
1

1

Pattern Discovery in BiosequencesPattern Discovery in Biosequences
SDM 2005 tutorialSDM 2005 tutorial

University of California, RiversideUniversity of California, Riverside

StefanoStefano LonardiLonardi

Latest version of the slides atLatest version of the slides at http://http://www.cs.ucr.edu/~stelo/slideswww.cs.ucr.edu/~stelo/slides//
2

Roadmap

• Intro
• Basic concepts
• Classification of patterns
• Complexity results
• Efficient algorithms for pattern discovery

– Deterministic patterns:Enumerative
– Rigid patterns: Enumerative: Teiresias, Weeder, Tiling

Sampling: Winnower, Projection

• Appendix

3

Intro

4

Discovery of regulatory elements

• Promoter: a region of DNA involved in
binding of RNA polymerase to initiate
transcription

• Enhancer: a region of DNA that increases the
utilization of (some) promoters (it can function
in either orientation and any location relative
to the promoter)

• Repressor: a region of DNA that decreases the
utilization of (some) promoters

2

5Source: Lewin, genes VII 6

Transcription

• Different factors are involved in the
transcription machinery
– presence of transcription factors and their binding

sites
– ability of DNA to bend
– relative location of the binding sites
– presence of CpG islands (“p” is for phosphate)
– …

7 8

Transcription factors binding sites

…

CoCo--regulated genesregulated genes

Pattern discoveryPattern discovery

…

Putative binding sites

3

9

Basic concepts

10

Some notations

{ }1 2 1

 times

sequence/string

multi-sequence

:alphabet
, , ,... : symbols from

: over ,

, , , : ,

 (or substring) : of ,

: the substring (0)

k
k ii

i

i

a b c

x x n

x x x x n

y w x y m

y yy y i

=

Σ
∑

∑ =

=

=

≥

∑…

L123

11

Some notations

[]

[,] [] [1] []

[1,]

[,]

:the -th symbol of (1)

:the string (1)

:are the of (1)

:are the of (

prefixes

suffi 1)

():number of of

 sometimes ca

xes

occurrences

i

i j i i j

j

j m

y i y i m

y y y y i j m

y y j m

y y j m

f y y

+

≤ ≤

≤ ≤ ≤

≤ ≤

≤ ≤

L

supplled ort the of y

12

Occurrences: types

non-overlapping

adjacent

overlapping

For our purposes, any of the above is simply an occurrence
Keep in mind that in some cases you may have to distinguish them

4

13

Example (DNA)

x1 = CCACCCTTTTGTGGGGCTTCTATTTCAAGG
x2 = TTGTTCTTCCTGCATGTTGCGCGCAGTGCG
x3 = TTCTAAAAGGGGCATTATCAGAAAAAGAAG
x4 = GTGTAAAATTGTGTGCTACCTACCGTATTA
• Σ = {A,C,G,T} |Σ| = 4 n = 120

• e.g., y = AAAA is a substring of x3 and x4

– f(y) = 4 (occurrences can overlap)

14

“Pattern Discovery”: the problem

15

Pattern discovery: the problem

• Given a set of sequences S+ and a model of the
source for S+

• Find a set of patterns in S+ which have a
support that is “statistically significant” with
respect to the probabilistic model

• If we are also given negative examples S-, we
must ensure that the patterns do not appear in
S-

16

Pattern discovery problem

Pos & Neg examples Only Pos examples

S+

F+ F+

F- F-

S-

S+

5

17

Noisy data

Pos & Neg examples Only Pos examples

S+

F+ F+

F- F-

S-

S+

18

Pattern discovery “dimensions”

• Type of learning
– from positive examples only (unsupervised)
– from both positive and negative examples

(supervised)
– noisy data

• Type of patterns
– deterministic, rigid, flexible, profiles, …

• Measure of statistical significance
• A priori knowledge

19

A classification of patterns

20

Types of patterns

• Deterministic patterns
• Rigid patterns

– Hamming distance

• Flexible patterns
– Edit distance

• Matrix profiles

üA motif is any of these patterns, as long as it is
associated with statistical/biological significance

6

21

Deterministic Patterns

• Definition: Deterministic patterns are strings
over the alphabet Σ
– e.g., “TATAAA” (TATA-box consensus)

• Discovery algorithms are faster on these types
of patterns

• Usually not flexible enough for the needs of
molecular biology

22

Rigid patterns

• Definition: Rigid patterns are patterns which
allow substitutions/“don’t care” symbols
– e.g., the patterns under IUPAC alphabet

{A,C,G,T,U,M,R,W,S,Y,K,V,H,D,B,X,
N} where for example R=[A|G], Y=[C|T], etc.

