
PtrSplit: Supporting General Pointers
in Automatic Program Partitioning

Shen Liu Gang Tan Trent Jaeger
Computer Science and Engineering Department

The Pennsylvania State University
11/02/2017

2

Motivation for Partitioning

Sensitive data

A monolithic, security-sensitive program

A single bug would defeat the security of the whole application

3

§Split the application into multiple partitions
§Each partition is isolated using some isolation mechanism such as OS processes

Motivation for Partitioning

Sensitive data

Partition into two parts

Trusted
partition

Input-handling
partition

Although some partition of a program has been
hijacked, sensitive data can still be protected

4

Toy Example

char* cipher;
char* key;

void encrypt(char *plain, int n){
cipher =(char*)malloc(n);
for (i = 0; i < n; i++)
cipher[i] = plain[i] ^ key[i];

}

void main (){
char plaintext[1024];
scanf("%s",plaintext);
encrypt(plaintext,strlen(plaintext));
...

}

Sensitive data

Buffer overflow

5

Toy Example

char* cipher;
char* key;

void encrypt(char *plain, int n){
cipher =(char*)malloc(n);
for (i = 0; i < n; i++)
cipher[i] = plain[i] ^ key[i];

}

void main (){
char plaintext[1024];
scanf("%s",plaintext);
encrypt(plaintext,strlen(plaintext));
...

}

encrypt()
key

main()

ciphertext

plaintext

Process BProcess A

The sensitive data
is protected!

6

§Manual partitioning
– do code review and extract the sensitive components
– The amount of code for analysis may be huge…

§Automatic partitioning
– Given some security criteria, do partitioning based on static program analysis
– Reduce manual effort and errors

Solution

7

§Static analysis
– Analyzing code without executing it
– Static analysis can be considered as

automated code review
– e.g., Annotate a sensitive variable key,

we can find all the statements that key
can reach.

Background: static program analysis

char* cipher;
char* key;

void encrypt(char *plain, int n){
cipher =(char*)malloc(n);
for (i = 0; i < n; i++)
cipher[i] = plain[i] ^ key[i];

}

void main (){
char plaintext[1024];
scanf("%s",plaintext);
encrypt(plaintext,strlen(plaintext));
...

}

8

§Privtrans automatically incorporates privilege separation into source
code by partitioning it into two programs
– A monitor program which handles privileged operations
– A regular program which executes everything else
– Users need to manually add a few annotations to help

Privtrans decide how to partition
– The inter-process communication between partitions is

implemented by Remote Procedure Calls (RPCs)

Previous Work: Privtrans (2004)

Privtrans’ principle (copied from the paper)

Regular

9

§RPC enables a program to call
procedures in a different address space
– Programmers need to tell RPC what functions will be

called remotely and define the interfaces
– In an interface definition language (IDL) file
– IDL compiler can generate code to transmit data

between the client and servers (i.e., via RPCs)
– Data transmission method depends on communication

media between processes (network, IPC)

Background: Remote Procedure Call(RPC)

How RPC works(copied from the TI-RPC manual)

10

§Systems for automatic program partitioning
– Privman by Kilpatrick (USENIX ATC 2003)
– Privtrans by Brumley and Song (USENIX Security 2004)
– Wedge by Bittau, Marchenko, Handley, and Karp (USENIX NSDI 2008)
– ProgramCutter by Wu, Sun, Liu, and Dong (ASE 2013)

§Major limitation: lack of automatic support for pointers
– Pointers prevalent in C/C++ applications
– Previous work

• Lack sound reasoning of pointers to find functions that reference sensitive data
• Require manual intervention when pointers are passed across partition

boundaries – to find the size of the referenced memory region to copy

Previous Work

12

§We aim to include all the functions that may operate on the sensitive
data within the same sensitive partition
– Which functions are those?
– Any function that has access to the sensitive data
– I.e., any function with a pointer that may point to (alias) the sensitive data

§For sound program partitioning, we have to reason about all program
executions
– Need to know what control flows a program may take
– Which pointers may alias which memory objects
– And which data depends on which other data
– Need a global alias analysis for tracking data dependence

Determine All the Functions in a Partition

13

§What will happen when two pointers refer to the same memory location

§Alias analysis is undecidable (G. Ramalingam, TOPLAS 1994)
– For large programs, alias analysis can identify many possible aliases for some

memory locations (e.g., Linux kernel or browser)

Background: Aliases

Example 1:
int x;
p = &x;
q = p; // <*p,*q>,<x,*p> and <x,*q> are all aliases now

Example 2:
int i,j, a[100];
i = j; // a[i] and a[j] are aliases now

14

§What happens when pointers are passed across boundaries?
– Passing pointers alone insufficient when caller and callee are in two different

address spaces
– Need to copying the data referenced by the pointer passed
– We use deep copying: passing pointers to structures and reachable

substructures
– Problem: Pointers may reference data or fields with ambiguous sizes

• Is an int* pointer referencing a single integer or an array?
• How large is a char * buffer referenced?

