
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Analysis, Design, Development, and Deployment of a Generalized Framework for
Computer-Aided Assessment

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science
in

Computer Science
by

Titus Delafayette Winters
June 2004

Thesis Committee:
Dr. Tom Payne, Chairperson
Dr. Mart Molle
Dr. Christian Shelton

Copyright by
Titus Delafayette Winters

2004

The Thesis of Titus Delafayette Winters is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I would like to acknowledge Dave Sheldon and Keri Nishimoto, the most important users

of Agar: your input was invaluable. I would like to thank the undergrads who have con-

tributed to the project: Eric Harris, Steve Bui, Ed Levie, and Vinh Lam. I would like to thank

Dr. Geoff Kuenning, who gave me my first grading job. I would like to thank Dan Berger

for his input on a draft of this document and continual wisdom regarding development. Most

importantly, I would like to thank my advisor, Dr. Tom Payne, for his support on what once

seemed like a small project.

iv

ABSTRACT OF THE THESIS

Analysis, Design, Development, and Deployment of a Generalized Framework for
Computer-Aided Assessment

by

Titus Delafayette Winters

Master of Science, Graduate Program in Computer Science
University of California, Riverside, June 2004

Dr. Tom Payne, Chairperson

Over the past year the author has experimented with various approaches to Computer-

Aided Assessment (CAA) ranging from custom shell-scripts for grading assignments to a

complex GUI-based framework capable of handling Optical Mark Recognition and subjec-

tive grading of essay questions. The pros and cons of each approach are presented, focusing

on barriers to adoption, level of tolerance to unexpected submission behavior, applicability

in non-programming domains, and required user competency. An analysis of design require-

ments for a sufficiently general framework for CAA, based on the author’s development ex-

perience, is presented, followed by a discussion of a system built to meet those requirements

– called Agar – and improvements planned for Agar2.

v

Contents

List of Figures . vii

1 Introduction 1

2 Learning and Assessment 3

2.1 Constructivism . 3

2.2 Traits of Good Grading . 4

3 History of Computer-Aided Assessment 7

3.1 Forsythe and Wirth . 8

3.2 Hollingsworth . 8

3.3 BAGS: Basser Automatic Grading Scheme 10

3.4 Kassandra . 11

3.5 Dalziel’s List . 12

3.6 Pardo . 13

3.7 Fully Automated Assessment . 13

3.8 CourseMaster / Ceilidh . 14

4 Design of Agar 15

4.1 Paradigms for CAA . 15

vi

4.1.1 Single-Purpose Testers: The “Simple” Approach 15

4.1.2 Reusable Code . 16

4.1.3 Agar: A “Generalized” Framework 17

4.2 Initial Design Decisions . 18

4.3 First Quarter Changes . 20

4.4 Second Quarter Changes . 20

5 Technical Details 22

5.1 Views . 22

5.2 Details of Agar . 23

5.2.1 Tools . 25

5.2.2 Submissions & Comments . 32

5.2.3 A Grading Example . 32

6 Development Methodology 38

7 Future Work 40

8 Conclusion 43

Bibliography . 45

A Existing Tools 47

B Version History 50

vii

List of Figures

5.1 The Rubric View . 24

5.2 The Grading View . 25

5.3 Usage Message for difftest.py . 27

5.4 A Dynamically Generated Tool Configuration Dialog 28

5.5 Early/Late Points Dialog . 29

5.6 Compilation Dialog . 29

5.7 Hierarchical Testing . 31

5.8 Startup Wizard . 33

5.9 What Type of Grading? . 34

5.10 Submission Manager . 35

5.11 Auto-Comment Dialog . 35

5.12 New Comment Dialog . 36

7.1 Agar2 Rubric Mock-up . 42

viii

Chapter 1

Introduction

Computer-aided assessment (often referred to as automated grading or simply CAA) is an

idea that surfaces in many (if not most) computer science departments in one form or another.

In some academic institutions, CAA manifests itself as a custom script to help ensure some

consistency across graders. For example, in the author’s undergraduate career, grading for

the Harvey Mudd College C++ and Data Structures course was done with the aid of a script

written for each assignment by the professor in charge that made a rough estimate of the

functional correctness of a student submission followed by a series of prompts regarding the

level of style and documentation in the submission.

On the opposite end of the spectrum, CAA is commonly used with objective assessment

items like multiple choice questions (MCQs), matching, and other computer-graded/discrete-

response forms of assessment [11]. Indeed, CAA forms the basis for all (or nearly all) of the

standardized testing that is done in the US, from elementary school standardized tests where

optical mark recognition is used to evaluate multiple-choice question (MCQ) responses, to

Item Response Theory [7]-based computer-adaptive tests, like the GRE, where a computer

program adapts to the student’s responses in an attempt to provide a more precise score for

test takers.

1

Nevertheless, relatively little [19] [16] work has been done on the development of a gener-

alized andusableframework for CAA until now. CAA offers the ability to reduce repetition,

vanquish clerical error, and increase human time efficiency. This work is greatly motivated

by the author’s experiences with the development of Agar, a prime1 example of a generalized

framework for CAA guided by principles gained from the domain of Human-Computer In-

terfaces (HCI). This work is not an advancement in the field of HCI, and as shown in Chapter

3, CAA has a long history of attempts to come up with a magic bullet for grading. What is

important in this work is that we have allowed the development of Agar to be guided by HCI

and such classic notions on Software Engineering as Fred Brooks’ “The Pilot System.”[9].

The lessons learned, insight gained, and user feedback gathered during the development and

deployment of Agar has given us a very clear understanding of what is necessary to create a

highly usable CAA tool.

The remainder of this document will discuss the design, development, and deployment

of Agar, the system for Computer Assisted Assessment developed in the CS&E Department

at UCR over the past year. As discussed in Chapter 6, this process was an “organic” variant

on the spiral model: no clear notion of interface design or final feature set existed when

development began. Rather, development was guided by the needs of users in a series of very

short cycles of feature addition, interface alteration, and bug fixing.

1And as of this writing, the only known.

2

Chapter 2

Learning and Assessment

2.1 Constructivism

Much of the following discussion on what constitutes helpful grading is influenced by the

vogue pedagogical philosophy of constructivism[2], a theory of understanding introduced

by Jerome Bruner[10]. The constructivist view of education is that learning is primarily a

search for meaning that is accomplished by building upon existing understanding and mental

models. In order for learning to occur, a student must find a way to integrate the material

that is presented with their existing mental model, or make changes to their model as needed

to support the new information. As this is very much an intuitive process for instructors to

participate in, as it requires empathy and understanding of a student’s viewpoint, teaching and

assessment cannot be completely automated in the best case. Human feedback is necessary

to examine a student’s submission and make the necessary comments required to adjust their

understanding to be more in line with the accepted or correct model.

3

2.2 Traits of Good Grading

Before any discussion of grading tools can be undertaken, it is necessary to first establish

some concensus on what the minimum requirements for “good” grading are. As has been

pointed out within official UCR CS&E Department policies on instruction, there is a differ-

ence between assignments that are intended as practice and assignments that are intended as

evaluation. The majority of student submissions are likely to be intended more as practice

than as assessment. In order for practice to be as educationally effective as possible, these

features are considered a bare minimum feature set for a good grading system1:

• Response Time- Clearly the speed with which feedback is generated is considered

something of great value. One of the major features of computer-based assessment

schemes utilizing computer-checkable discrete-response questions like MCQs, Match-

ing, and short Fill-in-the-Blanks questions is the fact that students can instantly find out

how well they are doing. Rapid feedback response is one of the most touted features

of many on-line tutorials and quizzes [22] [11]. In the more general domain of human-

checked work, having prompt feedback is a highly beneficial, if obvious, feature of a

good system for CAA.

• Accuracy- Accuracy is another obvious requirement for good grading: if the scores

have little or nothing to do with the submission then student motivation will undoubt-

edly drop.

• Quality of feedback- It is one thing for a student to receive an accurate score of their

work shortly after submitting it, it is quite another to be given a detailed breakdown of

what they did well, what needs work, and what didn’t work at all. Quality of feedback

1This completely ignores the very important issue of what can be learned by the student in a given practice
item, focusing only on what makes the grading of a given item more or less effective. This is by no means
sufficient to ensure that a given assignment is pedagogically valuable to the students, but is intended a list of
things necessary to maximize the pedagogical value of a given item.

4

is something that commonly slips through the cracks: Professors often look only for

scores, while TAs and Graders are looking only to finish grading. The result is that it

is not necessarily in anyone’s immediate interests to ensure that the students are told

what they did wrong. While there is some small feedback that students get from their

numeric aggregate final score, it is not nearly so useful as if they were given detailed

grading information.

• Consistency- Something that is time-consuming and difficult to achieve when grading

without the aid of a grading tool is consistency from submission to submission. As any

grader knows, the majority of errors on a given assignment are repeated by more than

one student. In order to be completely fair to the students, each time a given error is

found within an assignment, the penalty (and probably the feedback) ought to be the

same. Without such consistency, student requests for regrades increase, student moral

may drop, and complaints of favoritism may turn the group opinion of the students

against the instructor. An extremely detailed rubric is the ideal method of ensuring

consistency and stopping such problems before they start, but generating such a de-

tailed rubric before knowing what errors the students actually made is a difficult art

indeed. Failing that, a good system for grading should provide a method for boost-

ing consistency, if not outright ensuring it, by assisting in the retroactive creation of a

detailed rubric.