– e.g, “ARNNTTYGA” under IUPAC means
“A[A|G][A|C|G|T][A|C|G|T]TT[C|T]GA”

• Note that the size of the pattern is not allowed
to change

23

Hamming distance

• Definition: Given two strings y and w such that
|y|=|w|, the Hamming distance h(w,y) is given
by the number of mismatches between y and w

• Example:
y=GATTACA
w=TATAATA
h(w,y)=h(y,w)=3

24

Hamming neighborhood

• Definition: Given a string y, all strings at
Hamming distance at most d from y are in its
d-neighborhood

• Fact: The size N(m,d) of the d-neighborhood
of a string y, |y|=m, is

() ()
0

(,) 1
d

j dd

j

m
N m d O m

j=

= Σ − ∈ Σ

∑

7

25

Hamming neighborhood

• Example:
y = ATA the 1-neighborhood is
{CTA,GTA,TTA,
AAA,ACA,AGA,
ATC,ATG,ATT,
ATA}

• This set can be written as a rigid pattern
{NTA|ANA|ATN}

26

Models

• We may be able to observe occurrences of the
neighbors of y, but we may never observe an
occurrence of y

• Definition: The center of the d- neighborhood
y is also called the model

27

y is the (unknown) model
d is the number of allowed mismatches
w1, w2, w3 belongs to the neighborhood of y

28

Hamming neighborhood

• Fact: Given two strings w1 and w2 in the d-
neighborhood of the model y, then
h(w1,w2)�2d

• The problem of finding y given w1,w2,… is also
called the Steiner sequence problem

• Unfortunately, even if we were able to
determine exactly all the wi in the
neighborhood, there is no guarantee to find the
unknown model y

8

29

Example

• Suppose m=4, d=1 and that we found
occurrences of {AAAA,TATA,CACA}

• The pairwise Hamming distance is 2 but there
is no string at Hamming distance 1 to each of
these

30

Word match filtering

• Fact: Given two strings w1 and w2 in the d-
neighborhood of the model y, they both
contain an occurrence of a word of length at
least m/(2d+1)

• Example: y = GATTACA
w1 = GATTTCA
w2 = GGTTACA
TT and CA are occurring exactly. In fact
m/(2d+1)=7/3=2

31

Flexible patterns

• Definition: Flexible patterns are patterns
which allow substitutions/“don’t care”
symbols and variable-length gaps
– e.g., Prosite F-x(5)-G-x(2,4)-G-*-H

• Note that the length of these pattern is variable
• Very expressive
• Space of all patterns is huge

32

Edit distance

• Definition: the edit distance between two
strings y and w is defined as the minimum
number of edit operations - insertions,
deletions and substitutions - necessary to
transform y into w (matches do not count)

• Definition: a sequence of edit operations to
transform y into w is called an edit script

9

33

Edit distance

• The edit distance problem is to compute the
edit distance between y and w, along with an
optimal edit script that describes the
transformation

• An alternative representation of the edit script
is the alignment

34

Example

• Given w = GATTACA
y = TATATA

GATTACA? ATTACA? TTACA
? TATACA? TATATA (1 ins, 2 del, 1 sub)

GATTACA? TATTACA
? TATACA? TATATA (0 ins, 1 del, 2 sub)

• Edit distance is 3

35

Corresponding global alignment

• Given w = GATTACA
y = TATATA

• We can produce the following alignments
GAT-TAC-A G-ATTAC-A
--TATA-TA -TAT-A-TA

where “–” represents a space (we cannot have
“–” aligned with “–”)

36

Profiles

• Position weight matrices, or profiles, are
|Σ|×m matrices containing real numbers in the
interval [0,1]
– e.g.

– consensus

0.48

0.09

0.17

0.26

0.540.000.410.45T
0.000.000.000.15G
0.350.000.590.18C
0.111.000.000.22A

10

37

Distance for profiles

1

1

1

The relative entropy (||) between two
discrete probability distributions { , , }

and { , , } is defined by

 (||) log

Also called - or -
d

k

k

k
i

i
i i

H p q
p p p

q q q

p
H p q p

q
cross entropy Kullback Liebler

=

= …

=

= ∑

…

istance. It is easy to verify that (,) 0
with equality iff .

H p q
p q

≥
=

38

Discovering Deterministic
Patterns

39

The problem

• Input: a string x of length n, a support q
• Output: all substrings y occurring at least q

times in x

• There are O(n2) substrings
• Can we find the frequent substrings faster?

40

Enumerating the O(n2) patterns

a c g t

a c g t

a c g t

a c g t

a c g t

“Trie”

11

41

Suffix trie

• We build a trie with all the suffixes of the text
x

• Example: if x = GATTACA we use
GATTACA
ATTACA
TTACA
TACA
ACA
CA
A

42

Suffix trie for “GATTACA”

G

A

T

C

A T T A C

T

A

T A C A

T A C A

A C A

C A

A

The suffix trie collects in
the internal nodes all the
substrings of x

A

43

Suffix trie for “GATTACA$”

G

A

T

C

A T T A C

T T A C

T A C

A C

C

The suffix trie collects in
the internal nodes all the
substrings of x$

$A

A $

A

A

A

A

$

$

$

$

$
$ 44

Suffix trie

• Construction O(n2)
• Space O(n2)
• Query O(m)

• We can do better by removing unary nodes
from the tree, and coalescing the edges

• The result is called suffix tree

12

45

Suffix tree for “GATTACA$”
The suffix tree collects in
the implicit internal nodes
all the substrings of x$

1

2

3

5

7

4

6

GATT
ACA$

TTAC
A$

A
CA$

$

T

CA$
ACA$

TACA$ The label in the leaves
identifies the suffix position
(used to find pos all occs)

