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Abstract. An implicit assumption in psychometrics and educational statistics is that
the generative model for student scores on test questions is governed by the topics
of those questions and each student’s aptitude in those topics. That is, a function
to generate the matrix of scores for m students on n questions should rely on each
student’s ability in a set of t topics, and the relevance of each question to those
topics. In this paper, we use educational data mining techniques to analyze score
matrices from university-level computer science courses, and demonstrate that no
such structure can be extracted from this data.
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1. Introduction

Over the past century, psychometrics has utilized mathematical techniques to extract
meaning from collections of educational data. One of the most common data types in
psychometrics is the score matrix, storing the scores for a collection of students on each
question from a test. Commonly, educational researchers will apply algorithms devel-
oped in the early 20th century to discover the structure or generative model of these ma-
trices. While advanced for their time, and sufficient for some problem types, the great
advances made in machine learning may have surpassed these techniques, and may even
invalidate some of the assumptions made by early psychometric techniques.

This paper presents an investigation into the generative model of score matrices
recorded in computer science (CS) courses in our department. Here we apply machine
learning techniques to this canonical psychometric problem and show that on some
naturally-arising datasets, the assumptions made for the past century may not be valid.

Specifically, this paper investigates the assumption that a generative model for a
score matrix should take into account the topics being covered on the test. From our
investigations on course data, the factors that are considered most important by machine
learning algorithms consistently have no relationship with human-identified topics.

2. Psychometrics

At its root, the quantitative branch of education that is most applicable to machine learn-
ing and educational data mining is psychometrics. Psychometrics focuses on measuring
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Table 1. Descriptions of datasets. MC indicates multiple choice questions, FR indicates free-response ques-
tions subjectively graded, PC indicates partial-credit.

Data set Course m n Question Types Scores

008 Intro Computing 269 80 MC Binary
010 CS 1 190 68 MC Binary
141 Algorithms 19 15 FR PC
153 O. S. 66 34 MC,FR Binary,PC
164 Networks 23 72 MC,FR Binary,PC
Academic Online 267 40 FR Binary
Trivia Online 467 40 FR Binary

latent quantities of knowledge and ability in the human mind [1]. These are difficult
values to quantify, as there is no direct way to measure them and no implicit units or
dimensionality to such a measurement.

One of the most important developments in psychometrics was the development
of common factor analysis (CFA), which became the primary area of research in psy-
chometrics for half a century [2]. The dominant theory at the time was that intelli-
gence was univariate (g-theory). However, some data simply did not match the pro-
posed model. Utilizing then-new techniques for calculating correlations between mea-
sured values, Charles Spearman developed common factor analysis, which is still used
today to understand large quantities of data by discovering the latent factors giving rise
to that data. CFA assumes that a linear model of f factors can describe the underlying
behavior of the system, in this case the ability of students to answer items correctly:
Si,j = µj +

∑f
k=1 Wi,kHk,j + ε, where Si,j is the score for student i on item j, µi is

a hidden variable related to the difficulty of the item, W is a matrix giving the ability of
each student with respect to each factor, H is a matrix relating each factor to each item,
and ε is the noise in score measurement. Generally, the factors in CFA are assumed to be
the topics of the various questions.

This paper is an attempt to verify the CFA assumption that the underlying factors in
the generative model for a score matrix are the topics of the questions being tested.

3. Datasets

Each of the datasets evaluated in this paper has two components. Most important is the
score matrix S, an m×n matrix of the scores for m students on n questions. We also have
a collection of human-generated sets identifying which of the questions (columns of S)
can be viewed as testing the same topic. We currently have two sources for datasets: real
course data recorded at the per-question level, and an online quiz system. These datasets
are summarized in Table 1.

We are primarily concerned with datasets from real courses. Over the past several
terms we have recorded detailed score information for a number of courses across our
curriculum, ranging from large non-major service courses to upper division electives.

For each of these courses, we have asked the instructor of the course, along with
any other regular teachers of the course, to provide us with a set of question groups they
would consider grouped by topic. To do this they are provided the text of the questions,
but not the scores. They were allowed to place each question in as many groups as they
choose. This could be none if they felt the question is not connected to any other ques-
tions in the course, or more than one group if a question relates to more than one topic.
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The analysis in this paper relies on the presence of this topic information provided
by instructors. However, as it is unknown whether the score matrices for actual courses
really contain topic information, we felt it prudent to develop datasets with known de-
pendence on topic. To this end we built two additional datasets, one derived from trivia
questions from the popular game Trivial Pursuit [3], and one derived from questions from
study guides for SAT Subject Tests [4]. Both quizzes are forty questions drawn from four
topics, with ten questions in each topic.