• Flexibility - The flexibility of a CAA system is an essential feature: how much does the

system allow the grader to override? There is a facetious saying that says, “If you build

a fool-proof system, they’ll just build a better fool,” which educators should be able

to recognize as applying double in the face of student work. No matter how robustly

a CAA system is built in terms of attempting to deal with the unexpected in student

submissions, it is very important that the grader has ultimate control to override all of

the system’s actions. Otherwise, the grader will revert to the slower, but less restrictive,

5

method of grading by hand. If the flexiblity of a CAA system is insufficient, the other

factors listed here will likely suffer.

6

Chapter 3

History of Computer-Aided Assessment

Computer-Aided Assessment has a history nearly as long as computing itself. The earliest

documented reference to using computers in an attempt to simplify grading dates back to

1959 at Rochester Polytechnic Institute, where a computer program was used to test the

behavior of student’s machine-language submissions [17]. Work in the area has continued in

an ad-hoc fashion over the ensuing 45 years, and can give us a general idea of the components

that are regarded by the computer-science education community as necessary for a CAA

platform to be useful. To date there is still a notable lack of a definitive tool for CAA that

meets all of the technical requirements, has sufficient developer backing, and is intuitive,

powerful, and usable enough to gain widespread acceptance. Sampling the developments

that have been made and the projects that have been attempted over the last 45 years can give

us a good map of exactly what is needed. In fact, several recent CAA papers specifically

enumerate the design goals that their designers were striving for. It is upon the shoulders of

these developments that Agar stands, and much of the discussion on the design of Agar in

Chapter 4 is informed by these papers.

7

3.1 Forsythe and Wirth

The most commonly cited early paper on the subject of automated grading in the CS con-

text is Forsythe and Wirth’s “Automatic Grading Programs” [13] from Stanford. In this

paper, published in 1965, it is mentioned that “grading programs have been used intermit-

tently since 1961.” The grading system that they present touches on many of the topics that

have been brought up again and again in the ensuing years: tracking running time, stor-

ing student grades, terminating misbehaving submissions,1 security, and non-binary “fuzzy”

grading. These themes take on charmingly antiquated meaning given that security concerns

for Forsythe and Wirth focused primarily on hoping that students did not alter the grader

library code on tape, and that students would actually use the pre-printed cards to set-up and

tear-down the grading framework within their own submissions.

One of the quotes from this paper that blesses the growing field of CAA is this, “We rec-

ommend grading programs to all who teach programming and numerical analysis to masses

of students, but the prospective user should first carefully investigate the systems available to

him.”

In terms of categorization of the system presented in this paper, Forsythe and Wirth reduce

all need for estimation about robustness and generality, “. . . it is relatively easy for us to write

a separate grader for each problem, and furnish very detailed messages about each case.”

3.2 Hollingsworth

Prior even to [13] was a paper by Jack Hollingsworth, published in 1960, describing activities

dating back to September of 1959. This paper is noteworthy in a few ways:

1In this case, a mechanism for the computer operator to invoke the submission on the next test case

8

• Given 120 students in a full-semester programming course, “We could not accommo-

date such numbers without the use of the grader.”

• “Students seem to like the grader and are not reluctant to suggest improvements!”

Further, it is nice to see that the state-of-the-art has advanced some in the past 45 years:

“The grader cannot be completely automatic. Over-flow, invalid addresses, built-in stops

and other effects can make the computer stop, and will usually cause it to stop again during

tracing. Manual reentry is necessary.”2

We also find that the claim is made once again that security is a concern: “Student pro-

grams can modify the grader itself.” Also, it is worth noting that a strong set of constraints

were imposed upon the programs in order to make automated grading feasible.

On the other hand, this paper as well as [13] demonstrate strikingly the elegance forced

upon programmers during those earlier periods of computing: both papers provide full algo-

rithmic or code depictions of the grading systems. [13] provides full code for their grader in

ALGOL, and [17] provides a description of the 108 machine-language instruction framework

that made up his grader. For comparison, Agar is composed of approximately nine thousand

lines of Python code.

This grading system can be viewed as a very primitive version of the Unix shell snippet

if [‘./studentProg < test1.in | diff - test1.out‘] ; then

echo Incorrect

else

echo Correct

fi
2It is nice that we are no longer talking about grading student’s programs on punch cards and requiring a

physical reset upon error.

9

3.3 BAGS: Basser Automatic Grading Scheme

The Basser Automatic Grading Scheme (BAGS) developed at the University of Sydney in the

mid 1960s represented a significant improvement in the state of CAA applied to programming

exercises. For the first time, grading of assignments on a batch-processing system did not

require special actions or knowledge on the part of the operator. The BAGS system was

“simply part of the standard operating system and its exercises [were] run as normal, batch-

processed jobs.”[15]

In the paper describing the Bags system, J. B. Hext and J. W. Winings specifically enu-

merated their requirements for a CAA system:

1. It should handle exercises in ALGOL, in M INIGOL (a subset of ALGOL), and in the

KDF 9 Assembly Code.

2. It should not place any additional burden on the operators.

3. It should record every attempt at an exercise, with sufficient data for calculating a mark.

4. It should provide summaries on request for specified classes and exercises over a given

period.

[15] also gives concrete examples of the types of programming problems that were being

graded in this context: well-specified mathematical operations with zero margin for error.

The grading scheme used is well suited for this type of problem. However, in terms of mod-

ern Computer Science pedagogy, there is really no way to view these problems as anything

but toy problems: easily solvable in less than 5 minutes and 20 lines of code in a modern

programming language. While there was a relative flurry of papers published and work done

on CAA approaches to programming assignments during the 1960s, the work is simply too

far removed from the modern realities of computing to be anything other than a historical

interest piece. To get a better notion of what CAA means, we must advance through the

literature several decades.

10

3.4 Kassandra

In 1994, Urs von Matt from ETH Z̈urich published a paper describing Kassandra [24], an

automatic grading system initially designed for Maple or Matlab code in a scientific comput-

ing course. Kassandra is implemented as a network service to which students may submit

attempted solutions to programming problems to have them tested against a suite of test cases

for each problem. Kassandra reports results back to the student. As it is designed to be pub-

licly available throughout the term, rather than run by a grader after the due date, security

becomes of even higher concern here. Malicious student programs should not be able to

retrieve the reference solution from Kassandra’s internals. To deal with this, and the prime

reason for Kassandra being implemented as a network service, the system is split into client

and server systems. Students submit their code to their local client, which is responsible for

connecting to the server, thereby initiating tests on the student code and reporting results. At

no time is the client code able to access the reference implementation, the stored test cases, or

the graded results. While there are certainly some security concerns raised by introducing the

added complexity of the network, it seems that this is an admirable solution to the problem

of restricting access to the solutions.

In terms of actual grading, this is another instance of testing for precise output, but it

also requires students to be explicitly aware of Kassandra by making (generally uninvasive)

changes to their code. This is perfectly acceptable in the domain of scientific computing,

much like compilers or in many cases operating systems. Specs can easily be made strict

enough to require precise output for a given input. This does leave great difficulties for

any assignments that are not strictly testing the functional behavior of an assignment, or for

which such testing is difficult. While interesting as a good approach to dealing with the

security problems inherent in a CAA framework, Kassandra doesn’t necessarily give us any

further insight into guidelines for the design of such a system.

11

3.5 Dalziel’s List

In 2001 at the International Computer Assisted Assessment Conference, James Dalziel pre-

sented [12], which contains several enumerations of pedagogical and technological models

describing CAA in distance-learning, particularly using the World Wide Web. Of particular

note to this discussion is his listing of “the five criteria used to consider the usefulness of the

systems”:

1. The ease of use: Dalziel includes designers and students as users whose needs must be

met and managed in this list, but others have also included instructors and graders as

likely users.

2. The technical proficiency required: Again Dalziel focuses this in terms of the designer

of a CAA tool, but foranyCAA tool this is of great import, for exactly the same list of

actors: designers, students, instructors, graders3.

3. The degree of special hardware or software required to incorporate the tool into learn-

ing

4. The ability of the tool to track performance data arising from use of the tool: If we

are talking about tools that are primarily focused on the grading of assignments rather

than the administration of quizzes for assessment, this is perhaps less important, but

remains a good goal in any case.

5. The costs of using the tool to enhance learning: These costs are most certainly mea-

sured not just in financial terms, but also in terms of the amount of learning that must

take place for people to use the tool effectively in any of our given categories.

This list very concisely enumerates many of the important points that we learned during

the development and deployment of Agar, as discussed in Chapters 4 and 5.

3If designer and instructor feels redundant, replace these terms with author and assigner.

12

3.6 Pardo

In [19], Abelardo Pardo provides a sample architecture for a large software system combining

the requirements from Dalziel [12] with similar functionality similar to that provided by

the digital drop-box features of Blackboard [8]. Pardo’s system requires minimal technical

knowledge on the part of instructors when setting up items of assessment; It provides a web

interface for all configuration pertaining to a given assignment. The web interface is also used

by students for submitting work, although the actual transfer mechanism used is in fact email.

Submissions are tagged with XML information appropriate to the information being assessed

and passed to various modules to handle automatic processing or human examination as

appropriate.

The places where Pardo’s system fails to meet Dalziel’s requirements are in terms of

usability for the most critical user of all: the grader. While students spend some minutes

submitting assignments, and instructors may spend minutes or perhaps an hour setting up

an assignment (actually performing the act ofassigning), graders spend hours if not tens of

hours dealing with each assignment, and this time is generally proportional to the number

of students Pardo’s huge system failed to handle the simple axiom of design:Design for the

common case.Pardo’s description of the grader interface is eight sentences long.

3.7 Fully Automated Assessment

At the Helsinki University of Technology, instructors facing larger and larger introductory

class sizes have moved beyond simply having Computer-Aided Assessment into the realm

of fully Automated Assessment (AA) [18]. Malmi, Korhonen, and Saikkonen acknowledge

that fully automated assessment does not give students the depth of feedback that could be

given if resources were available for more human graders and smaller class sizes, but at the

point that courses have become too large to handle any other options, AA is far superior to

13

the other obvious alternative: self assessment or voluntary programming assignments.