The number of leaves in
the subtree corresponds to
the number of occurrences

The locus of a string is the
node in the tree corre-
sponding to it

1 2 3 4 5 6 7 8

8

$

46

Space analysis

• Every node is branching
• The number of leaves is n
• Therefore the overall number of nodes is at

most 2n-1
• Use two integers (constant space) to identify

labels on the arcs
• Therefore the overall size of the tree is n

47

Brute force construction

baab$

aabaab$

ab$

1

1 2 3 4 5 6
a b a a b $

2 3

abaab$
1

baab$
2

baab$
1

$

a b a a b $ b a a b $ a a b $

a

ab$
3

$

b
1

b

4

aab$

$
5

6

2

$

......

aab$

Worst case O(n2) Average case O(n log n)
48

Computing number of occurrences

Time complexity is O(n)

13

49

Suffix tree for “abaababaabaababaababa$”

Internal nodes are
annotated the count of the
number of occurrences

50

Suffix links

Suffix links connect the
locus of cw to the locus
of w, c in Σ, w in Σ*

51

Suffix trees

• Assume constant size finite alphabet
• Suffix trees can be built in O(n) time and space

[Weiner 1973, McCreight 1976, Ukkonen
1995, Farach 1997]

• Number of occurrences can be computed in
O(n) time

• Observe that several subtrees of the suffix tree
are isomorphic

• Idea: merge isomorphic trees to save space
52

All the suffix links (except leaves)

14

53

Suffix links

Suffix links help identifying
isomorphic subtrees

54

55

Remarks

• Frequent substrings can be found in O(n) time
and space

• Pros:
– exhaustive
– linear time and space

• Cons:
– limited to deterministic patterns

56

Discovering Rigid Patterns

15

57

Complexity results

• Li et al., [Li 1999] proved several important
theoretical facts

• Many of the problems in pattern discovery turn
out to be NP-hard

• For some there is a polynomial time
approximation scheme (PTAS)

58

Consensus Patterns

• Consensus patterns problem: Given a
multisequence {x1,x2,…,xk} each of length n
and an integer m, FIND a string y of length m
and substring ti of length m from each xi such
that Σi h(y,t i) is minimized

• Theorem [Li et al., 1999]: The consensus
pattern problem is NP-hard

59

Closest string

• Closest string problem: given a multisequence
{x1,x2,…,xk} each of length n, FIND a string y
of length n and the minimum d such that
h(y,xi)�d, for all i

• Theorem: The closest string problem is NP-
hard

60

Closest substring

• Closest substring problem: given a
multisequence {x1,x2,…,xk} each of length n
and an integer m, FIND a median string y of
length m and the minimum d such that for each
i there is a substring ti of xi of length m
satisfying h(y,ti) � d

• Theorem: The closest substring problem is NP-
hard (it is an harder version of Closest string)

16

61

NP-hard: what to do?

• Change the problem
– e.g., “relax” the class of patterns

• Accept the fact that the method may fail to
find the optimal patterns
– Heuristics
– Randomized algorithms
– Approximation schemes

62

Discovering Rigid Patterns

• We report on five recent algorithms

• Teiresias [1998]
• Winnower [2000]
• Projection [2001]
• Weeder [2001]
• Tiling motifs [2003]

• (disclaimer: my selection is biased)

63

Planted (m,d)-motif problem

• Proposed by Pevzner et al.
• Randomly generate k=20 sequences of

n=1,000 symbols over the DNA alphabet
• Randomly generate a pattern y of length m
• Generate an instance of y by changing d

symbols at random
• Inject one instance of y at a random position in

each sequence

64

Planted (m,d)-motif problem

• The problem is to determine the unknown
pattern y of length m in a set of k=20
nucleotide sequences each of length n=1,000,
and each one containing exactly one
occurrence of a string w such that h(y,w)=d

17

65

Teiresias

66

Teiresias algorithm

• By Rigoustos and Floratos [Rigoustos 1998]

• The worst case running time is exponential,
but works reasonably fast on average

67

Teiresias patterns

• Teiresias searches for rigid patterns on the
alphabet Σ U {.} where “.” is the don’t care
symbol

• Symbols from Σ are called “solid”

• In Teiresias, there are some constrains on the
density of “.” that can appear in a pattern

68

<L,W> patterns

• Definition: Given integers L and W, L�W, y is
a <L,W> pattern if
– y is a string over Σ U {.}
– y starts and ends with a symbol from Σ
– any substring of y containing exactly L solid

symbols has to be shorter (or equal) to W

[that is, any substring of length L contains at most
W-L don’t cares]

18

69

Example of <3,5> patterns

• AT..CG..T is a <3,5> pattern

• AT..CG.T. is not a <3,5> pattern, because it
ends with “.”