The trivia quiz draws questions from Sports and Leisure, Science and Nature, Arts
and Entertainment, and Literature. These topics were chosen from the six categories
in Trivial Pursuit because they were felt to be the most independent from one another.
The questions were drawn from the 20th Anniversary edition of Trivial Pursuit, which
focuses primarily on the 1980s and 1990s. As our target audience for the quiz was college
students, we felt this was more likely to result in correct answers than questions from
other editions. Additionally, we chose only questions that had short one or two word
answers, as the online quiz system we developed is a free response system and we wanted
to minimize issues stemming from poor spelling.

The academic quiz draws questions from published study guides for the SAT Subject
Tests. The SAT Subject Tests are taken by students in their final year of high school, and
are used to demonstrate the depth of knowledge that a student has attained in particular
areas. There are over twenty test subjects available. Again we chose subjects that we felt
were maximally independent: Math, French, Biology, and World History.

Our assumption was that the trivia quiz could function as a baseline for topic ex-
traction on data with little or no actual correlation within each topic. Answering any of
these questions correctly is a matter of isolated fact retrieval, and not a test of any deeper
knowledge or skill. As such, even though there is an obvious “correct” answer when
grouping these questions, we did not expect to be able to extract that answer with any of
our candidate algorithms.

The academic quiz represents the opposite end of the spectrum: the questions that
were included come from subjects that are generally studied for at least one academic
year in high school, and possibly several more in college. The questions require a fair
depth of knowledge, and are more topically connected than the trivia questions. Our
expectation was that any algorithm that can succeed in topic clustering will have at least
partial success on this dataset.

The quizzes were administered online over the course of about a week. The trivia
quiz was completed by 467 different visitors, the academic quiz was completed by 267.
Correct answers were immediately reported to the test taker, incorrect answers were
reported only as “probably” incorrect. The full text input for any incorrect answers was
recorded, allowing for post-testing processing and correction for unexpected formatting
or spelling.

4. Unsupervised Clustering

Although we performed several experiments on this data, due to space constraints we
only present results for unsupervised clustering. Interested readers are invited to seek
additional details on this work in [5]. We have named the underlying problem here topic
clustering: given S and the human-generated groups, is there an unsupervised machine
learning algorithm that can generate clusters of the questions in S similar to the human-
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generated answer? As discussed in [5], a solution to the topic clustering problem that
works on course datasets like the ones discussed here can be used in a wide range of
assessment scenarios.

4.1. Experiment

To evaluate the output of our candidate algorithms in topic clustering, we focus on ques-
tion pairings. Each algorithm produces a set of groups of questions that are being claimed
to belong to the same topic. Each dataset has a similar set of groups that are correct or ac-
ceptable answers. For the course datasets these were produced by the course instructors,
for the quiz datasets these are the topics from which the questions were drawn.

To measure the similarity of the correct answer and the algorithm’s results, we create
the list of all pairs of questions that were placed in the same group by the algorithm1,
and the list of all pairs of questions that were grouped together by a human. Given these
lists we can evaluate precision and recall for each algorithm. Precision is the percentage
of the pairs reported by the algorithm that are present in the correct answer. Recall is
the percentage of pairs in the correct answer that were also reported by the algorithm.
Thus precision measures how accurate the answer is, and recall measures how complete
the answer is. These are independent: grouping only two questions, and grouping those
correctly, produces perfect precision but very low recall. Grouping all questions together
into one group provides low precision (equal to random chance), but perfect recall.

Further, all but one of the algorithms can produce a numeric certainty on each ques-
tion’s group membership. By varying the cutoff threshold on that certainty, we can adjust
the size of the groups reported by each algorithm. If an algorithm’s underlying model is
accurate, then at least the most-certain questions should be correctly grouped. By eval-
uating precision and recall across the range of the certainty, we can generate precision-
recall curves for each algorithm, demonstrating the accuracy of the algorithm across the
certainty range.