AA has some benefits, some of which are appealing even when compared to traditional

grading. The most obvious benefit is the reduction in resource requirements, as mentioned.

Secondly, the system can give back feedback at any time of day or night. This second prop-

erty leads naturally into the third: since feedback is returned very quickly and entirely ob-

jectively, it is sensible to allow students to resubmit based on that feedback. This is in line

with the constructivist view of pedagogy that has taken hold in the educational community.

If the constructivist view is correct, then there is certainly some value in AA. Whether or not

there is value in human-checked assessement using the constructivist resubmission paradigm

is not addressed in this work.

3.8 CourseMaster / Ceilidh

While [13] is the most commonly cited early work in the area of CAA, CourseMaster (for-

merly Ceilidh) is certainly the most commonly used and most commonly cited CAA tool

for grading programming work. In [16], Higgins, Symeonidis, and Tsintsifas describe the

grading system embodied in CourseMaster. The system that they present is both vast and yet

narrow in design. It covers a large number of the functional requirements that have already

been noted in this historical review, but there is no discussion of the human components that

intuitively seem like an integral part of the evaluation and assessment process. CourseMaster

appears to only support statically-checkable properties, and doesn’t seem to explicitly have

support for grader-override of marking. CourseMaster requires Java familiarity on the part

of the grader. In these ways, while CourseMaster sounds like an amazing development, the

published description implies that the system is forcing the user to conform to the system

paradigm, rather than enhancing existing paradigms of usage.

14

Chapter 4

Design of Agar

4.1 Paradigms for CAA

There are a number of common and obvious paradigms for the development of CAA tools

for grading programming exercises. Agar was developed with one of the more complicated

of these approaches, but the whole spectrum of these paradigms are represented in Chapter

3.

4.1.1 Single-Purpose Testers: The “Simple” Approach

The “greedy” scheduling approach to Computer Assisted Grading is one that every programming-

literate grader has probably dreamed of during the tedious hours of slogging through student

programming submissions: “Why don’t I just write a script that does stepsX, Y , andZ for

me and show me the results?” Indeed, a well-written program spec for Computer Science

classes can make the functional parts of grading almost completely automatic. This sort of

grading aid, often written in a scripting language such as bash[14], perl[25], or python[20],

15

can reduce the time requirement for grading the functional behavior of a well-specified pro-

gramming assignment. Unfortunately, this has minimal reusability and can do nothing to

assist with having to manually inspect student work for non-objective requirements like style

and documentation1

This approach, possibly in conjunction with a text file containing comments pertaining

to common student mistakes, can be used with some efficiency. However, in order for there

to be a net-reduction in time spent grading, the development of such a script must be rela-

tively straightforward. For “meat-grinder” programs like those that are commonly assigned

in lower-division CS courses (programs that take a well-specified input format and produce

a completely deterministic output of an equally well-specified format), the majority of this

task can be automated with two nested loops and proper invocations of thediff utility under

Unix. Programs that have any form of freedom in interface are often ungradeble using this

approach, as are many upper-division programs where the complexity of the average assign-

ment prevents any simple method for automating the testing. In general, this approach can

pay off much better for lower division lecture courses with large enrollments. The devel-

opment time is generally not feasible for courses with difficult-to-test assignments, flexible

requirements, or low enrollment.

4.1.2 Reusable Code

After a number of attempts at using one-shot scripts for grading, the computer scientist will

begin to mull over methods of designing a more robust system requiring a shorter develop-

ment and testing cycle per assignment. In the author’s experience, the most obvious steps in

grading are those of identifying what files are actually a useful part of a student submission,

compiling the student’s submission, and writing out the testing report for the student. Since

all or nearly all programming submissions will involve these steps, these are the most likely

1The possibility of using a static analyzer like lint[6] to enforce certain style requirements is also known.

16

first targets for a more reusable framework for CAA.

If these tasks are automated in terms of a library to be incorporated into a larger, single-

use program for grading an assignment, flexibility and transparency are kept very high, but

the efficiency of this approach is questionable

4.1.3 Agar: A “Generalized” Framework

Agar2 was developed with the intent to be as general as possible, with the idea that if the

functional tests that are provided with Agar are found to be insufficient, it should be easy for

a grader or instructor to develop new tests for the assignment in question with relative ease.

The details of this interface are presented in Sections 5.2.1.

Additionally, Agar represents a significant advancement over previous attempts in that it

also has shown greatly reduced effort required to gradenon-programming material such as

written work and quizzes, and can be incorporated with an Optical Mark Recognition system

that was also developed at UCR. The automated-testing features of Agar make it ideal for

grading programming work of all kinds, but the real benefit comes from the time-savings

for human graders in providing detailed feedback. Additionally, Agar is open source and is

written in an interpreted language, so anything that isn’t handled by the tool interface can be

added to the system internally.

Agar addresses consistency and grader efficiency together. The first time a human grader

using Agar finds a problem with a student submission that wasn’t automatically detected (or

even tested for), they create a new comment, assign a point value (positive for bonus, zero

to just write a comment, and negative for penalty) to the comment, and write out a note to

the student. A drag-and-drop system within the Agar interface then allows that comment

to be assigned to any other student that is found to have the same mistake. Further, since

2Agar is not an acronym, nor does it have any intrinsic meaning. It was chosen because it vaguely conjures
“automated grading”, but doesn’t violate the author’s distaste for acronyms.

17

comments are assigned by reference, the point value or feedback can be changed later on,

and all submissions that received that comment will automatically be updated.

This comment system allows for much greater feedback to be generated for each stu-

dent in a much shorter amount of time. For C++ homework in our lower-division courses, a

two-week project for a class of 60-70 students now takes about 4-6 hours to grade, to record

scores, and to generate and send out detailed feedback for students. Previously, lower quality

feedback and less accurate grading took at least 10-15 hours. Similarly, 12 written problems

for the same course were graded and commented in just under 5 hours, or slightly less than

5 minutes per student. Students in this course have how helpful they find it to get their work

returned to them within 1-2 days of turning it in, and have detailed comments and feedback

emailed to them while they still remember what the assignment involved. Graders are sim-

ilarly pleased in that they get to do more in less time, and no longer have any bookkeeping

to do since Agar can automatically exports its results to a course grade-book in the form of a

spreadsheet.

4.2 Initial Design Decisions

Usability was a major concern in Agar’s design from the very beginning. Since the initial

aim was to reduce the amount of time it took a grader to grade programming, an elegant

interface was regarded as essential. The general task of gradingmust be easier to perform

using the electronic system than when performed by hand, otherwise there is no reason to use

the system. Ideally there will be a one-to-one mapping of tasks in the traditional paradigm to

tasks using the tool, and each of those tasks should also see some sort of increase in efficiency.

The “clerical” tasks involved in grading should be automated to the greatest extent possible,

meaning that grading information should be exportable in a number of useful formats, with

as detailed information as possible, and hopefully strong integration with any courseware

18

systems in common use. Security is of prime importance, because the act of running a

student’s submission is very much an act of running untrusted code3.

One of the most fundamental design decisions, and one that has stuck throughout the

development of Agar and into the planning stages for Agar2, is the idea that all automated

decisions must be over-rideable by the human grader. Any system that is designed with the

(probably false) assumption that all error conditions have been accounted for is going to be

difficult to work with, and it is the pinnacle of hubris to think that this or any other CAA tool

has been so well designed as to not need4 human oversight.

Another powerful and common idea is that the tool should require no alterations to stu-

dent’s programming behavior. It should, like all good systems, “just work”. Some changes to

assignment specification (i.e. more accurately defined specifications) are allowable, but Agar

should be minimally invasive for both the students and the designer of an assignment. Simi-

larly, the ability to work with assignments regardless of programming language is important5

In the inevitable event of a grading dispute, the system should leave a sufficiently strong

paper trail that even if the original grader should meet an unfortunate accident, there should

be no risk of unnecessary disputes.

Finally, it was initially thought that the system should be relatively extensible. A simple

interface was designed such that programs could be written to extend the tool set whenever

the existing tools didn’t meet their needs. A fair amount of flexibility and efficiency was

sacrificed in order to make this interface as simple as possible6. An interesting, and in hind-

sight predictable, note is that this extensibility has never been taken advantage of. Only a

3In general this will not be intentionally malicious code, but students are notoriously capable of discovering
new and violent ways of making their programs crash.

4Or in most cases, allow.

5In the CS&E department here, we have assignments in C, C++, Python, VHDL, an assembly language, and
Perl on a regular basis. Ideally these should all be equally supported.

6Details of the tool interface can be found in Section 5.2.1

19

single user during the entire deployment lifespan has expressed any interest in utilizing the

tool interface, but lost interest when it was explained that some of the existing tools could

be leveraged to accomplish the desired testing. Agar2 will certainly take advantage of this

insight.

4.3 First Quarter Changes

Initially Agar, like many of the CAA systems discussed in 3, tried to enforce only binary

grading decisions in the automated testing process. It was hoped initially that Agar’s auto-

mated testing framework could identify those things that didn’t require any human interven-

tion (those that met the spec perfectly), and initially give no credit for any test that did not

have a positive outcome. During the first quarter of deployment, this was quickly identified

as one of the worst assumptions. Simple things like docking a number of points per day

late could not be easily expressed with such a system, and so support for non-binary grading

was introduced. In light of constructivism in Computer Science pedagogy, this seems quite

obvious. It is far better to support methods that can encourage additional intuitive leaps than

it is to immediately punish any understanding that is not wholly correct.

