
UBITect: A Precise and Scalable 
Method to Detect Use-Before-

Initialization Bugs in Linux Kernel
Yizhuo Zhai, Yu Hao, Hang Zhang, Daimeng Wang, Chengyu Song,

Zhiyun Qian, Mohsen Lesani, Srikanth V. Krishnamurthy, Paul Yu



Use-Before-Initialization (UBI) Bugs

(1) Vulnerable Code (2) UBI Scenario

1
2
3
4
5
6
7
8
9

10
11
12
13
14

static int queue_manag(void *data)
{

/* backlog is declared without initialization */
struct crypto_async_request *backlog;
if (cpg->eng_st == ENGINE_IDLE) {

backlog = crypto_get_backlog(&cpg->queue);
}
/* Uninitialized backlog is used*/
if (backlog) {

/* uninitialized pointer dereferenced! */
backlog->complete(backlog, -EINPROGRESS);

}
return 0;

}

path-sensitive



Security Risks

malicious->func(); 

copy_to_user(dst, src, size); 

for (int i = 0; i < len; i++)
a[i]

Arbitrary Code Execution

Information Leakage

Out of Bound Memory Access

Denial of Serviceuninit->func(); 



Previous Solutions and Limitations

Mitigation:
Zeroing the allocated object:
e.g. Unisan, SafeInit

Detection:
Intra-procedural static analysis: 
e.g. -Wuninitialized, cppcheck

Symbolic execution: 
e.g. Clang Static Analyzer

Dynamic Analysis: 
e.g. MemorySanitizer, kmemcheck



Challenges

Scalability Precise Analysis

TPFP

TP

TP

TP

FP
FP FP

FP

FP FP

FP

FP

FP

FP

FPFP
FP

FP FP
FP

FP

FP
FP

FPFP

FP

FP
FP

FPFP

FP

path
TP: True Positive
FP: False Positive

Reference: Yan, K.K., Fang, G., Bhardwaj, N., Alexander, R.P. and Gerstein, M., 
2010. Comparing genomes to computer operating systems in terms
of the topology and evolution of their regulatory control networks.
Proceedings of the National Academy of Sciences, 107(20), pp.9186-9191.



Approach: UBI bugs deTector

Flow-Sensitive 
Qualifier Inference

Path-sensitive
Symbolic Execution

Scalable Precise

Bottom-up, summary-based
Inter-procedural
flow-/filed-/context-sensitive
Guidance

Path-sensitive



Approach: UBITect (Continue)

Type Qualifier Qualifier Analysis

What?
Type annotations

Why?
Additional information
Ensure the correct use

Example:
const int var;

Under-Constrained SE



Approach: UBITect (Continue)

Type Qualifier Qualifier Analysis

init
uninit

Under-Constrained SE



Approach: UBITect (Continue)

Type Qualifier Qualifier Analysis Under-Constrained SE

init
uninit

variable get used, 
a warning is 
generated here.

variable get
initialized

variable
declared

init

init

uninit

uninit



Approach: UBITect (Continue)

Type Qualifier Qualifier Analysis

init
uninit

variable get used, 
a warning is 
generated here.

variable get
initialized

variable
declared

init

init

uninit

uninit

Under-Constrained SE



Approach: UBITect (Continue)

Bottom-up, summary-based

* FS: Function Summary

F1 F2

F6F4 F5

F7

F3



Approach: UBITect (Continue)

Bottom-up, summary based

int F3(int a, int *pa) 
{ 

*pa = 4; 
if (a) { 

//do sth here
return 0; 

} else
return -1; 

}

* FS: Function Summary

F1 F2

F6F4 F5

F7

F3

requirement update
a
pa
pa_obj
ret

init

N/A
initN/A

init

init

N/A
N/A



Source
Code

…
LLVM IR

…

Call Graph
Analysis

…

… …

Functions &
Call Dependencies

Warnings
+Guidance

…
Bugs+
Paths

…

Under-Constrained
Symbolic Execution

Qualifier
Analysis 

UBITect

Putting them together

Implementation:
LLVM 7.0.0
13K+ LoC
SE Engine: KLEE 

13



Evaluations

Detecting Known UBI bugs
Detecting New UBI bugs
Comparison with cppcheck and Clang Static Analyzer



Evaluation I: Detecting Known UBI bugs 



Evaluation II: Detecting New UBI bugs

138 human verified bugs
118 unpatched
52 bugs confirmed

Linux 4.14, allyesconfig
16163 files, 616893 functions
1 week analysis
SE timeout to 120s
SE memory out as 2GB



False Positive Reasons

Incomplete guidance
Imprecise indirect call resolution
LLVM optimizations
Limitations of SE



Evaluation II: Detecting New UBI bugs

cppcheck

Clang Static Analyzer (CSA)

164 bugs
2 TPs

17 bugs

78 Files
…

Symbolic Execution in a single file

Intra-procedural analysis



Case Study
1 
2 
3 
4 
5 
6 
7 
8 
9 
10

/*drivers/media/usb/pvrusb2/pvrusb2-hdw.c*/
static unsigned int ctrl_cx2341x_getv4lflags(struct pvr2_ctrl *cptr) { 
struct v4l2_queryctrl qctrl; 
qctrl.id = cptr->info->v4l_id;
/*drivers/media/common/cx2341x.c*/
cx2341x_ctrl_query(&cptr->hdw->enc_ctl_state,&qctrl); 
if (qctrl.flags & V4L2_CTRL_FLAG_READ_ONLY) { 
}
return qctrl.flags; 