4.2. Algorithms Surveyed

The algorithms considered in this study fall into three main groups: clustering algorithms,
dimensionality reduction algorithms, and algorithms from educational statistics. Here we
list the algorithms, how they are used to produce the certainty groups underlying the
precision-recall curves, and describe those that readers may be unfamiliar with.

4.2.1. Clustering

We are evaluating k-means [6], spectral clustering [7] single-linkage [8], complete-
linkage [9], and average-linkage [10] algorithms. All of these can give an ordering on
which questions are most certainly grouped by sorting the questions by the distance to
their cluster center.

Another set of algorithms that we are investigating is the use of single linkage, av-
erage linkage, or complete linkage agglomerative clustering on the correlation matrix
of the questions, rather than working with the raw data itself. In this form, the pair of
questions or question clusters to be merged at each step is given by the maximal entry in

1Stochastic algorithms were run to convergence and restarted a minimum of 500 times per dataset.
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the correlation matrix. The three agglomeration techniques differ in how they merge the
rows and columns for the chosen clusters for the next step. Due to space considerations,
these are detailed in [5].

4.2.2. Dimensionality Reduction

Dimensionality reduction algorithms can also be used to find the underlying structure
of the data. For dimensionality reduction, we evaluated Singular Value Decomposition
(SVD) [11], Independent Component Analysis (ICA) [12], and a non-negative matrix
factorization (NNMF) [13].

We also evaluated slight alterations of SVD and ICA. In the base versions of these al-
gorithms group membership is determined by the maximum absolute value in the output
vector corresponding to each question. In the modified versions we use k-means cluster-
ing on the reduced matrices, setting k to t (the number of factors) and assigning group
membership for each question according to the resulting clustering.

4.2.3. Educational Statistics

We are also investigating two methods from educational statistics in this study: Common
Factor Analysis [2], which we are using as the major point of comparison for educa-
tional statistics, and Q-Matrix [14]. Both of these have been specifically suggested by
researchers in education for this problem. Q-Matrix is another method of capturing the
underlying factors and abilities that give rise to a matrix of student scores. In the most
simple case, Q-Matrix is applied to a binary m× n score matrix.

Q-Matrix operates on this matrix along with the assumed number of underlying abil-
ities or factors, t. Each question is assumed to have a binary relationship with each of
the t factors. Each student is similarly assumed to have a binary ability in those factors.
Thus Q-Matrix is decomposing the input matrix into a binary m × t matrix of student
abilities in each of those factors, as well as a binary t × n matrix of question relevance.
A student is assumed to answer a question correctly if and only if the factors relevant to
that question are a subset of their own abilities.

Most or all Q-Matrix solvers utilize gradient descent on the reconstruction error of
the matrix in order to find the optimal model to fit the data. Given an initial random
configuration, the algorithm finds the single best entry to toggle in the student matrix or
the question matrix in order to best reproduce the input matrix. As a discrete optimization
problem with a search space growing as O(2t(m+n)), this is computationally intensive.

4.3. Results

First we need to confirm our assumptions about the ability for topic information to be
extracted from the baseline data. We would like to confirm that the algorithms we are
surveying do not extract clusters related by topic on the trivia data. This is confirmed
in Figure 1a: even the four best algorithms applied to this dataset fail to significantly
outperform random chance. Similarly, we would like to see that the questions in the
academic dataset do cluster by topic. This is partially confirmed, as seen in Figure 1b.
However, even the highest-performing algorithms appear to only be performing at around
50% precision. Further investigation demonstrates that the Math and French portions of
the academic dataset can be correctly clustered by almost all of our surveyed algorithms,
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Figure 1. Precision-recall curves for best four algorithms on baseline datasets
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Figure 2. Precision-recall curves for best four algorithms on three course datasets, four factors
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Figure 3. Precision-recall curves on for best algorithm(s) on baseline data, varying population sizes

as shown in Figure 1c. The Biology and World History questions behave like the trivia
data. Since SAT-level questions on Biology and World History are generally retrieval
of isolated facts, more than testing of deeply learned skills, this is less surprising in
retrospect.