4.4 Second Quarter Changes

A concept that was finally made brutally clear during the second quarter of deployment7

is the idea that whenever possible the tool should enhance and enable existing usage. A

primary example of this are the ideas of a spreadsheet and email. Both can used in ways

that are very similar to existing usage paradigms. A spreadsheet can be used for double-

7An earlier understanding of this idea would have greatly simplified the deployment and development pro-
cess.

20

entry bookkeeping in a way that is almost exactly the same as bookkeepers would do by

hand, but enables greater usability through automation. Email, similarly, works under exactly

the same paradigms as mail service in the physical world8, but enables much more rapid

delivery, multiple recipients, and other features. This notion of being an enabling technology

under existing paradigms is powerful, since it allows users to leverage existing models of

understanding when confronting the program for the first time. Forcing a user to not only

learn a new tool but also an entirely foreign paradigm for completing a task will cause undue

stress on the user and great resistance to adoption.

A related design point that was only made clear after many cycles of development and

deployment is the fact that a system like Agar has little similarity to any common programs.

It is not a browser, a shell, a word processor, or a spreadsheet. The users of the system will

simply have no initial mental model of the system, so if the program model is not obvious,

the discrepancy between these models will cause some stress on the user and will become a

great barrier to adoption9.

8Ignoring setting up mail service settings, which is a relatively simple one-time cost.

9In short, the learning curve can be insurmountable if the workings of the program are not completely
transparent. This has been a problem in the development of Agar, but is one of the prime things that we hope to
fix in Agar2

21

Chapter 5

Technical Details

5.1 Views

In [12], James Dalziel discusses four primary user types or roles into a CAA system: student,

designer/author, instructor, grader. Agar explicitly alters only a single one of these, the grader

role. The student and instructor roles are handled here at UCR CS&E by theTurnin system,

which provides a web-interface for instructors or TAs to create electronic drop-boxes for

assignments. The students use a similar web-interface to select a course and assignment to

submit into, are notified whether their submission was on-time or late after submitting, and

are given a cryptographically signed receipt for their files. Agar has been developed to work

primarily with the directory of student submissions that Turnin generates, but the two systems

are not yet tightly coupled in any way.

In general, the use of Agar can be completely hidden from the students. An intriguing

and so-far unused possibility exists to generate a rubric under Agar bundled with sample

input and output files and distribute this to the students. By doing so, the student can run

the same automated tests on their own code before submitting, thus reducing any chance of

22

misunderstanding in the problem statement and shifting some of the burden from the grader

back to the student.

Agar may slightly affect the role of the designer or author of an assignment, by altering

the types of things that are assigned to be easier to grade within the Agar framework. Pro-

grams that have well-specified input and output formats are very well supported by Agar,

as are programs that can be graded by running regular expressions against the source, but

complicated programs that have a great deal of imprecision or creativity leverage less from

Agar. This is really a secondary effect on behavior, rather than a required behavioral change,

but is worth mentioning.

5.2 Details of Agar

At the highest level, grading using Agar consists of two primary tasks: creation of a rubric and

associated automated testing, and then manual inspection of individual submissions where

needed and the distribution of Comments to override or augment the automated scores. These

two tasks are fairly well distinguished, and have been separated within the Agar interface as

demonstrated in figures 5.1 and 5.2.

Developing a rubric is primarily a matter of dragging tools from the Toolbox (the left-

hand pane of Figure 5.1) into the tree structure of the Rubric (the right-hand pane of figure

5.1). It is generally also useful to identify which files are part of a student’s submission at

this point, so as to be able to more accurately test the rubric to ensure maximum benefit from

the automated testing. The “Submission Manager”, discussed more fully in Section 5.2.2, is

responsible for this task.

The Grading view is used to manually inspect submissions. The files corresponding to

each submission are displayed in the tree structure left-most in the Grading view. In Figure

5.2 the usernames of students have been replaced with anonymous grader tokens, as this set of

23

Figure 5.1: The Rubric View

submissions is an artificial test. In normal grading the username of the student corresponding

to each submission would be displayed here. The center portion is a list of Comments, which

are small objects that have a point value (positive, negative, or zero), an associated top-level

rubric item, and some associated text. Drag and drop from the comment list into the right-

most pane (the submission window) will add the given comment to the currently selected

submission.

Once all of the automated tests have been executed, and all necessary human evaluation

has been performed, mailbacks for each student can be sent out individually from within

the Agar interface, and detailed results can be exported to a spreadsheet. Some individual

features of this process deserve some attention, and are described below.

24

Figure 5.2: The Grading View

5.2.1 Tools

The core idea behind the automated testing in Agar is to compose a rubric out of extensible,

reusable, hierarchical tests. A rubric is composed of a number of “top-level” rubric items

which are displayed in student mailbacks and detailed grade records. Each of these top-level

items may have sub-tests that are executed in the case of a failure.

As mentioned in Chapter 4, in order to ensure maximal flexibility in testing tools, the

interface for tools in Agar was intentionally kept as simple as possible. For the majority

of tools this works quite well: each tool can be written to test one submission at a time

and return a simple Pass or Fail value. Agar itself can then determine appropriate point

values as a result. However, some tests are non-binary. One of the first places this became

a difficulty was in the grading of multiple choice questions for an upper division course

wherein the instructor desired a “guessing penalty” to be applied to any wrong answers.

25

Thus each question had 3 possible outcomes: a positive score for a correct answer, a zero for

no answer (an admitted “I don’t know”), and a negative score of an incorrect answer. This

could have been dealt with by writing two separate tools for the testing: one that checks for a

correct answer, and a secondary that is invoked when the first fails that checks for an incorrect

answer. However, even at the time that this was first becoming a known issue the author was

becoming increasingly aware that some grading is simply not a binary operation1. A more

“advanced” tool interface was thus developed where testing tools can choose themselves how

many points are to be awarded for a given invocation of the tool.

The choice was made to extend the original tool interface rather than completely rede-

velop with a more complicated (and rigorous) system for extending the toolset. It is very

much not in line with the spirit of the project to force users to spend hours developing cus-

tom tools when a less robust interface would allow for faster development in the common

case. As noted in Chapter 4, this decision turned out to be rather unimportant, but very much

affected the complexity of the tool interface.

Tool Interface

The Tool interface, rather than relying on shared libraries or intricate IPC like most plug-in

architectures [23] [3], was designed so as to be easily explained in a couple paragraphs worth

of text. No complicated headers are needed, no language requirements are imposed. In fact,

it is difficult to imagine a simpler extensibility interface that still runs extensions in a separate

process space.

The full requirements for the original tool interface are as follows:

1. Each tool must be executable in the standard UNIX syntax for executables. This im-

1This decision was strikingly upheld two months later when it was discovered that there was need for a
“Bulk Testing” tool that would test a submission against a number of outputs at once and return what fraction
of those were a match. To do this using a purely binary system would require, in this case, a 30-fold complexity
increase, which could cause the automated testing to take longer than a human doing the same manually.

26

Usage: difftest.py [OPTION]... EXECUTABLE
Return exit code 0 or 1, 1 indicating output differences
0 indicating no differences.

--infile=FILE What input should be given to the executable.
--outfile=FILE What output the executable must produce on

that input.
--timeout=secs How many seconds before giving up.
--as-argument Give the program the argument ’infile’ rather

than sending the contents of infile to standard
input.

--flags-to-diff=FLAGS Optional flags to be passed to diff. See
the man page for diff for more info.

Figure 5.3: Usage Message for difftest.py

plies that the execute bit is set on the file, and the file is either a binary executable or

an interpreted script with the proper shebang2 header line.

2. When invoked with the –name option, the tool must print to standard output a long-

form name for itself and then exit with return code 2.

3. When invoked with the –help option, the tool must print to standard output a usage

message with long-form (GNU-style) arguments. Flags should be specified without

an “=” character. File arguments should be specified as “–argument=FILE”. All other

arguments should have an “=” character and some value other than “FILE”.

For example, Figure 5.3 shows the usage message for thedifftest.pytool. This message

will be parsed by Agar, and the configuration dialog shown in Figure 5.4 will be gen-

erated, thus obviating any need for the tool developer to have any knowledge of GUI

programming, Python, or the wxPython widget set.

4. Each tool operates on a single file per invocation. That filename will be passed to the

tool as the final command line argument.

2For example, #!/usr/bin/python

27

Figure 5.4: A Dynamically Generated Tool Configuration Dialog

5. For success, the tool should return an exit code of 0. For failure, the tool should print

relevant error messages to standard output and return an exit code of 1.

When it was realized that binary grading was insufficient, an addendum to the Tool inter-

face was made:

1. Upon termination, a tool wanting to return a non-binary value must output as its first

line of output the number of points to be awarded. Only a single decimal place is

considered valid (i.e. 10.1 is valid but 10.15 will be truncated).

2. Since the tool is being granted total control over the points awarded, most of the stan-

dard tools that utilize this interface also take point values as arguments. For example,

thepointlate.pytool, which grants increasing bonus points for submissions up to 3 days

early and increasing penalty points for submissions up to 3 days late, has the interface

seen in figure 2.

3. Upon termination, a tool using this “advanced” interface must return exit code 3.

Every tool in Agar uses only this interface, with the exception of the compile tool. The

compile tool (see Figure 5.2.1) has slightly more complicated behavior in that it needs to be

28

Figure 5.5: The Early/Late Points Configuration, Demonstrating Common Usage for the
Advanced Interface

able to register an executable for a given submission in the event of a successful compilation.

To date, there has been no need for any other special cases, although for the sake of efficiency

the “Success” and “Failure” tests have been hard-coded into the system rather than invoking

the overhead of spawning a child process that exits with a given return code.