• AT.C.G..T is not a <3,5> pattern, because
the substring C.G..T is 6 characters long
[contains more than 5-3=2 don’t cares]

70

Teiresias

• Definition: A pattern w is more specific than a
pattern y, if w can be obtained from y by
changing one or more “.” to symbols from Σ,
or by appending any sequence of Σ U {.} to the
left or to the right of y

• Example: given y = AT.CG.T, the following
patterns are more specific then y
ATCCG.T, CAT.CGCT, AT.CG.T.A,
T.AT.CGTT.A

71

Teiresias

• Definition: A pattern y is maximal with respect
to the sequences {x1,x2,…,xk} if there exists no
pattern w which is more specific than y and
f(w)=f(y)

• Given {x1,x2,…,xk} and parameters L,W,K,
Teiresias reports all the maximal <L,W>
patterns that have support at least K

72

Teiresias algorithm

• Idea: if y is a <L,W> pattern with support at
least K, then its substrings are also <L,W>
patterns with support at least K

• Therefore, Teiresias assembles the maximal
patterns from smaller patterns

• Definition: A pattern y is elementary if is a
<L,W> pattern containing exactly L symbols
from Σ

19

73

Teiresias algorithm

• Teiresias works in two phases
– Scanning: find all elementary patterns with support

at least K; these become the initial set of patterns
– Convolution: repeatedly extend the patterns by

“gluing” them together

• Example: y = AT..CG.T and w = G.T.A
can be merged to obtain AT..CG.T.A

74

Convolution phase

• For each elementary pattern y, try to extend it
with all the other elementary patterns

• Any pattern that cannot be extended without
losing support can be potentially maximal

75

Convolution phase

• To speed-up this phase, one wants to avoid the
all-against-all comparison

• The authors devise two partial orderings <pf

and <sf on the universe of patterns
• Using these orderings to schedule the

convolution phase, they guarantee that
– all patterns are generated
– a maximal pattern y is generated before any non-

maximal pattern subsumed by y
76

Partial ordering <pf

• Definition: determine whether y <pf w or w <pf

y using the following algorithm
– align y and w such that the leftmost residues are in

the same column
– examine one column after the other (left to right)

and stop whenever one column has a residue and
the other has a “.”

– if the residue comes from y then y <pf w
– if the residue comes from w then w <pf y

20

77

Example

• y = ASD...F
w = SE.ERF.DG
y <pf w

• y = ASD...F
w = SE.ERF.DG
w <sf y

78

Teiresias algorithm

• Initialize the stack with elementary patterns with
support at least K

• Order the stack according to <pf and <sf
• Repeat

– Repeat
• Try to extend the top pattern to the right with all the others in the

prefix-wise ordering
• If a new pattern is formed with have enough support, it becomes

the new top
– Until the top can no longer be extended to the right
– Do the same for left extension, using the ordering <sf
– Check the top for maximality, if so pop it and report it

• Until stack is empty

79

Remarks on Teiresias

• It can be proved that Teiresias correctly reports
all <L,W> maximal patterns

• Pros:
– provably correct
– fast on average input

• Cons:
– exponential time complexity
– limited to <L,W> patterns

80

Winnower

Pevzner and Sze, UCSD

21

81

Winnower

• Invented by Pevzner and Sze [Pevzner 2000]

• Initially designed to solve the (15,4)-motif
challenge

82

Winnower

• Pevzner and Sze show that the most popular
algorithms (Consensus, GibbsDNA, MEME)
fail to solve (most of the times) the (15,4)-
motif problem [n=600, k=20]

• (Note: this comparison is not totally fair)
• Why the (15,4)-motif problem is difficult?
• Because two strings in the class of the (15,4)

unknown pattern may differ by as many as 8
positions out of 15, a rather large number

83

Winnower

• Idea: Search for a set of strings of length m
such that any two in a set differ at most by 2d
positions

• Remember however that this may not be
sufficient

84

Winnower

• How to find groups of patterns such that given
any two elements w1 and w2 in the group,
h(w1,w2)�2d?

• One could generate (k choose 2) multiple
alignments to find out all pairs of substrings of
length m that have at most 2d mismatches
(Consensus [Hertz & Stormo 1999])

22

85

Winnower
• Winnower builds a graph G in which

– each vertex corresponds to a distinct string of
length m

– two vertices are connected by an edge if the
Hamming distance between the corresponding
strings is at most 2d, and the strings do not come
from the same sequence (remember that we are
guaranteed that there is only one occurrence of the
unknown pattern in each sequence)

86

Graph for the (15,4)-problem

• The authors report that for each “signal”-edge
there are about 20,000 spurious-edges

• Finding the signal among the noise is a
“daunting task”

87

Winnower

• Winnower searches the graph G for cliques,
which are subsets of vertices totally connected

• But the problem of finding large cliques in
graphs is NP-complete

88

Multipartite graphs

• Definition: A graph G is n-partite if its vertices
can be partitioned into n sets, such that there is
no edge between any two vertices within a set

• Fact: Winnower’s graph is k-partite

23

89

Example

• Given sequences {abde,afcg,hbci,jbck} we
look for a (3,1)-motif

abd bde

fcg

afc hbc

bci

jbc bck

hbci

abde

afcg

jbck 90

Idea

• Each vertex of the clique has to be in a
different partition

• We look for cliques that have exactly one
vertex in each partition

91

Extendable cliques

• Definition: a vertex u is a neighbor of a clique
{v1,…,vs} if {v1,…,vs,u} is also a clique for G,
when s<k

• Definition: a clique is called extendable if it
has at least one neighbor in every part of the k-
partite graph G

92

Extendable cliques

• Definition: A clique with k vertices, each in a
different partition is called maximal

