\ Systems and Internet
‘ Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

CMPSC 447
Buffer Overflow
Vulnerabilities

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab
Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Buffer Overflow —

e Early example of a method to exploit a “memory
error” in a C program

e Discovered in the 1970s

e Leveraged by the Morris Worm in 1988 — first
large-scale exploit

e Leveraged by subsequent attacks in the early
2000s that led to security rethink

e Still a problem today — Check out CVEs for
“buffer overflow”

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Memory Error =

e A memory error allows a program statement to
access memory outside of that allocated for the
variables processed in the statement

e Common case: Buffer overflow

» The C language allows writes to memory addresses
specified by pointers

e char buf[10] — buf can be used as a pointer

» C functions enable writing based on the size of the input
or a length value

e strcpy and strncpy

» However, does not ensure writes only within the buffer

Systems and Internet Infrastructure Security (SIIS) Laboratory

Page 3

PENNSTAT

Morris Worm =

e Robert Morris, a 23-year old Cornell PhD student
» Worote a small (99 line) program
» Launched on November 3, 1988
» Simply disabled the Internet

e Used a buffer overflow in a program called fingerd

» To get adversary-controlled code running

e Then spread to other hosts — cracked passwords
and leveraged open LAN configurations

e Covered its tracks (set is own process name to sh,
prevented accurate cores, re-forked itself)

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Process Address Space S
higher o Text: static code
memory
address Stack e Data: also called heap
» static variables
Data » dynamically allocated data
(malloc, new)
lower T
memory ext o Stack: program

address execution stacks

Systems and Internet Infrastructure Security (SIIS) Laboratory

Program Stack

PENNSTAT
| i)

e For implementing procedure calls and returns

o Keep track of program execution anc
storing

» local variables

state by

» arguments to the called procedure (callee)

» return address of the calling procedure (caller)

<

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Program Stack =

Stack Segment

The stack supports
nested invocation calls

Information pushed on Low memory
the stack as a result of
a function call is called | Unallocated
a frame

Stack frame

b() {.} forb () A stack frame is
a() { g @ < created for each

subroutine and

b(); Stack frame
fora s Sljtztrriyed upon
main () { @ Stack frame
a(); for main ()
} - l
FIgh mismory *Slide by Robert Seacord

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Stack Frames =

e Stack grows from high mem to low mem addresses

e The stack pointer points to the current “top of the
stack” — last thing pushed on the stack (that matters)

e ESP in Intel architectures

e The frame pointer points to the start of the current
frame

» also called the base pointer

e EBP in Intel architectures
e The stack is modified during

» function calls, function prologue, function epilogue and
operations on stack variables (locals and args)

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

A Running Example >

void function(int a, int b) {
char buffer([12];
gets(buffer);

return;

}

void main() Run “gcc —S —o example.s example.c” to
int x; see its assembly code
x = 0;

function(1l,2);
X = 1;

printf ("%d\n",x);

Systems and Internet Infrastructure Security (SIIS) Laboratory

Function Calls

function (1,2)

pushl $2
pushl S$1

call function

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT
| i)

push the 2" arg to stack

push the | arg to stack

push the ret addr onto the stack,
and jumps to the function

: S
Function Calls: Stacks PENN%TE
Before After
esp_,
ret
|
esp_, 2
stack frame stack frame
ebp_, for main ebp_. for main

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Function Initialization =

void function(int a, int b) {

pushl %ebp saves the prior frame pointer

movl %esp, %$ebp sets the new frame pointer

subl $§12, %esp allocate space for local
variables

Function prologue

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Function Initialization: Stacks S
Before After
esp_,
buffer
ebp_,
esp_, old ebp
| ret | ret
I B I B
p) p)
stack frame stack frame
ebp_ | for main for main

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Function Return e

return;

movl %ebp, %esp restores the old stack pointer

popl %ebp restores the prior frame pointer

ret gets the return address at
current stack pointer, and
jumps to it

Function epilogue

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Function Return: Stacks =
Before After
€Sp_
buffer buffer
ebp_,
old ebp old ebp
ret esp_, ret
I B I B
p) p)
stack frame stack frame
for main ebp for main

Systems and Internet Infrastructure Security (SIIS) Laboratory

Return to Calling Function =

PENNSTAT

In main again — following return...

pushl $2
pushl S$1

call function

addl $8, %esp

Systems and Internet Infrastructure Security (SIIS) Laboratory

restores the stack
pointer for caller

PENNSTAT

Return to Calling Function: Stacks ==
Before After
buffer buffer
old ebp old ebp

esp_, ret ret
I B L1
2 esp_, 2
stack frame stack frame
ebp for main ebp for main

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

A Running Example >

void function(int a, int b) {
char buffer([12];

gets(buffer); esp_,
— return;
buffer
} ebp_,
old ebp
void main() { | ret |
int x; I
X = 0; ______;L______
function(1,2); stack frame
=]_; 1
X for main

printf ("%d\n",x);

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Overwriting the Return Address S

void function(int a, int b) { CSp_,
char buffer[12]; buffer
gets(buffer); ebp R

old ebp
int* ret = (int *)buffer+?; r?t
*ret = ?; 2
stack frame

return; .

} for main

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Overwriting the Return Address S

void function(int a, int b) {
char buffer[12];
gets(buffer);

int* ret = (int *) buffer+16;

*ret = *ret + 1; // assuming one-byte store
return; .
} The output will be 0
void main() {
int x;
X = 0;
tunction(1,2); the original return address

X = 1; <

brint(sd\ar.m . the New return address

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Previous Attack =

e Not very realistic
» Attackers are usually not allowed to modify code
» Threat model: the only thing they can affect is the input

» Can they still carry out similar attacks?

o YES, because of possible buffer overflows

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Buffer Overflows S

e A buffer overflow occurs when data is written
outside of the boundaries of the memory allocated
to a particular data structure (buffer)

e Happens when buffer boundaries are neglected
and unchecked

e Can be exploited to modify memory after buffer

» Stack: return address, local variables, function pointers,
etc.