Figure 5.6: Compilation Dialog

29

Existing Tools

Early in the deployment process there were frequent requests for new tools or additional

features for existing tools. During the most recent quarter of deployment, only a single

request of this type was submitted, which indicates either of two things. The first possibility

is that the tools that are currently part of the standard toolbox are now sufficient that most

common cases are well handled. The second is that the (now regular) users of Agar have

adapted assignment specifications and grading styles to what Agar most easily provides,

reducing the need for additional tools. In either case, the existing toolbox is fairly robust, and

is presented here in Appendix A.

Hierarchical Testing

One simple but novel feature of Agar that has not been explicitly described in other CAA

systems is the notion of hierarchical testing: if a given test fails, run one or more secondary

tests and return the sum of their outputs instead. This process can proceed recursively for

several levels, although there has been no use for anything beyond two levels so far. A

very common usage pattern for hierarchical testing is for compilation: In our lower division

courses at UCR, student submissions have been required to compile with thegccflags-W -

Wall -Werror -pedantic, which ensures total ANSI spec compatibility and that the majority of

common warnings will halt compilation. Since it is generally considered unduly harsh to not

accept submissions simply on the basis of having warnings in the code, if a submission fails

to compile with these flags, we may allow a secondary test (worth fewer points) that invokes

the student’s makefile, and a tertiary test that manually specifies compilation with g++ and no

warning flags. Since compilation represents a significant portion of the computational cost

for grading an average assignment, reducing the number of required compilation attempts in

this way can make things much easier, and make the top-level rubric much cleaner.

30

Visually, due to the limits of the wxPython widget paradigm, an intuitive method of dis-

playing this “test-on-failure” behavior has yet to be developed. Figure 5.2.1 shows the GUI

representation of the compilation hierarchy described above.

Figure 5.7: Hierarchical Testing

File-Masks & Testing

One of the most important, and unfortunately subtle, concepts in Agar is that of the file-mask.

Every rubric test has an associated “file-mask” field. When the tests are run, each file of each

submission is compared against the file-mask for each test3. Any files that match are given

to an invocation of the test. Depending on the settings for an individual test, points will may

awarded if any invocation of a test for a submission passes or only if all invocations of a test

3In pseudo-code terms: for each test: for each submission: for each file: if the file matches the file-mask,
invoke the test on that file.

31

for a submission are successful. If no files in a submission match the file-mask for a specific

test, then no points are awarded.

Agar supports the concept of a “Default File-Mask”, which is automatically set on startup

if the Startup Wizard is utilized. For example, if the “C/C++ Code” option is utilized, the

default file-mask is set to “*.c, *.cc, *.cpp, *.C, *.h”. Any tool whose file-mask is not explic-

itly changed will utilize the default. This has the difficult side-effect of making the file-mask

nearly transparent to the user most of the time. However, when the file-mask is wrong, users

have a tendency to not understand what is happening, and get frustrated. Agar2 will have

much more explicit and transparent file filters.

5.2.2 Submissions & Comments

The two other primary data structures in Agar are Submissions and Comments. Submissions

contain a username, a list of files, test results, and a list of Comments. Comments pertain to a

top-level Rubric item, or are listed as a non-specific “General Note.” Comments also include

a point value (positive, negative, or zero), and an associated textual note. Since Python deals

primarily in references-to-objects, when a comment is assigned to multiple Submissions, any

change to the base comment is reflected in all assignments of that comment. This increases

the fairness of the grading immensely: it not longer requires any thought or effort on the part

of the grader beyond remembering which comment corresponds to which problem (succinct

naming is necessary).

5.2.3 A Grading Example

The overall usage of Agar can be demonstrated nicely with a concrete example. To be-

gin with, we assume that student submissions are organized in a directory structure identi-

cal to that provided by the CS&E department’s Turnin facility: directories look likeuser-

32

name/ONTIME/or username/LATE/and contain all of the files for a student’s submission.

Other directory structures are easily supported using the Submission Manager, Agar merely

defaults to this structure.

Initial startup of Agar is easy, simply run theagar.pyscript. If invoked with no arguments,

it will bring up a dialog prompting you to choose “New Workspace”, “Load Workspace”, or

“Quit.” The usage of these should be self-evident, shown in Figure 5.8 Beginning a new

Figure 5.8: Startup Wizard

grading project requires us to select “New Workspace.” This action brings up a secondary

dialog, asking what type of assignment we are grading: Written work (wherein Agar is used

primarily for the Comment facilities and grade reporting), C/C++, or Other (which prompts

for an appropriate default file mask)4. The final step in setup is to choose a base submission

directory, the directory that contains all of the student submissions. For example, if our

student submissions are contained in/home/titus/grading/as1, then we need to select that

directory as the base submission directory.

Once the type of submission has been identified, Agar will automatically invoke the Sub-

mission Manager on the base submission directory and identify those submissions that it can.

If there are directories contained in the base submission directory that do not contain any files

matching the default file mask, then a warning is raised indicating there may be problems in

identifying submissions and the Submission Manager may be invoked by the grader.

At this point, the submissions should have been identified, and the act of constructing

a rubric may begin. Tools are selected from the Toolbox (recall Figure 5.2) and are drag-

4A fourth option, pictured, has been deprecated since the Marksense system has been moved from OCR to
Optical Mark Recognition (OMR), and has been split out of Agar into an entirely command-line based suite of
tools.

33

Figure 5.9: What Type of Grading?

and-dropped into the Rubric. Items in the Rubric may be re-ordered with drag-and-drop as

necessary. Each rubric item may be configured by double-clicking, specifying options for

that tool, changes to the filemask, etc. Point values for each rubric item are assigned by

selecting the item in the Rubric and changing the text field at the bottom of the window. Note

that each test can only be used to grant points (submissions start with zero points and test

results increase this), as it was generally felt that Agar’s rubrics should as closely correspond

to an educationally accepted rubric as possible. To assign a penalty, an auto-commenting

system is employed: individual tests can be configured to automatically assign a comment

when a submission fails the test, or when a submission passes the test. Since comments

can assign negative point values, this is the preferred method for assigning penalties. The

Auto-Comment dialog interface is quite simple, and is shown in Figure 5.11

Once the Rubric is configured, the tests can be run. A progress dialog will be displayed

showing the percentage of tests that have been executed and the username currently being

checked, and any manual examination necessary can be done on the “Grading” tab.

From within the Grading tab, the grader has instant access to all of the files for each

student’s submission. Double clicking a file or a submission launches a viewer appropriate

for the files in that submission. Upon inspection, if a submission is found to be lacking in

34

Figure 5.10: Submission Manager

Figure 5.11: Auto-Comment Dialog

some respect, a new Comment can be created, assigned a relevant top-level rubric item, a

point value, and a description, as shown in Figure 5.12. By default, creating a new comment

assigns it to the current submission. At any point in the future, if the same problem is seen

when the grader is examining another submission, drag-and-drop from the comment list to

the submission pane will add the comment to the new submission. If for some reason the

grader wants to work with the submission files, the context menu for each submission has

35

Figure 5.12: New Comment Dialog

an option to bring up a new terminal in the submission directory. There is also an option

to re-run the rubric tests on a single submission. The majority of time spent grading pro-

gramming assignments is spent performing these tasks: examining submission files, creating

and assigning comments, working with submissions to see how close they were to working

properly, re-running tests.

When the examination of submissions is complete, individual summaries of scores and

comments can be generated to text files and mailed back to the students. Students have con-

sistently commented on how much they appreciate getting detailed feedback, and using Agar

it is not particularly more difficult to give detailed feedback than it is to give no feedback at

all. Of great note to the instructor is the fact that when exporting grading results to a spread-

sheet, scores are not merely aggregated into a single final tally per submission. Rather, a new

sheet is created that contains a column for each top-level rubric item and the score for each

submission on each item. This is particularly useful in conjunction with the OMR software

for checking whether the answer key was entered correctly. In such a situation, if most of

the students get a particular question wrong (which can be seen in most spreadsheets by sim-

ply highlighting the column corresponding to the question), then the key can be checked to

make sure the students were graded correctly. Eventually, this level of detailed output will be

36

used in the CS&E department’s ABET accreditation activities, allowing us to data mine the

fine-level data and extract what students really know.

37

Chapter 6

Development Methodology

One of the unforeseen areas where Agar is of some interest is in terms of base development

methodology. In an attempt to maximize user feedback in terms of bug-reports and interface

design, Agar has been regularly deployed on the UCR CS department servers since Septem-

ber of 2003, and pushed as a useful tool to the TAs regularly during the ensuing period. All

told, Agar has gone through no fewer than 15 iterations of deployment (on average, a new re-

lease at least every other week). In essence, we are using our local collection of users (drawn

from the instructors and TAs) as testers throughout the process.

A number of factors contributed to such a rapid development cycle being possible. The

most major of these being the choice of development platform. Agar is developed using

wxPython [4], the wxWidgets [5] bindings for the Python [20] programming language. One

of the major benefits of using Python is its very loose run-time type system, which allows

for very rapid development and tactical changes. wxPython adds powerful GUI support in

this same vein, granting simple development of advanced features. For example, the original

addition of Drag-and-Drop support for moving Tools from the Toolbox into the Rubric took

on the order of 20 lines of code for the base functionality. More traditional development

platforms (C++, Java) could have easily had 7,000 lines (the size of the base project, not

38

counting Tools) of GUI code, to say nothing of the functionality that is required to make

such a large system work. Just as Agar is intended to be an enabling technology for graders,

wxPython is an enabling technology for building GUI applications of this sort.

Additionally, a number of factors contributed to this style of development beingneces-

sary. First and foremost was the fact that nobody could enumerate the majority of use cases

for this project before development began. Certain features, such as a simple Tool inter-

face and the “write-once” Comment system were known before beginning, and it was known

that some form of submission identification system would be needed, but the majority of the

Tools themselves, as well as the usage of Agar for grading written work, could not have been

predicteda priori.