On data where topic is clearly a factor (the Math and French) we have shown that
almost any machine learning technique will acceptably separate the data. For data where
topic is not expected to be a factor (the trivia data), all of the algorithms surveyed perform
only as well as random chance. One important question is, “Where on this spectrum do
course data fall?” Figure 2 is an example of this on three of our CS course datasets with
t = 4: although there is possibly some dependence on topic, in general even the best
algorithms are performing no better than chance. Evaluating across the range of t and on
all five course datasets shows graph after graph of similar behavior. Given this evidence,
topic has little to do with scores on the course datasets.

An important difference between the course data and the baseline data is the size
of the datasets: the baseline data has significantly larger student populations than the
course data. It is possible that topic clusters can be more accurately extracted if student



T. Winters et al. / Factors of Score Matrices 7

Table 2. Average Precision within given Recall Ranges on Course Datasets, 8 factors

Algorithm 0 to 20 20 to 40 40 to 60 60 to 80 80 to 100 AVG

NNMF 33.9 41.2 33.9
Complete-Link (corr) 33.8 17.5 33.1
Random 30.2 30.2 30.2 30.2 30.2 30.2
Complete-Link 28.8 36.1 37.4 29.8
ICA (cluster) 28.0 38.0 29.5
SVD (cluster) 27.0 37.7 28.9
ICA 28.4 28.4
Average-Link (corr) 28.3 28.3
Spectral 28.1 23.4 26.0 27.2 27.6
k-means 26.4 30.0 27.3
Average-Link 26.8 26.8
CFA 27.6 20.8 25.9
Single-Link 24.4 26.4 22.6 23.1 22.0 24.4
Single-Link (corr) 24.3 24.3
SVD 23.4 23.4
Q-Matrix 19.1 21.4 31.8 22.4

populations were larger. Since it is not possible to increase the student population in a
real course, instead we test the converse of this hypothesis: “Can we still extract topic
information from reduced student populations on the academic dataset?” This is shown
in Figure 3. For student populations as small as about 20 students, topic information can
be extracted well from the Math and French data. This strongly suggests that it is not the
size of the input that causes the poor performance in Figure 2.

Summarizing all of the algorithms on all the course datasets, and setting t = 8
(the largest workable value for some of the smaller datasets), we get Table 2. All of
the precision values falling within the given range for recall across all course datasets
are averaged together and provided here. A blank entry indicates no evaluation of the
output of that algorithm had a recall in that range. By setting t as large as possible, we
minimize issues of forcing multiple topics into the same group, at the expense of lower
recall values. Here we see that nothing significantly outperforms random chance, with
the possible exception of the Non-Negative Matrix Factorization. On the course data, it
does not appear that topic is a prime factor in the generative model for student scores.

5. Conclusions

Neither experiment presented here successfully shows the dependence of scores on topic
information for course data. This contradicts some of the fundamental assumptions in
psychometrics. We have provided strong evidence that on common types of data (namely,
scores collected in university courses), the generative model for those scores is, in fact,
not based on the topics for those questions. In our informal evaluation of the extracted
groupings we have found anecdotal evidence of the importance of time (which questions
were asked on the same day), trick questions (which intro CS questions the authors have
difficulty answering), and many groups whose relation is completely unclear. This means
that for individual questions in such a course, it appears to be more important that the
student is having a good day, or is good at trick questions, or is generally good in the
course, rather than whether they know a lot about the topic of a particular question.
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The implications of this can be interpreted in a variety of ways, and the verification
or validation of those implications is far beyond the scope of this paper. Our anecdotal
take-away belief from this experiment is that if in-course assessment is intended to mea-
sure accurately a student’s knowledge in each topic covered in a course, it appears that
many courses are performing insufficient assessment. This could be insufficient due to
small number of questions in each topic, or insufficient attention paid to construction of
assessment instruments.

We feel that topic clustering is an important general problem in the field of educa-
tional data mining. A significant percentage of EDM papers are involved in something
like topic clustering, often on ITS data or scores augmented with metadata like timing.
The converse view of topic clustering is to cluster students based on similar proficiencies
in the reduced m× t matrix implied by CFA or similar models. Student clustering is per-
fectly suited to provide summary aggregation in post-analysis reports. For these reasons
and the assessment reasons presented in [5], we feel topic clustering is a critical topic for
EDM, and one that has significant implications on educational statistics and pedagogy.

The datasets used in these experiments are publicly available on the lead author’s
website. We encourage other researchers to explore their own techniques for extracting
information from such course matrices.
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