}

across files

field-sensitive



Conclusion

UBI bugs cause critical security issues and zeroing the 
variable cannot fully mitigate them.
UBITect: A precise and scalable tool to detect UBI bugs 
in Linux kernel
52 new bugs have been confirmed in Linux



Conclusion

UBI bugs cause critical security issues and zeroing the 
variable cannot fully mitigate them.
UBITect: A precise and scalable tool to detect UBI bugs 
in Linux kernel
52 new bugs have been confirmed in Linux

Progressive Scrutiny: Incremental 
Detection of UBI

bugs in the Linux Kernel
Yizhuo Zhai, Yu Hao, Zheng Zhang, Weiteng Chen, Guoren Li, 

Zhiyun Qian, Chengyu Song, Manu Sridharan, Srikanth V. 
Krishnamurthy, Trent Jaeger, Paul Yu



Conclusion

UBI bugs cause critical security issues and zeroing the 
variable cannot fully mitigate them.
UBITect: A precise and scalable tool to detect UBI bugs 
in Linux kernel
52 new bugs have been confirmed in Linux

Background: Rapid Linux Kernel Development Cycle

10 Commits/Hour

v4.14

v4.14.x

v4.15

v4.15.x

v4.16

v4.16.x

v4.17

v4.17.x

v4.18

v4.18.x Minor Versions

Stable Versions

2 Months 2 Months 2 Months 2 Months
v4.15-rcs v4.16-rcs v4.17-rcs v4.18-rcs

New Feature
Bug Fixes
Bugs !!!



Conclusion

UBI bugs cause critical security issues and zeroing the 
variable cannot fully mitigate them.
UBITect: A precise and scalable tool to detect UBI bugs 
in Linux kernel
52 new bugs have been confirmed in Linux

3

Background: Security Issues in Linux Kernel

Critical Bugs

High-Sensitive Bugs

3.3 Years

6.4 Years



Conclusion

UBI bugs cause critical security issues and zeroing the 
variable cannot fully mitigate them.
UBITect: A precise and scalable tool to detect UBI bugs 
in Linux kernel
52 new bugs have been confirmed in Linux

Specified bugs
Framework for specified modules.

4

Existing Effort

Fuzzing + Sanitizer



Conclusion

UBI bugs cause critical security issues and zeroing the 
variable cannot fully mitigate them.
UBITect: A precise and scalable tool to detect UBI bugs 
in Linux kernel
52 new bugs have been confirmed in Linux

5

Existing Effort - Limitations



Conclusion

UBI bugs cause critical security issues and zeroing the 
variable cannot fully mitigate them.
UBITect: A precise and scalable tool to detect UBI bugs 
in Linux kernel
52 new bugs have been confirmed in Linux

6

Observation

Quicker Turnaround time
Test proposed patches
Exhaustive coverage



Conclusion

UBI bugs cause critical security issues and zeroing the 
variable cannot fully mitigate them.
UBITect: A precise and scalable tool to detect UBI bugs 
in Linux kernel
52 new bugs have been confirmed in Linux

7

Background: UBITect (FSE’20)

Qualifier Analysis Under-Constraint SE

variable get used, 
a warning is 
generated here.

variable get
initialized

variable
declared

init

init

uninit

uninit



Conclusion

UBI bugs cause critical security issues and zeroing the 
variable cannot fully mitigate them.
UBITect: A precise and scalable tool to detect UBI bugs 
in Linux kernel
52 new bugs have been confirmed in Linux

9

IncreLux Workflow

* SCC: Strongly Connected Component



Conclusion

UBI bugs cause critical security issues and zeroing the 
variable cannot fully mitigate them.
UBITect: A precise and scalable tool to detect UBI bugs 
in Linux kernel
52 new bugs have been confirmed in Linux

11

Evaluations

Speed Improvement
Time Breakdown
Bug Finding Results
Patch Identification Results.

V4.14 as the baseline
Stable versions: v4.15-rcs-v4.19, v5.4, v5.9
Minor versions: v4.14.20 – v4.14.220

v4.15.1-v4.15.18
Per patch analysis
Equivalence Analysis



Conclusion

UBI bugs cause critical security issues and zeroing the 
variable cannot fully mitigate them.
UBITect: A precise and scalable tool to detect UBI bugs 
in Linux kernel
52 new bugs have been confirmed in Linux

12

Evaluation – Time Speedup

Stable: 3.78x - 800x
V4.14.20x: 11.04 - 32.29
V4.15.z: 32x - 800x



Conclusion

UBI bugs cause critical security issues and zeroing the 
variable cannot fully mitigate them.
UBITect: A precise and scalable tool to detect UBI bugs 
in Linux kernel
52 new bugs have been confirmed in Linux

15

Evaluations - New Bugs

44 bug report sampled
22 TP (FP: 50%)
17 can be triggered



Conclusion

UBI bugs cause critical security issues and zeroing the 
variable cannot fully mitigate them.
UBITect: A precise and scalable tool to detect UBI bugs 
in Linux kernel
52 new bugs have been confirmed in Linux

Bug Lifetime – Case Study



Conclusion

UBI bugs cause critical security issues and zeroing the 
variable cannot fully mitigate them.
UBITect: A precise and scalable tool to detect UBI bugs 
in Linux kernel
52 new bugs have been confirmed in Linux

• IncreLux : A framework for principled incremental analysis of the 
Linux kernel. 
• Dramatic speed ups compared to today’s expensive whole-

kernel analysis.
• Fit into the kernel development cycle.
• Effectively identify bugs and bug fixes.
• https://github.com/seclab- ucr/IncreLux.git

21

Conclusion



Q & A