In essence, development on Agar was a variant on the Extreme Programming (XP) [1]

methodology in terms of planning, deployment, and redesign. Release cycles were very

short. Features were only attempted when it was felt they were understood enough to make

a complete implementation of them before the next release1. Only a single developer was

working on Agar for the majority of its lifespan to date, so simplicity was highlighted: it

is far better to have something that works for most cases and satisfy the user than to delay

the release in order to deal with esoteric situations that will likely never arise. This was not,

however, full XP development. Rather than having a single client, development responded to

the needs and whims of all of Agar’s users at once. Rather than have a well-designed testing

plan throughout, features were added in the most easily available fashion possible, which

was later discovered to violate the layering of interface from functionality, making XP-style

automated testing intractable.

1Note that the CVS repository never branches

39

Chapter 7

Future Work

As Agar approaches stability and a feature-set robust enough to stop the flow of requests, the

places where it falls short are becoming more and more apparent. Some of the problems that

are surfacing are subtle effects of the choice of wxPython as the GUI platform for the tool.

Most notably, Agar fails to perform in one of our design guidelines: since this represents an

entirely new kind of tool there is almost certainly going to be a large discrepancy between

the user-model and program-model of behavior. To minimize this effect, the behavior of

the system must be as transparent as possible. Unfortunately, within the wxPython widget

paradigm, there is little that can be done to mitigate this elegantly. A fundamentally different

interface design is necessary. If the interface is to be thrown out, it represents an opportunity

for change in terms of separation of interface from functionality, increased testability, and

better software engineering practices. Within the next 6 months we hope to begin work on

Agar2, which will be a significant departure from the existing paradigm in terms of interface

and usage metaphor, and will take advantage of all of the lessons that have been learned in

the development and deployment of Agar over the past year. The core ideas in Agar2 will

include

40

• A more concrete program metaphor. Agar meets Bruce “Tog” Tognazzini’s definition

of a Graphical interface rather well [21]. Much better would be meeting Tog’s guide-

lines for a “Visual” interface: an interface where the application has a clear metaphor

which is clearly and consistently communicated with the user through multiple chan-

nels (text, graphics, etc).

• A more robust system for combining tools into rubric tests, even at the expense of the

simple tool interface. Users do not want to engage in tool development as a first step in

grading. When faced with that, they will (historically) choose to grade manually even

if the net time spent on the task is possibly greater.

• A more transparent testing phase. Currently Agar gives no more information than

displaying the username of the submission being tested. Showing the exact flow of

information and series of tests that are triggered during an execution would decrease

the time required to debug a rubric.

• Tool “mix-ins”: So many tools have demonstrated a need for similar functionality

(such as a timeout mechanism) that it seems prudent to allow for functionality mix-ins

to reduce code replication.

• A proper separation of GUI and functional elements. One of the properties that was

lost in the organic development of Agar is the separation of functionality from interface

elements. Without this separation, regression testing is almost impossible. With it, the

interface becomes just another modular component, allowing for greater flexibility in

interface.

As a proposed system model, a flow chart with labeled and color-coded inputs and outputs

would grant both greater flexibility and more intuitive interface. A grossly simplified mock-

up of what a rubric could look like with such a system is shown in Figure 7.1.

41

Figure 7.1: Agar2 Rubric Mock-up

42

Chapter 8

Conclusion

Forty-five years of history in the field of Computer-Aided Assessment has failed to provide

us with any generalized and usability-driven designs for a CAA system. Considering the

relatively small size of the CSE and CAA communities, a fairly significant amount of work

has taken place in the field, and on the basis of that work we can easily extract a set of

guidelines that are certainly necessary, and hopefully sufficient, conditions for a CAA tool

to achieve widespread acceptance. A remarkable number of difficulties both technical and

psychological face the would-be implementer of such a system.

In its current incarnation, Agar has proven invaluable for many forms of grading for the

users that have overcome its difficulties in interface design. With respect to our initial set

of design guidelines (speed, accuracy, quality of feedback, consistency, flexibility), we have

met all to some extent. For trained users, all of these requirements are met, although the act

of grading using Agar alters the fundamental paradigms used by a grader. For the untrained

user, speed and flexibility suffer due to the uncalibrated user models and too much being

done invisibly by the system. It is these areas that we hope to improve upon most in Agar2,

by allowing a more intuitive interface for the creation of a rubric and a more informative view

of the steps being automatically taken on the graders’ behalf.

43

The lessons learned from the historical review, development of Agar, and three academic

quarters of support, feature requests, and user feedback on Agar have granted us an invaluable

understanding of the problem domain. While usable in its current version and a valuable

development in its own right, a re-imagined version of Agar could be the long awaited low-

learning-curve, minimally invasive, generalized framework for computer aided assessment

that has been lacking since the late 1950s.

44

Bibliography

[1] Extreme programming: A gentle introduction. http://www.extremeprogramming.org.

[2] Funderstanding - constructivism. http://www.funderstanding.com/constructivism.cfm.

[3] Mozilla plugindoc. http://plugindoc.mozdev.org/.

[4] wxpython home page. http://www.wxpython.org/.

[5] wxwidgets home page. http://www.wxwidgets.com.

[6] Lint, a C program checker, volume 2A, chapter 15, pages 292–303. Bell Laboratories,
1978.

[7] Frank B. Baker. Fundamentals of Item Response Theory. ERIC Clearinghouse on
Assessment and Evaluation, 2001.

[8] Blackboard learning system. http://www.blackboard.com/products/academic/ls/index.htm.

[9] Fred Brooks. The Mythical Man-Month: Essays on Software Engineering. Addison-
Wesley, 1975.

[10] Jerome Bruner.Actual Minds, Possible Worlds. Harvard University Press, 1987.

[11] Computer aided assessment: Basic tools for warwick.
http://www.warwick.ac.uk/ETS/Publications/Guides/Assessment/basicassess.htm.

[12] James Dalziel. Enhancing web-based learning with computer assisted assessment: Ped-
agogical and technical considerations. InProceedings of International Computer As-
sisted Assessment Conference, 2001.

[13] George E. Forsythe and Niklaus Wirth. Automatic grading programs.Commun. ACM,
8(5):275–278, 1965.

[14] Free Software Foundation. Bourne-again shell. http://www.gnu.org/software/bash/.

[15] J. B. Hext and J. W. Winings. An automatic grading scheme for simple programming
exercises.Commun. ACM, 12(5):272–275, 1969.

45

[16] Colin Higgins, Pavlos Symeonidis, and Athanasios Tsintsifas. The marking system for
coursemaster. InProceedings of the 7th annual conference on Innovation and technol-
ogy in computer science education, pages 46–50. ACM Press, 2002.

[17] Jack Hollingsworth. Automatic graders for programming classes.Commun. ACM,
3(10):528–529, 1960.

[18] Lauri Malmi, Ari Korhonen, and Riku Saikkonen. Experiences in automatic assessment
on mass courses and issues for designing virtual courses. InProceedings of the 7th
annual conference on Innovation and technology in computer science education, pages
55–59. ACM Press, 2002.

[19] Abelardo Pardo. A multi-agent platform for automatic assignment management. In
Proceedings of the 7th annual conference on Innovation and technology in computer
science education, pages 60–64. ACM Press, 2002.

[20] Guido Van Rossum. Python programming language. http://www.python.org.

[21] Bruce ”Tog” Tognazzini.Tog on Interface. Addison-Wesley, 1996.

[22] Turing’s craft. http://www.turingscraft.com.

[23] Kevin Turner. Writing a gimp plugin. http://gimp-plug-
ins.sourceforge.net/doc/Writing/html/plug-in.html.

[24] urs von Matt. Kassandra: the automatic grading system.SIGCUE Outlook, 22(1):26–
40, 1994.

[25] Larry Wall. Perl programming language. http://www.perl.com.

46

Appendix A

Existing Tools

• Bulk Tests- A tool that compares the output of an executable with a provided sample

output file. Rather than directly compare the two, it splits on lines of “−”s and treats

each as a separate test. Uses the advanced interface to output a number of points equal

to the percentage passed times the “maxpoints” argument.

• Copy File - A tool that always returns success. It is used to ensure that a given file

exists in each students submission directory.

• C++ Driver Tests- Replaces the “main” function in a submission with the contents of

a given file. Compiles and runs the result. Otherwise behaves the same as Diff Test.

• Diff Test- Run an executable with given input and check to see if the output matches

a given output file. Options include a timeout and optional flags to the diff utility to

allow more imprecise matches.

• Detect Windows Code- Check the given file for DOS/Windows style newlines.

• Edit Distance Test- Similar to the Diff Test, but utilizes Python’s difflib library to

check the edit distance between the output of the executable and the sample output.

47

• Exit Code- Returns 0 if the given executable returns 0, 1 otherwise.

• Failure - Always return failure. Useful for setting up a single top-level rubric item

that contains many sub-tests. Most commonly this is used for a “Penalties” top-level,

which contains a Late Test, Detect Windows Code, Detect Line Wraps, etc.

• Correct Filename- Check that the filename provided matches the file invoked on. Ear-

lier attempts at CAA had less-robust submission identification systems and so students

were requested to submit their code with a given filename. This is less important now

This test is also one of the few that should generally use the “Penalize after all fail”

option.

• Post Hand Grading- Assumes the file it is invoked on is a list of point scores, one line

per problem. Uses the advanced interface to output the number of points specified on

a given line.

• Invoke Make- Invoke “make” in the submission directory and return the results of that

operation.

• Late Test- Check the full path of the given file for a given token, or LATE if none is

specified.