• Consider a maximal clique and take a subset
of t of its vertices: this subset is an
extendable clique

• Idea: remove edges that do not belong to
extendable cliques

24

93

Extendable cliques

Fact: For any clique of size there are

extendable cliques with vertices

Fact: Any edge belonging to a clique with

- 2
vertices is member of at least

- 2

extendable cliques of size

k
k

t

t

k

k
t

t

94

Idea

- 2
An edge that is not member of at least

- 2

expandable cliques of size cannot be part of
a maximal clique and therefore it can be

removed

k

t

t

95

t=1

• For t=1, each vertex is a clique
– it is extendable if it is connected to at least one

vertex in each partition

• Delete all edges corresponding to vertices that
do not have a neighbor in each partition

• Iterate

96

Example

abd bde

fcg

afc hbc

bci

jbc bck

hbci

abde

afcg

jbck

25

97

Example

abd bde

fcg

afc hbc

bci

jbc bck

hbci

abde

afcg

jbck

98

Example

abd bde

fcg

afc hbc

bci

jbc bck

hbci

abde

afcg

jbck

99

Example

abd bde

fcg

afc hbc

bci

jbc bck

hbci

abde

afcg

jbck

100

t=2

• For t=2, each pair of vertices u,v such that
there is an edge (u,v) is a clique
– it is extendable if there is vertex z in each of the

other k-2 partitions such that (u,v,z) is a cycle of
length 3

– each edge should belong to at least (k-2 choose t-
2)=(n-2 choose 0)=1 clique of size 2

26

101

t>2

• For t=3, Winnower removes edges that belong
to less than k-2 extendable cliques of size 3

• For t=4, Winnower remove edges that belong
to less than (k-2)(k-1)/2 extendable cliques of
size 4

• …

102

Remarks on Winnower

• Pros:
– more effective than Meme, Consensus and

GibbsDNA for the (15,4) problem

• Cons:
– randomized
– time-complexity can be very high (e.g., for t=3 is

O(n4))
– need to know m and d in advance
– assume exactly one occurrence per sequence

103

Projection

104

Random Projection algorithm

• Proposed by Buhler and Tompa [Buhler 2001]

• The algorithm was initially designed to solve
the (m,d)-motif planted problem

27

105

Analysis on (m,d)-motif problem

(0)

(1) (0)

Suppose A,C,T,G have probability 1/4. Then the
probability that a pattern of size occurs at a

given position is (1/4) . If we allow up to

one mismatch, the probability becomes

(3/4)(1/4)

m

m

p

p p m

=

= + 1

2 2
(2) (1)

()
0

. If we allow at most two, it

(1)
becomes (3/4) (1/4) . In general, if

2

3 1
we allow up to mismatches, .

4 4

m

m

i m id

d
i

m m
p p

m
d p

i

−

−

−

=

−
= +

 =

∑
106

Analysis on (m,d)-motif problem

1
()

If is the r.v. for the number of occurrences,

then (0) 1- (0) 1-(1-)

If we have sequences, we get that the probability
that a particular occurs at least once in each

sequence is 1-(1-

n m
d

Z

P Z P Z p

k
y

p

− +> = = =

()

()

- 1
()

1
()

) .

Therefore, the expected number of patterns is

 (, , ,) 4 1-(1-) .

kn m
d

km n m
dE n m k d p

+

− +≡

107

Stats of spurious (m,d)-motifs in
simulated data (k=20,n=600)

m iterE(600,m,20,d) E(600,m+1,20,d)

Bottom-line: the (9,2)-, (11,3)-, (13,4)-, (15,5)- and (17,6)-motif
problems are probably impossible to solve 108

Random Projections

• Idea: select t random positions and for each
substring of length m of the text hash its
selected positions into a table

• Hopefully, the cell corresponding to the
planted motif will be the one with the highest
count

28

109

Random Projection algorithm

• Parameters (m,d), n, k, s, possibly i
• Set t < m-d and 4t > k(n-m+1)
• Build a table with all substrings of length m
• Repeat i times

– Select randomly t positions
– Repeat for all substrings in the table

• Increase the count of the cell indexed by the t positions

• Select all cells with count �s

110

Random Projection algorithm

• We want t < m-d because we want to sample
from the “non-varying” positions

• The number of iterations i can be estimated
from m, d and t

111

Random Projection algorithm

• Since we are hashing k(n-m+1) substrings of
size m into 4t buckets, if 4t > k(n-m+1) each
bucket will contain on average less than one
substring (set s=1)

• The constrain is designed to filter out the noise
• The bucket corresponding to the planted motif

is expected to contain more motif instances
than those produced by a random sequence

112

Random Projection algorithm

• If the constrain 4t > k(n-m+1) cannot be
enforced, the authors suggest to set
t = m-d-1 and the threshold
s = 2 [k(n-m+1)/4t] (twice the average bucket
size)

29

113

Motif refinement

• The algorithm will try to recover the unknown
motif from each cell having at least s elements

• The primary tool for motif refinement is
expectation maximization (EM)

114

Experiments

• Projection can handle the (15,4)- (14,4)-
(16,5)- and (18,6)-motif problem (k=20,
n=600)