» Heap: data structures and metadata (next time)

e Also, a buffer underflow to modify memory prior

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Smashing the Stack =

e Occurs when a buffer overflow overwrites other
data in the program stack

e Successful exploits can overwrite the return
address on the stack enabling the execution of
arbitrary code on the targeted machine

e What happens if we input a large string?

e ./example

IR iiiiiiiiiiiiiiiiiiaaaaannniiiiiiiiiiiiiiiiiiiiiin

e Segmentation fault — why is that?

Systems and Internet Infrastructure Security (SIIS) Laboratory

What Happened?

void function(int a, int b) {
char buffer([12];
gets(buffer);

return;

If the input is large, then gets(buffer)
will write outside the bound of buffer,
and the return address is overwritten

— with “ffff” (in ASCII), which likely is
not a legal code address — seg fault

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT
| i)

|
2

stack frame

for main

PENNSTATE

Figure Out A Nasty Input =

void function (int a, int b) {
char buffer[1l2];
gets(buffer);

return;

}
| | |

void main() { 2

int x;

x = 0 stack frame

function(1l,2); fOI" main

x = 1;

printf (T&%d\n",x); A nasty input puts the return
} address after x=1.

“Arc” injection — new control flow

Page

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Injecting Code S

void function (int a, int b) {

char buffer[12]; |njeCteC|
gets(buffer); code

return;

}
. . I

volid main() {
int x; 2
X = 0; stack frame
function(1l,2); for’ main
x = 1;

printf("%d\n",x); The injected code can do anything.
} E.g., download and install a worm

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Code Injection =

e Attacker creates a malicious argument—a
specially crafted string that contains a pointer
to malicious code provided by the attacker

¢ When the function returns, control is
transferred to the malicious code

» Injected code runs with the permission of the
vulnerable program when the function returns.

» Programs running as root or other elevated
privileges are normally targeted

e Programs with the setuid bit on

Systems and Internet Infrastructure Security (SIIS) Laboratory

Injecting Shell Code

PENNSTAT
| i)

execve
(“/bin/sh”)

ret .
I

|2]
stack frame

for main

Systems and Internet Infrastructure Security (SIIS) Laboratory

This brings up a shell
(logical view — real later)

Adversary can execute
any command in the shell

The shell has the same
privilege as the process

Often, a process with the
root privilege is attacked

PENNSTAT

Injecting Shell Code o

e How do you invoke “execve” using injected code!

rest of T increasing addresses

previous frame

An overflow of argl = src
buffer var3 fattirn addr The overwritten
overwrites higher old EP return address

memory, including: may point back

varl
return addr var? into injected code or
var3 to any other address

SP—>

Figure 6.5: Buffer overflow of stack-based local variable.

Page 29

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Injecting Shell Code o

e Inject the address of the “execve” function at the

return address or elsewhere in stack reference by
the return address

» “execve” is a function in libc that is dynamically linked
into the process address space

e To invoke a function in a library it must be able to
find that address itself as well

e How is that done! Your program calls “execve”
thru a stub (procedure linkage table), which
retrieves the address set at link time (in the global
offset table)

Systems and Internet Infrastructure Security (SIIS) Laboratory

Injecting Shell Code

e Example of PLT code (from objdump -dl)

0x08048730 <execve@plt>:

8048730: ff 25 1lc dl 04 08 Smp
8048736: 68 28 00 00 00 push $0x28
804873b: e9 90 ff ff ff Jmp

0x08048740 <strncpy@plt>:

8048740: ff 25 20 d1 04 08 jmp
8048746: 68 30 00 00 00 push $0x30
804874b: e9 80 ff ff ff Smp

Systems and Internet Infrastructure Security (SIIS) Laboratory

*0x804d1l1lc

80486d0

*0x804d120

80486d0

PENNSTATE
| i)

PENNSTATE

Injecting Shell Code 5

e Overwrite return address
with address of code to run
next (e.g., execve@plt)

[addr of /bin/sh » VWhat address?
execve@plt e Provide argument(s) above —
| pointer to “/bin/sh” command
2 » Where to putit!
stack frame e And then “null” for last arg

(env)

for main

Systems and Internet Infrastructure Security (SIIS) Laboratory

Any C(++) code acting on PENNSTATE

_Zhve)

untrusted input Is at risk hd

Code taking input over untrusted network

» E.g., sendmail, web browser, wireless network driver,...

Code taking input from untrusted user on multi-user system,

» esp. services running with high privileges (as ROOT on Unix/Linux,
as SYSTEM on Windows)

e Code processing untrusted files
» that have been downloaded or emailed

e Also embedded software, e.g., in devices with (wireless) network
connection such as mobile phones with Bluetooth, wireless smartcards
in new passport or OV card, airplane navigation systems, ...

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Take Away S

e Memory errors enable processes to write to
memory outside the expectation range

e The classic example is the buffer overflow, which
is still a common attack vector today

e A buffer overflow vulnerability allows an adversary
to overwrite the memory beyond the buffer on

the stack

» But runtime state is also on the stack — return address
e We discussed methods to inject and reuse code

e Available defenses are not complete

Page 39

Systems and Internet Infrastructure Security (SIIS) Laboratory