– Limitations
• C-style pointers do not carry bounds information
• Do not know the sizes of the underlying buffers

Lack of Bounds Information with Pointers

15

§PtrSplit provides automatic support for program partitioning with pointers
– Perform program partitioning based on Program Dependence Graphs (PDG), which tracks control

and data dependence

§Parameter-tree-based PDG
– Avoid global pointer analysis
– Modular construction of program dependence graphs by function
– Determine all the functions needed to be included in a partition to avoid leakage/tampering

§Automated marshalling/unmarshalling for cross-boundary data, even with pointers
– Selective pointer bounds tracking: track bounds only for necessary pointers

• Avoid high overhead
– Type-based marshalling/unmarshalling: use bounds information to perform deep copying

Our Work: PtrSplit

16

A Parameter-tree-based PDG

17

Basic Workflow

Source
code

Annotations about secret
and declassification

Clang

LLVM IR

PDG
construction

PDG Partitioning

Sensitive/insensitive
raw partitions

Selective pointer
bounds tracking

Type-based
marshalling

Sensitive
Partition

Insensitive
Partition

18

§We build a parameter-tree-based PDG
– Represent a program’s data and control dependence in a single graph
– Sound representation of a program’s control/data dependence

– Modular construction through parameter trees

Program Dependence Graph (PDG) Construction

21

Parameter Tree: Example

call encrypt

encrypt

char* cipher;
char* key;

void encrypt(char *plain, int n){
cipher =(char*)malloc(n);
for (i = 0; i < n; i++)

cipher[i] = plain[i] ^ key[i];
}

void main (){
char plaintext[1024];
scanf("%s",plaintext);
encrypt(plaintext,strlen(plaintext));
...

}

plain

*plain

n

strlen(plaintext)plaintext

*plaintext

22

No parameter trees: O(n*m) edges

Benefits of Parameter Trees

Write 1

Write 2

Write n

Read 1

Read 2

Read m

caller callee

Write 1

Write 2

Write n

Actual
Tree

Formal
Tree

Read 1

Read 2

Read m

caller callee

With parameter tree: O(n+m) edges

§Avoid global pointer analysis
– only intra-procedural pointers analysis is needed

§Reduce the number of dependence edges: suppose n writes and m reads

23

§After the PDG construction, we perform PDG-based partitioning

§Input: sensitive and declassification nodes

§Output: two partitions
– each partition is a set of functions and global variables

§Potential problem: only raw partitions can be generated
– Inter-module communication overhead may be huge…
– e.g. If we partition a program with 1000 functions into two, we may get a partition

with 600 functions and another partition with 400 functions
– May be many interactions between the two sets of functions

PDG-based Partitioning

25

Leakage (Indirectly)

char* cipher;
char* key;

void encrypt(char *plain, int n){
cipher =(char*)malloc(n);
for (i = 0; i < n; i++)
cipher[i] = plain[i] ^ key[i];

}

void main (){
char plaintext[1024];
scanf("%s",plaintext);
encrypt(plaintext,strlen(plaintext));
...

}

Sensitive data

Buffer overflow

26

PDG-based Partitioning: Example

f1

f2

f4 f5

f3

f6

Sensitive data

Declassification

Partitioning
boundary

27

§Why we need to know the buffer size?
– When pointers are passed across the partition boundary, we deep copy pointers and

their underlying buffers
§How to calculate the buffer size?

– Use bounds tracking tools
§Several tools for enforcing memory safety track bounds at runtime
§However, enforcing memory safety incurs high performance overhead

– E.g., SoftBound’s performance overhead on the SPEC and Olden benchmarks is 67%
on average

§ Improvement
– For marshalling and unmarshalling it is necessary to perform only bounds tracking, but not

bounds checking
– We care about only the bounds of pointers that can cross the boundary of partitions

Selective Pointer Bounds Tracking

28

Selective Pointer Bounds Tracking

Insensitive Partition Sensitive Partition

Partitioning boundary

p

q We need to track the
bounds of only the
labeled pointers

Step 1
Find pointers
that are sent
across the
boundary

Step 2
Do backward
propagation to
find all BR pointers

29

§Since partitions are loaded into separate processes, some function
calls are turned into Remote Procedure Calls (RPCs)
– Straightforward for values of most data types, including integers, arrays of fixed

sizes, and structs
– For pointers, the underlying buffer sizes can be tracked with SPBT