• Winnower fails the (14,4)- (16,5)- and (18,6)-
motif problem

115

Results

m iter

k=20, n=600, winnower (t=2), projection (t=7,s=4, 20 randominstances)
116

Remarks about Projection

• Pros:
– fast and effective

• Cons:
– need to know m and d in advance
– randomized

30

117

Weeder

118

Weeder

• Proposed by Pavesi, Mauri and Pesole [Pavesi
2001]

• Draw ideas from PRATT by [Jonassen 1995,
Jonassen 1997] and [Sagot 1998]

• It is an exhaustive approach for a particular
class of rigid patterns

119

Exhaustive approach

• Suppose that you want to spell out all possible
(m,d) rigid patterns that has at support least q

• One way to do it, is to use a (generalized)
suffix tree [Sagot 1998]

120

Idea [Sagot 1998]

• Any deterministic pattern (substring) w
corresponds to a path in the tree ending in a
node u, called the locus of w – the number of
leaves in the subtree rooted at u gives the
support

• Any model (rigid pattern) corresponds to a set
of paths in the tree ending in nodes
{u1,u2,…,ul} – the total number of leaves in the
subtrees rooted at {u1,u2,…,ul} gives the
support

31

121

Example

Hamming distance

approx c(ATA)=2 f(ATA)=4
d = 2
q = 2

122

Example

This path belongs to models:
(AGA,0)
(AAA,1)

(CGA,1) (ACA,1) (AGC,1)
(TGA,1) (ATA,1) (AGT,1)

(GGA,1) (AGG,1)
………

d = 2
q = 2

123

Exhaustive approach [Sagot 1998]

• Start with all paths of length d with enough
support (they represent valid models)

• At each path-extension keep track of the
mismatches and the support
– if the number of mismatches has not been reached

the model will be extended by the symbols in Σ
(therefore the number of models will be scaled up
by a factor |Σ|)

– otherwise we are allowed just to follow the arcs

124

Time complexity [Sagot 1998]

• Finding all the models with
support=occurrences in a single sequence takes
O(n N(m,d)) = O(n md |Σ|d)

• Note that the complexity is exponential
(with d)

32

125

Weeder

• Pavesi et al., implemented the algorithm by
Sagot but it was running too slow, and they
decided to change the class of patterns

• Weeder is designed to find rigid patterns
which have an amount of mismatches
proportional to their length (the same constrain
applies also to all their prefixes)

126

Example ε =0.25

1

2

3

4

127

Time complexity

• By restricting the number of mismatches to
εm, the time complexity becomes
O(n k 1/ε εm |Σ|εm)

128

The (15,4)-motif challenge … again

• Since the restriction on the density of the
mismatches, the authors report that Weeder
has probability 0.6 to catch the motif in ONE
sequence

• Then, the probability of Weeded to get the
motif in all the 20 sequence is almost zero

• On the other hand, running the Sagot’s version
is too time-consuming

33

129

Idea

• Split the set of sequence into two halves
• Run Weeder on each of the two sets requiring

support k/4 (instead of k/2)
• The probability that the (15,4)-motif will be in

either subset is 0.98
• The pool of model candidates is then

processed with Sagot’s algorithm

130

Remarks about Weeder

• Pros:
– Possibly exhaustive (if using Sagot’s algorithm)
– The relative error rate ε may be more meaningful

than d and allows one not to specify in advance m

• Cons:
– Very slow if run exhaustively - it cannot be

considered exhaustive in practice

131

Irredundant and Tiling Motifs

Slides 132-153 by N. Pisanti, U. of Pisa

132

The problem

• Input: a string s of length n, a support q
• Output: all patterns p approximatively repeated at

least q times in s
• The problem is inherently difficult due to the possible

exponential output size
• [Parida 2000] Rather than finding all repeated

patterns, only find a subset of them that
– has polynomial size and can be computed

efficiently
– can generate all the others

34

133

Rigid motif = motif with don’t cares

• Given x = Σn and a support q, a pattern
w = (Σ ∪ {.})* is a motif ⇔
• w starts and ends with a (solid) letter in Σ
• w has at least q occurrences in x

134

Example

x = FABCXFADCYZEADCEADC q = 2,

w1 = A • C with L1 = {1,6,12,16}
w2 = FA • C with L2 = {0,5}
w3 = DC with L3 = {7,13,17}

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

the symbol •
matches all letters

135

Specificity of a motif

• For all σ ∈Σ we have
– • = σ

– σ = σ

• recall that w[i] is the ith letter of w
define w[i] = • for i < 1 and i > |w|

• w1 is less specific than w2 ⇔ w1[i] = w2[i] for
all i

• w1 occurs in w2 at d ⇔ w1[i] = w2[i+d]

… is less specific or equal to …

136

Maximal motifs

• A motif w is maximal ⇔ for all y ≠ w such that
w occurs in y, we have |Lw| > |Ly|

• A motif is maximal ⇔ however you specify
further (i.e., extend and/or replace a • by a
letter), you loose at least one occurrence

35

137

• x = FABCXFADCYZEADCEADC q = 2,

• w1 = A • C with L1 = {1,6,12,16}, maximal
• w2 = FA • C with L2 = {0,5}, maximal