• Early/Late Points- Grant a specific number of points for submissions turned in 1, 2, or

3 days before a given deadline, and 1, 2, or 3 days after. Uses the advanced interface.

• Detect Line Wraps- Detects lines of code that are greater than 80 characters long, when

tabs are expanded. The size of the tab stops and the max line length may be specified

• Success- Returns success. Used primarily for things that are graded by hand to give

students all points by default and then reduce the score with comments.

48

• Post OCR- Before the Marksense system was split out from Agar, this was used to

grade a file of student response against a given answer key, one answer per invocation.

Not generally used now.

• Regexp Code- Check the given file for matches of the given regular expression.

49

Appendix B

Version History

The CVS logs for the project over the project’s lifespan really give direct evidence and insight

into the development cycle. About one in three CVS updates was immediately propagated to

the deployed version of Agar. These logs have been augmented with ChangeLog information

from within GraderFrame.py whenever the ChangeLog is more informative.

revision 1.35

date: 2004/04/30 20:58:19; author: titus; state: Exp; lines: +151 -8

* Added an option to pass flags to diff in the Diff Test tool.

* Got relative path storage working, so workspaces can now be shared in many

cases.

* Save dialogs give better default filenames

* Fixed bug where LATE files are not treated as final submission files

* Fixed bug where filenames are displayed incorrectly in Submission tree

* Added a listing of the Tool’s original name to the Properties Dialog (buis)

50

* Added a button to the Properties Dialog that allows the options to

be re-read from the tool executable (eharris)

revision 1.34

date: 2004/04/14 20:13:06; author: buis; state: Exp; lines: +6 -9

*** empty log message ***

revision 1.33

date: 2004/04/12 21:05:19; author: titus; state: Exp; lines: +150 -35

* Altered the Drag-and-Drop system for the Rubric so tests can be

re-ordered.

* Added a number of options to the context menu for Rubric tests.

* Fixed where the context menu appears.

revision 1.32

date: 2004/04/07 18:46:27; author: titus; state: Exp; lines: +53 -17

A few bug fixes, I’m posting an update to the server, so this is 0.3.7.

* Fixed segfault when hierarchical tests have been removed before running.

* Added tool for copying known files into submission directories

* Sorted toolbox

* Fixed behavior of default filemask

revision 1.31

51

date: 2004/03/09 17:28:49; author: titus; state: Exp; lines: +15 -2

Undid work on using emacserver

revision 1.30

date: 2004/03/09 17:26:05; author: titus; state: Exp; lines: +48 -2

*** empty log message ***

revision 1.29

date: 2004/03/06 16:06:58; author: titus; state: Exp; lines: +0 -1

Removed erroneous testing garbage.

revision 1.28

date: 2004/02/29 21:07:51; author: titus; state: Exp; lines: +206 -38

Lots of changes, mostly little things regarding UI and the Submission

Manager. A couple additional Context-Menu options for Submissions.

* Added confirmation request before sending mailbacks.

* Hardwired the "Success" and "Failure" tests to be faster and work

even in the face of weird filemasks. I don’t really like this but it

seems to be mostly what people want. I reserve the right for this

to change in the future.

* Removed the "N/A" result for tests that were never invoked on a submission

for lack of files matching the filemask. Now the test simply fails

(this makes it simpler to deal with comments overriding this behavior.)

* The OCR Wizard and the Written Work Wizard now automatically invoke

52

"Run Tests"

* We’ve got viewers configured for .doc (oowriter and abiword)

* Submission Manager now appears in the Actions menu.

* By default we will attempt to open only a single emacs window (using

the emacsserver extensions.)

* The context-menu for Submissions on the Grading tab now has a "Rerun Tests

on Sub" option to rerun the tests for ONLY this submission.

* If submissions cannot be understood automatically, the option to invoke

the Submission Manager is on the warning dialog.

revision 1.27

date: 2004/02/25 04:44:06; author: titus; state: Exp; lines: +6 -0

Nothing important, doing a bugfix on usernames not exporting correctly

because of /’s

revision 1.26

date: 2004/02/17 06:36:30; author: titus; state: Exp; lines: +23 -9

Minor bugfixes, some new functionality in difftest / editdist, added new

pointlate tool to deal with early/late submission points slightly more

robustly.

revision 1.25

date: 2004/02/12 22:07:02; author: titus; state: Exp; lines: +0 -1

53

Fixed vestigal code error.

revision 1.24

date: 2004/02/12 21:46:28; author: titus; state: Exp; lines: +2 -0

Merging diffs, no real changes.

revision 1.23

date: 2004/02/11 05:07:48; author: titus; state: Exp; lines: +123 -12

Many little bug fixes, some mild tweaking to the saving / loading code,

and a fixing of my improper use of TreeCtrl’s and iterating through such.

revision 1.22

date: 2004/02/06 03:55:21; author: titus; state: Exp; lines: +1 -1

Fixed drag-and-drop comment bug, the useMake compile bug.

revision 1.21

date: 2004/02/06 03:50:27; author: titus; state: Exp; lines: +23 -9

Updating, fixed a comment bug and one of the terminal bugs.

revision 1.20

date: 2004/02/03 21:20:25; author: leviee; state: Exp; lines: +10 -1

Added error message in case exporting sheet fails

* Added dialog boxes confirming most previously silent operations (like

writing mailbacks.)

54

* Bug-fixes

revision 1.19

date: 2004/01/25 20:57:19; author: titus; state: Exp; lines: +4 -1

Fixed startup wizard bug.

revision 1.18

date: 2004/01/25 20:52:08; author: titus; state: Exp; lines: +15 -13

Minor bugfix.

revision 1.17

date: 2004/01/25 20:40:47; author: titus; state: Exp; lines: +861 -299

Biggest . . . update . . . ever.

See GraderFrame.py for changelog, it’s seriously huge. Stability up,

feature set up. I’m so happy.

* Added checkbox to New Comment dialog to auto-assign that comment to the

current submission.

* Changed the submission list on the Grading tab to be a Tree, each submission

contains the files of that submission as leaves.

* Right clicking the Comment Tree or the Submission Tree on the Grading tab

brings up a context menu.

* The context menu on the Comment tree allows comments to be sorted in ways

other than just alphabetically (sort by recently used, frequency, or rubric

55

item).

* Editors other than just Emacs are possible now.

* The context menu on submissions has a ’Run Executable’ option, which runs

the executable for the submission in an xterm and waits upon program

termination for an extra newline so you have time to look over the results.

* The Compile Dialog now has an option to attempt using Make when possible,

and then fall back to compiling the ’old fashioned’ way if no makefile is

present or if the make build fails.

* Assigned comments now show their point values.

* THE SEGFAULT ON RUN TESTS BUG IS GONE!

* Saving a ’template’ (that is, a rubric or rubric & comments with

no submissions) now works properly.

* Fixed a bug with loading from the command line.

* Added the status bar at the bottom, mostly to notify you when a Save

has been successful.

* Agar now autosaves. If you’ve already specified a filename, it will save

in filename + ’˜’, otherwise it saves in autosave.agw in the directory

you invoked Agar in. The autosave happens every minute.

* Point values not longer have to be integers, they can now have one

significant figure after the decimal.

* No longer requires Ctrl+C to terminate when started using the Startup Wizard

revision 1.16

56

date: 2004/01/22 20:32:05; author: titus; state: Exp; lines: +47 -74

Fixing my CVS errors still.

revision 1.15

date: 2004/01/22 20:24:00; author: titus; state: Exp; lines: +7 -4

I think I fixed the evil segfault, and I’m pretty sure I’ve gotten

usernames to look like usernames (no trailing ’/’s) for all of the

3 major modes.

revision 1.14

date: 2004/01/20 05:33:43; author: titus; state: Exp; lines: +30 -3

Fixed a bunch of little things, added Bulk Tests and Invoke Make. Most

important was the squashing of Comment Dialog bugs, and a couple minor

extensions of the Submission Manager.

* Added some extra functionality to SubmissionManager.

* StartupWizard now tests to see if you have write access to the directory

you identify as the base turnin directory. If not, it asks if you would

like to copy the submissions over to somewhere else.

* Added an ’Invoke Make’ tool and a ’Bulk Test’ tool. Bulk test was a lazy

out on my part when doing a fast-pass at grading today’s CS 14 assignment.

It lets you test sections of the output of an executable against a sample

output, and collect points equal to the number of those test sections that

match.

* Fixed bugs in Comment Dialog that prevented proper editing.

57

* Added a ’Tool Help’ button on Configuration Dialogs for rubric tests.

The help button displays the output from the tool when given the --help

parameter.

revision 1.13

date: 2004/01/19 22:33:46; author: titus; state: Exp; lines: +2 -0

Got rid of the "can’t edit a comment" bug.

revision 1.12

date: 2004/01/05 06:43:10; author: titus; state: Exp; lines: +33 -18

A much much better Submission Manager. Submission Finder is now

deprecated.

* Removed SubmissionFinder, replaced with Submission Manager, which

allows much greater control over the files in a given submission,

as well as parsing of Makefiles to find relevant files to include

in a submission.

revision 1.11

date: 2003/12/11 20:51:10; author: titus; state: Exp; lines: +2 -2

Oh yeah, and fixed the XPDF popping up along with emacs problem.

revision 1.10

date: 2003/12/11 20:41:08; author: titus; state: Exp; lines: +21 -2

58

Fixed some of the filemask config annoyances and assignment name bugs that

were bothering me

revision 1.9

date: 2003/12/11 19:49:11; author: titus; state: Exp; lines: +2 -4

Nothing special.

revision 1.8

date: 2003/11/25 07:16:02; author: titus; state: Exp; lines: +1 -1

Minor tweaks.

revision 1.7

date: 2003/11/21 00:22:54; author: titus; state: Exp; lines: +2 -1

Fixed configuration dialog.

revision 1.6

date: 2003/11/19 03:10:07; author: titus; state: Exp; lines: +1 -1

Fixed executable and where submissions come from.

revision 1.5

date: 2003/11/18 06:53:48; author: titus; state: Exp; lines: +1 -1

Fixed bug from bad merge.

revision 1.4

59

date: 2003/11/18 06:45:40; author: titus; state: Exp; lines: +120 -84

Lots of updates.

