared value. In a common variation, this value is an
address that points back into the stack memory overwritten by the overflow of the stack
buffer itself. The Instruction Pointer then retrieves instructions for execution from the
(injected content of the) stack itself. In this case, if the malicious input (a character string)
has binary interpretation that corresponds to meaningful machine instructions (opcodes),
the machine begins executing instructions specified by the malicious input.

NO-OP SLED. Among several challenges in crafting injected code for stack execution,
one is: precisely predicting the target transfer address that the to-be-executed code will
end up at, and within this same injected input, including that target address at a location
that will overwrite the stack frame’s return address. To reduce the precision needed to
compute an exact target address, a common tactic is to precede the to-be-executed code by
a sequence of machine code NOP (no-operation) instructions. This is called a no-op sled.3

Transferring control anywhere within the sled results in execution of the code sequence
beginning at the end of the sled. Since the presence of a NO-OP sled is a telltale sign of an
attack, attackers may replace literal NOP instructions with equivalent instructions having
no effect (e.g., OR 0 to a register). This complicates sled discovery.

6.4 Heap-based buffer overflows and heap spraying

Beyond the stack, overflows may affect buffers in heap memory and the data segment
(BSS and Data in Fig. 6.3). Traditionally, many systems have left the heap and BSS
not only writable (necessary), but also executable (unnecessary, dangerous). The data

3This term may make more sense to readers familiar with bobsleds or snow toboggans, which continue
sliding down a hill to its bottom (the code to be executed).

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 30

Injecting Shell Code
• Inject the address of the “execve” function at the

return address or elsewhere in stack reference by
the return address

‣ “execve” is a function in libc that is dynamically linked
into the process address space

• To invoke a function in a library it must be able to
find that address itself as well

• How is that done? Your program calls “execve”
thru a stub (procedure linkage table), which
retrieves the address set at link time (in the global
offset table)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 31

Injecting Shell Code
• Example of PLT code (from objdump -dl)

0x08048730 <execve@plt>:

8048730: ff 25 1c d1 04 08 jmp *0x804d11c

8048736: 68 28 00 00 00 push $0x28

804873b: e9 90 ff ff ff jmp 80486d0

0x08048740 <strncpy@plt>:

8048740: ff 25 20 d1 04 08 jmp *0x804d120

8048746: 68 30 00 00 00 push $0x30

804874b: e9 80 ff ff ff jmp 80486d0

Systems and Internet Infrastructure Security (SIIS) Laboratory Page
32

Injecting Shell Code

stack frame
for main

2
1

execve@plt

• Overwrite return address
with address of code to run
next (e.g., execve@plt)

‣ What address?

• Provide argument(s) above –
pointer to “/bin/sh” command

‣ Where to put it?

• And then “null” for last arg
(env)

addr of /bin/sh

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Any C(++) code acting on
untrusted input is at risk
• Code taking input over untrusted network

‣ E.g., sendmail, web browser, wireless network driver,...

• Code taking input from untrusted user on multi-user system,

‣ esp. services running with high privileges (as ROOT on Unix/Linux,
as SYSTEM on Windows)

• Code processing untrusted files

‣ that have been downloaded or emailed

• Also embedded software, e.g., in devices with (wireless) network
connection such as mobile phones with Bluetooth, wireless smartcards
in new passport or OV card, airplane navigation systems, ...

33

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 39

Take Away
• Memory errors enable processes to write to

memory outside the expectation range

• The classic example is the buffer overflow, which
is still a common attack vector today

• A buffer overflow vulnerability allows an adversary
to overwrite the memory beyond the buffer on
the stack

‣ But runtime state is also on the stack – return address

• We discussed methods to inject and reuse code

• Available defenses are not complete