• w3 = DC with L3 = {7,13,17}, not maximal
because DC occurs in ADC that occurs
three times too

Examples

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

138

Redundant motifs

• w maximal is redundant ⇔ ∃ maximal motifs
y1, y2, …, yk ≠ w such that Lw = Ly1 ∪ Ly2 ∪ ······ ∪
Lyk

• that is, the occurrences list of w can be
recovered from those of y1, y2, …, yk

139

The basis of irredundant motifs

• In [Parida 2000] the set of all non redundant
motifs has been suggested as a basis, that
• has size at most 3n for all q

• can be found in O(n3 log n) for all q , and

• can generate all maximal motifs

140

A n2 lower bound

• In the word xk = Ak X Ak there is an
exponential number of maximal motifs

• By suitably prefixing xk (increasing its size by
a constant factor only), at least n2 of them are
also irredundant motifs

36

141

Tiling motifs

• Introduced by [Pisanti 2003]

• w maximal is tiling ⇔ there are no maximal motifs
y1, y2, ... , yk ≠ w and no integers d1, d2, …, dk such that

1 21 2() () ... ()
kw y y y kL L d L d L d= + ∪ + ∪ ∪ +

142

x = FABCXFADCYZEADCEADC q = 2,

w3 = ADC with L3 = {6,12,16}
w2 = FA.C with L2 = {0,5}

w1 = A.C with L1 = {1,6,12,16}

w4 = EADC with L4 = {11,15}

Example

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

tiling

tiled

tiling

by w3 and w4 because L1 = L3 ∪ (L2 + 1)
but it is irredundant

tiling

143

The basis of tiling motifs

The basis of tiling motifs
• has size at most n-1 for q=2
• can be found in O(n2 log n) for q =2
• can generate all maximal motifs for all supports
• it is a subset of the basis of irredundant motifs
• it is symmetric

144

The ⊕ operator

• Given two symbols σ1 ,σ2∈Σ with σ1 ≠ σ2 , we
have σ1 ⊕ σ2 = • and σ1 ⊕ σ1 = σ1

• Given two strings x1 , x2 ∈ Σ*, we have
x1 ⊕ x2 = t, where t[i] = x1[i] ⊕ x2[i]

37

145

The merges

x = x[0]x[1]x[2] x[k] x[k+1] x[n-1]
x1 = x[0]x[1] x[k-1] x[k] x[n-2]

......
xk = x[0] x[1] x[n-k-1]

......
xn-1 = x[0]

mergek = x ⊕ xk for all 1 ≤ k ≤ n-1

146

Examples

x = FABCXFADCYZEADCEADC q = 2

merge4 = EADC

merge5 = FA • C

merge6 = merge10 = ADC

merge11 = merge15 = A • C
all other merges are empty

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
45

147

Tiling motifs and merges (q=2)

• All non empty merges of x are maximal motifs
for x

• Each tiling motif is a merge
• There are at most n-1 tiling motifs
• The set of tiling motifs can be found by means

of a suitable selection among the merges

148

The non tiling merges
• Among the merges, the non tiling motifs are those that are

tiled by other merges; this check would cost O(n3) because
Σmerges w |Lw| = O(n2)

• mergek has two obvious occurrences occk = {i,i+k }, where i is

the first non • in x ⊕ xk

• For all distinct merges w we can collect Lw and
Tw = ∪{occk | mergek = w} ⊆ Lw

[Σmerges w |Tw| < 2n]
• For tiling merges w, we have Tw = Lw, if Tw ≠ Lw then w is

not tiling

1 ≤ k ≤ n-1

38

149

The algorithm

• Find all merges and their occ in O(n2)
• Find all distinct merges in O(n2)
• Find also theirs lists L in O(n2 log n log Σ)
• Detect and discard tiled motifs in O(n2)

150

1. Find all merges and their occ: the O(n2) worst case complexity
in not reached in practice. This step takes O(n ·1/p) where p=1/|Σ| is
the probability that two characters match (and 1/p the expected
number of comparison to be done before finding a match).

2. Find all distinct merges with the lists T: again, the time in
practice is linear using hashing techniques.

3. Find also theirs lists L (and discard those for which T ≠ L):
unfortunately meets the worst case.

4. Detect and discard tiled ones : negligible. O(n)

O(n|Σ|)

O(n)

ABOUT 15 MINUTES ON THE WHOLE C.elegans GENOME (21 millions bases)

bottleneck

151

What if q>2?