* Added StartupWizard. Run agar.py from the command line

without a directory argument. Useful for written work, processing OCR

results, or grading things other than C/C++.

* Added configuration storage. The file ˜/.agar.cfg stores record of

your most recent settings. This is somewhat experimental, if you suffer

from inexplicable behavior, try removing this file. If that solves your

problem, PLEASE send an email describing the issue to titus@cs.ucr.edu.

* Fixed Drag-And-Drop. All Drag-And-Drop is now done with the left button,

rather than the right button.

* Added versioning and update messages.

* Changed executable name from grader.py to agar.py.

* Added Point configuration to the WrittenWork Wizard, and fixed the comment

values for the same.

* Revised the saving/loading system, no more AGT’s. Now all save files

describe what information they contain. The first time you save a workspace,

or whenever you hit Save As, you will be given a dialog that asks what

information you want to save (Rubric, Submissions, Comments, Misc).

revision 1.3

date: 2003/11/18 00:31:59; author: titus; state: Exp; lines: +7 -6

Startup wizard works, WrittenWizard does a point configuration that is

sweeeet, OCR Wizard works properly, the advanced point system has been

60

tweaked to still deal with statistics as it ought to.

revision 1.2

date: 2003/11/17 07:40:31; author: titus; state: Exp; lines: +56 -11

I think the new version is ready-to-go-ish

revision 1.1

date: 2003/11/12 19:59:45; author: titus; state: Exp;

branches: 1.1.1;

Initial revision

revision 1.1.1.1

date: 2003/11/12 19:59:45; author: titus; state: Exp; lines: +0 -0

A new era begins, major revisions, and a new CVS repository.

===

revision 1.45

date: 2003/11/06 20:58:22; author: titus; state: Exp; lines: +71 -4

Fixed some comment issues and the issue with the Wizards allowing

duplicated names for rubric items.

revision 1.44

61

date: 2003/11/06 05:04:28; author: titus; state: Exp; lines: +28 -0

Primitive support for "advanced" tool interface.

revision 1.43

date: 2003/11/05 21:03:35; author: titus; state: Exp; lines: +143 -1

Added WrittenWork wizard

revision 1.42

date: 2003/11/05 18:39:06; author: titus; state: Exp; lines: +46 -18

A couple tweaks here and there. Need to add support to the PostOCR wiz

for doing Tom-style evil MC grading (1 for good, 0 for blank, -1 for wrong.)

revision 1.41

date: 2003/11/03 05:10:59; author: titus; state: Exp; lines: +181 -23

Added Post-OCR wizard support.

revision 1.40

date: 2003/10/21 17:40:39; author: titus; state: Exp; lines: +9 -20

Mail works now.

revision 1.39

date: 2003/10/16 16:57:17; author: titus; state: Exp; lines: +7 -1

Finishing up my cleanup of the GUI, back to functionality in a bit.

62

revision 1.38

date: 2003/10/16 05:17:38; author: titus; state: Exp; lines: +58 -9

Fixed a few little UI things that were bugging me.

revision 1.37

date: 2003/10/14 07:47:54; author: titus; state: Exp; lines: +0 -4

Aesthetic deletions.

revision 1.36

date: 2003/10/14 03:08:25; author: titus; state: Exp; lines: +5 -1

Regexp now works.

revision 1.35

date: 2003/10/10 23:15:28; author: titus; state: Exp; lines: +10 -3

Export does so by row correctly, in the correct column order, grader

supports pdf limitedly.

revision 1.34

date: 2003/10/09 04:18:29; author: titus; state: Exp; lines: +3 -2

Changed the progress dialog to be a bit more interesting.

revision 1.33

date: 2003/10/06 07:23:02; author: titus; state: Exp; lines: +200 -42

Now add a comment whenever a test passes / fails.

63

revision 1.32

date: 2003/09/30 22:45:36; author: titus; state: Exp; lines: +4 -4

Slight changes, need to test export.

revision 1.31

date: 2003/09/30 20:45:22; author: titus; state: Exp; lines: +12 -5

Modified export format.

revision 1.30

date: 2003/09/21 05:06:15; author: titus; state: Exp; lines: +9 -6

Mildly documented for release.

revision 1.29

date: 2003/09/18 16:48:12; author: titus; state: Exp; lines: +1 -1

Works with the hanoi stuff the new grads turned in yesterday.

revision 1.28

date: 2003/09/18 05:31:29; author: titus; state: Exp; lines: +68 -35

Beta release version.

revision 1.27

date: 2003/09/18 02:07:25; author: titus; state: Exp; lines: +1 -1

Mild changes.

64

revision 1.26

date: 2003/09/17 17:59:15; author: titus; state: Exp; lines: +220 -71

Regular checkin.

revision 1.25

date: 2003/09/10 23:05:13; author: titus; state: Exp; lines: +237 -38

*** empty log message ***

revision 1.24

date: 2003/09/10 05:13:57; author: titus; state: Exp; lines: +402 -216

Still needs a configuration dialog box, menu shortcuts, tooltips on a few

things, and better filename handline. But we’ve got 95\%.

revision 1.23

date: 2003/09/07 05:27:05; author: titus; state: Exp; lines: +291 -509

Mostly "done." Mailing back mailbacks doesn’t work yet (not sure why),

there are a couple minor lookup bugs going on, but beyond that it’s just

feature addition.

revision 1.22

date: 2003/08/30 07:15:03; author: titus; state: Exp; lines: +298 -123

Whole helluva lot of stuff done. All the base functionality is here

I think, its just bug fixes and feature adding from here on in.

65

revision 1.21

date: 2003/08/29 23:59:01; author: titus; state: Exp; lines: +20 -19

Minor updates

revision 1.20

date: 2003/08/29 21:49:44; author: titus; state: Exp; lines: +306 -193

I think I just broke through into the final phase.

revision 1.19

date: 2003/08/29 06:30:40; author: vinh; state: Exp; lines: +156 -153

Added functionality to add new comments. Added classes Comment and

CommentDialog.

revision 1.18

date: 2003/08/28 19:51:42; author: titus; state: Exp; lines: +151 -17

Manual override tweak for grading.

revision 1.17

date: 2003/08/28 02:47:13; author: titus; state: Exp; lines: +11 -12

Got configuration options for tools to be persistant.

revision 1.16

date: 2003/08/26 07:22:44; author: vinh; state: Exp; lines: +27 -0

66

Added sync’ed selection on Scratchpad tab. Sync’ed scrollbar doesn’t work yet.

revision 1.15

date: 2003/08/25 23:51:43; author: titus; state: Exp; lines: +150 -104

Done for the day. Points are now displayed and calculated.

revision 1.14

date: 2003/08/25 05:42:41; author: titus; state: Exp; lines: +64 -20

Going to bed. Updated interface a bit, added combobox for point-types,

added requisit parts to Tool class for dealing with that and began work

on tracking when a tool/test has changed and thus could be re-run efficiently.

Need to break the functionality from onRun and a couple of the other long

functions into small pieces so they can be more modular / easily recalled.

revision 1.13

date: 2003/08/25 01:18:50; author: titus; state: Exp; lines: +117 -102

Fixed a couple bugs, made the settings dialogs for the tools a bit cleaner,

minor tweaks here and there. Fixed a number of TODOs.

revision 1.12

date: 2003/08/24 22:32:38; author: titus; state: Exp; lines: +148 -49

Actually able to do some minimal grading, except for not calculating

scores or anything like that yet.

67

revision 1.11

date: 2003/08/23 20:56:42; author: titus; state: Exp; lines: +112 -9

Beginning to rough in the Compiler tool.

revision 1.10

date: 2003/08/23 19:15:27; author: titus; state: Exp; lines: +180 -29

Tabs 1 and 3 are mostly done, I need to get a special tool for compiling

and develop a system for having tools run on the executable, but the

base functionality is very close.

revision 1.9

date: 2003/08/23 05:46:51; author: titus; state: Exp; lines: +172 -69

Commented and with minor interface tweaks.

revision 1.8

date: 2003/08/23 02:52:49; author: titus; state: Exp; lines: +125 -122

Beginnings of tracking points per tool test, also now displaying results

from tool tests.

revision 1.7

date: 2003/08/22 22:28:30; author: titus; state: Exp; lines: +249 -16

I can now autograde (sort-of) whether an set of submissions has line wraps.

revision 1.6

68

date: 2003/08/21 01:36:06; author: titus; state: Exp; lines: +11 -8

Mostly done . . . still.

revision 1.5

date: 2003/08/21 00:24:23; author: titus; state: Exp; lines: +64 -22

Tools being read in from tools directory, properties nearly working,

need to work on aliasing still.

revision 1.4

date: 2003/08/15 20:01:37; author: titus; state: Exp; lines: +141 -34

Lots of work done on the rubric section.

revision 1.3

date: 2003/08/13 01:34:00; author: titus; state: Exp; lines: +42 -1

Got some drag-and-drop working for the Rubric.

revision 1.2

date: 2003/08/12 17:14:46; author: titus; state: Exp; lines: +9 -0

Added todo list.

revision 1.1

date: 2003/08/12 00:08:14; author: titus; state: Exp;

First commit with wxPython attempt.

===

69