§When a pointer is passed across the boundary, we perform deep
copying
– After marshalling, arguments of a function call are encoded as a byte array,

which is sent to the receiver via the help of an RPC library

Automatic Support of Marshalling and Unmarshalling

30

§We implemented PtrSplit on LLVM 3.5, which supports both DSA alias
analysis and SoftBound
– SoftBound keeps the bound information as metadata for each pointer
– All bounds checking operations removed
– Only BR-pointers are instrumented
– RPC library: TI-RPC

§Robustness testing
– 8 benchmarks from SPECCPU 2006

§Security testing
– 4 security-sensitive programs

Experiments

31

§Sensitive data: authentication file

§Declassification: the return result (integer) of function auth_check

§Full pointer bounds tracking overhead : 56.3%
– Selective pointer bounds tracking overhead: 3.6%

§A total of 5 out of 145 functions are marked sensitive
– Total overhead: 8.8%

Example: thttpd

32

Result: Security-sensitive Programs

Program Sensitive Data Declassifications Total
Functions

Sensitive
Functions

ssh Private key file 2 1235 12
wget Downloaded file 2 666 8
thttpd Authentication file 1 145 5
telnet Received data from server 3 180 11

Program Total/BR pointers Full PBT
overhead

Selective PBT
overhead

Total overhead

ssh 21020/591 45.0% 2.6% 7.4%
wget 14939/466 52.5% 3.4% 6.5%
thttpd 3068/189 56.3% 3.6% 8.8%
telnet 2068/233 74.1% 5.1% 9.6%

Selective bounds tracking greatly reduced overhead

33

§Not suitable for security experiments, only used for correctness testing

§Use randomly chosen data as the partitioning start

§Average full pointer bounds tracking overhead : 136.2%
– Average selective pointer bounds tracking overhead: 7.2%

§Average total overhead: 33.8%

Experiments: SPECCPU 2006 programs

35

Balance Security and Performance: Program-mandering (PM)

§ Program-mandering
– A quantitative framework that takes user guidance about how to balance between performance and security

and computes partitioning boundaries

4/2/22 Lightweight Abstract Memory Features 35

https://pic1.zhimg.com/v2-c1b58313a3b8973fc3b1ce2ff874ae2c_1200x500.jpg

We can manipulate
the boundary for the good!

Gerrymandering

Program-mandering

https://pic1.zhimg.com/v2-c1b58313a3b8973fc3b1ce2ff874ae2c_1200x500.jpg

36

PM System Flow

4/2/22 Lightweight Abstract Memory Features 36

Source
code

Annotations about
sensitive data

Security
Measurements

Annotated
Program

Dependence
Graph (PDG)

Quantitative
Partitioning
Algorithm

Sensitive
Module

Insensitive
Module

Performance
Measurements

Partitioning
Budgets
and Goal

37

PM Overview

§ Propose a set of metrics for security and performance
– Implement program analysis to automatically collect measurements on a program

§ Users specify performance/security budgets and an optimization goal
– E.g., at most 10 context switches per second and find the partition with the smallest sensitive domain

§ Convert the problem of “partitioning a program” into “an Integer Programming (IP) problem”
§ Use an IP solver to find the optimal partition that satisfies user constraints

4/2/22 Lightweight Abstract Memory Features 37

42

Program Partitioning as an Optimization

§ User specification
– Budgets (bc, bf, bs, bx) on sensitive code percentage, the amount of sensitive info flow, context switch

frequency, and pointer complexity

• Unlimited budgets are allowed with “_”
– Optimization goal: which dimension to minimize
– E.g., (10%, 2*, _, _)

§ Conversion to integer programming
– Encode the annotated PDG, the budgets, and the optimization goal as an integer programming problem
– Use an IP solver to get the optimal solution

4/2/22 Lightweight Abstract Memory Features 42

43

PM: an Interactive Tool

§ Start with unlimited budgets and only minimize the sensitive code percentage: (_*, _, _, _)

4/2/22 Lightweight Abstract Memory Features 43

Sensitive data

Partition 1

For thttpd with authentication info as sensitive
data, this produced a partition with quality
scores: (9.15%, 1.0, 1455.6, 9.0); high overhead

44

PM: an Interactive Tool

§ Partition 1’s quality score: (9.15%, 1.0, 1455.6, 9.0)
§ New budgets: (10%, 1.0, 1455.5*, 9.0)

– Decrease the budget on the context-switch frequency and aim to minimize it
– Increase the budget on sensitive code percentage to 10%

4/2/22 Lightweight Abstract Memory Features 44

Sensitive data

Partition 1
(High overhead)

Partition 2
Produced a partition with quality
scores: (9.62%, 1.0, 1400.1, 8.0)

47

Thank you!

Q&A