• One can show an exponential lower bound on
both bases for higher supports

• Again the word xk = Ak X Ak can be prefixed in
order to have O(nq) tiling (hence irredundant)
motifs

• The efficient computation of any basis for
unbounded supports is an open problem

152

Experimental comparison

39

153

Experimental evaluation

• Recently [Tompa 2005] compared experimentally 13
pattern discovery tools
– AlignACE, ANN-Spec, Consensus, GLAM, The

Improbizer, MEME, MITRA, MotifSampler, Oligo/Dyad-
analysis, QuickScore, SeSiMCMC, Weeder, YMF

• 52 datasets containing real binding sites from
TRANSFAC (6 fly, 26 human, 12 mouse, 8 yeast)

• Computed several performance measures
• Main conclusions

– Sensitivity is very low
– The winner is Weeder

154

nSn=nucleotide sensitivity sSn=site sensitivity
nPPV=nucleotide positive predicted value sPPV=site positive predicted value
nPC=nucleotide performance coefficient sASP=site average performance coefficient
nCC=nucleotide correlation coefficient [Figure from Tompa et al. 2005]

155

Synthetic Data (Length = 400)

0
0.1

0.2

0.3

0.4
0.5

0.6
0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Accuracy

P
re

ci
si

on

CONSENSUS
MEME
MOTIF
PRATT
PROJECTION
WEEDER
ALIGNACE

156

References
• [Apostolico 2003] A.Apostolico, M.E.Bock, S.Lonardi, “Monotony of surprise and large-

scale quest for unusual words”, Journal of Computational Biology, vol.10, no.2/3, pp.283—
311, 2003.

• [Weiner 1973] P. Weiner, “Linear pattern matching algorithm”, IEEE Symposium on
Switching and Automata Theory, pp. 1—11, 1973.

• [McCreight1976] E. M. McCreight, “A Space-Economical Suffix Tree Construction
Algorithm”, Journal of the ACM , vol.23, no.2, pp.262—272 , 1976.

• [Ukkonen1995] E. Ukkonen, “On-line construction of suffix trees”, Algorithmica , vol.14,
no.3, pp. 249—260, 1995.

• [Farach1997] M. Farach, “Optimal Suffix Tree Construction with Large Alphabets”, Proc.
Symposium on Foundations of Computer Science, pp. 137—143, 1997.

• [Hui 1992] L. C. K. Hui, “Color set size problem with applications to string matching”,Proc.
of Symposium Combinatorial Pattern Matching , LNCS 644, pp. 230—243, 1992.

• [Muthu 2002] S. Muthukrishnan, “Efficient algorithms for document retrieval problems”,
Symposium on Discrete Algorithm , 2002.

• [Li 1999] Ming Li and Bin Ma and LushengWang, “Finding similar regions in many strings”,
Proc. of the ACM symposium on Theory of computing , pp.473—482, 1999.

• [Pisanti2003] N. Pisanti and M. Crochemore and R. Grossi and M.-F. Sagot, “A Basis of
Tiling Motifs for Generating Repeated Patterns and its Complexity for Higher Quorum”,
Proc. of Mathematical Foundations of Computer Science, LNCS 2747, pp. 622—632, 2003.

• [Rigoustos1998] I. Rigoutsos and A. Floratos, "Combinatorial pattern discovery in biological
sequences: The Teiresias algorithm", Bioinformatics , vol.14, no.1, pp.55—67, 1998.

40

157

References
• [Sagot 1998] L. Marsan and M.-F. Sagot, Algorithms for extracting structured motifs using a

suffix tree with application to promoter and regulatory site consensus identification", Journal
of Computational Biology, Vol.7, no.3/4, pp.345—360, 2000.

• [Pevzner2000] P. A. Pevzner and S.-H. Sze, "Combinatorial Approaches to Finding Subtle
Signals in DNA Sequences", Proc. Conference on Intelligent Systems for Molecular Biology,
pp. 269—278, 2000.

• [Buhler 2001] M. Tompa and J. Buhler, Finding Motifs Using Random Projections, Proc. of
Conference on Computational Molecular Biology (RECOMB), pp. 67—74, 2001.

• [Pavesi 2001] G. Pavesi and G. Mauri and G. Pesole, An algorithm for finding signals of
unknown length in DNA sequences", Proc. of Conference on Intelligent Systems for
Molecular Biology, pp. S207—S214, 2001.

• [Parida 2000] L. Parida and Y. Gao and D. Platt and A. Floratos and I. Rigoutsos, "Pattern
Discovery on Character Sets and Real-valued Data: Linear Bound on Irredundant Motifs and
an Efficient Polynomial Time Algorithm", Proc. Symposium on Discrete Algorithm , 297—
308, 2000.

• [Jonassen1995] I. Jonassen I, J.F. Collins, and D. Higgins, Finding flexible patterns in
unaligned protein sequences, Protein Science,vol.4, no.8, pp.1587—1595, 1995.

• [Jonassen1997] I. Jonassen, Efficient discovery of conserved patterns using a pattern graph,
Comput. Appl. Biosci ., vol.13, no.5, pp. 509—522, 1997.

• [Tompa 2005] M. Tompa, N. Li, T. L. Bailey , G. M. Church , B. De Moor, E. Eskin, A. V.
Favorov, M. C. Frith, Y. Fu, W. J. Kent, V. J. Makeev, A. A. Mironov, W. S. Noble, G.
Pavesi, G. Pesole, M. Regnier, N. Simonis, S. Sinha, G. Thijs, J. van Helden, M.
Vandenbogaert , Z. Weng, C. Workman, C. Ye, and Z. Zhu, Assessing Computational Tools
for the Discovery of Transcription Factor Binding Sites. Nature Biotechnology, vol. 23, no. 1,
January 2005, 137 -144. 158

THE END

Latest version of the slides atLatest version of the slides at http://www.cs.ucr.edu/~stelo/slides/http://www.cs.ucr.edu/~stelo/slides/

