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Intro
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Discovery of regulatory elements

• Promoter: a region of DNA involved in 
binding of RNA polymerase to initiate 
transcription

• Enhancer: a region of DNA that increases the 
utilization of (some) promoters (it can function 
in either orientation and any location relative 
to the promoter)

• Repressor: a region of DNA that decreases the 
utilization of (some) promoters 
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Transcription

• Different factors are involved in the 
transcription machinery
– presence of transcription factors and their binding 

sites
– ability of DNA to bend
– relative location of the binding sites
– presence of  CpG islands (“p” is for phosphate)
– …

7 8

Transcription factors binding sites

…

CoCo--regulated genesregulated genes

Pattern discoveryPattern discovery

…

Putative binding sites
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Basic concepts
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Occurrences: types

non-overlapping

adjacent

overlapping

For our purposes, any of the above is simply an occurrence
Keep in mind that in some cases you may have to distinguish them
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Example (DNA)

x1 = CCACCCTTTTGTGGGGCTTCTATTTCAAGG
x2 = TTGTTCTTCCTGCATGTTGCGCGCAGTGCG
x3 = TTCTAAAAGGGGCATTATCAGAAAAAGAAG
x4 = GTGTAAAATTGTGTGCTACCTACCGTATTA
• Σ = {A,C,G,T}    |Σ| = 4    n = 120

• e.g., y = AAAA is a substring of x3 and x4

– f(y) = 4 (occurrences can overlap)

14

“Pattern Discovery”: the problem

15

Pattern discovery: the problem

• Given a set of sequences S+ and a model of the 
source for S+

• Find a set of patterns in S+ which have a 
support that is “statistically significant” with 
respect to the probabilistic model

• If we are also given negative examples S-, we 
must ensure that the patterns do not appear in 
S-

16

Pattern discovery problem

Pos & Neg examples Only Pos examples

S+

F+ F+

F- F-

S-

S+
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Noisy data

Pos & Neg examples Only Pos examples

S+

F+ F+

F- F-

S-

S+
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Pattern discovery “dimensions”

• Type of learning
– from positive examples only (unsupervised)
– from both positive and negative examples 

(supervised)
– noisy data

• Type of patterns
– deterministic, rigid, flexible, profiles, …

• Measure of statistical significance
• A priori knowledge

19

A classification of patterns

20

Types of patterns

• Deterministic patterns
• Rigid patterns

– Hamming distance

• Flexible patterns
– Edit distance

• Matrix profiles

üA motif is any of these patterns, as long as it is 
associated with statistical/biological significance
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Deterministic Patterns

• Definition: Deterministic patterns are strings 
over the alphabet Σ
– e.g., “TATAAA” (TATA-box consensus)

• Discovery algorithms are faster on these types 
of patterns

• Usually not flexible enough for the needs of 
molecular biology

22

Rigid patterns

• Definition: Rigid patterns are patterns which 
allow substitutions/“don’t care” symbols
– e.g., the patterns under IUPAC alphabet 

{A,C,G,T,U,M,R,W,S,Y,K,V,H,D,B,X, 
N} where for example R=[A|G], Y=[C|T], etc.

– e.g, “ARNNTTYGA” under IUPAC means 
“A[A|G][A|C|G|T][A|C|G|T]TT[C|T]GA”

• Note that the size of the pattern is not allowed 
to change
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Hamming distance

• Definition: Given two strings y and w such that 
|y|=|w|, the Hamming distance h(w,y ) is given 
by the number of mismatches between y and w

• Example:
y=GATTACA
w=TATAATA
h(w,y)=h(y,w)=3

24

Hamming neighborhood

• Definition: Given a string y, all strings at 
Hamming distance at most d from y are in its
d-neighborhood

• Fact: The size N(m,d) of the d-neighborhood 
of a string y, |y|=m, is
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Hamming neighborhood

• Example:
y = ATA the 1-neighborhood is
{CTA,GTA,TTA,
AAA,ACA,AGA,
ATC,ATG,ATT,
ATA}

• This set can be written as a rigid pattern
{NTA|ANA|ATN}

26

Models

• We may be able to observe occurrences of the 
neighbors of y, but we may never observe an 
occurrence of y

• Definition: The center of the d- neighborhood
y is also called the model

27

y is the (unknown) model
d is the number of allowed mismatches
w1, w2, w3 belongs to the neighborhood of y

28

Hamming neighborhood

• Fact: Given two strings w1 and w2 in the d-
neighborhood of the model y, then 
h(w1,w2)�2d

• The problem of finding y given w1,w2,… is also 
called the Steiner sequence problem

• Unfortunately, even if we were able to 
determine exactly all the wi in the 
neighborhood, there is no guarantee to find the 
unknown model y
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Example

• Suppose m=4, d=1 and that we found 
occurrences of {AAAA,TATA,CACA}

• The pairwise Hamming distance is 2 but there 
is no string at Hamming distance 1 to each of 
these
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Word match filtering

• Fact: Given two strings w1 and w2 in the d-
neighborhood of the model y, they both 
contain an occurrence of a word of length at 
least m/(2d+1)

• Example: y = GATTACA
w1 = GATTTCA
w2 = GGTTACA
TT and CA are occurring exactly. In fact 
m/(2d+1)=7/3=2

31

Flexible patterns

• Definition: Flexible patterns are patterns 
which allow substitutions/“don’t care” 
symbols and variable-length gaps 
– e.g., Prosite F-x(5)-G-x(2,4)-G-*-H

• Note that the length of these pattern is variable
• Very expressive
• Space of all patterns is huge
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Edit distance

• Definition: the edit distance between two 
strings y and w is defined as the minimum 
number of edit operations - insertions, 
deletions and substitutions - necessary to 
transform y into w (matches do not count)

• Definition: a sequence of edit operations to 
transform y into w is called an edit script
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Edit distance

• The edit distance problem is to compute the 
edit distance between y and w, along with an 
optimal edit script that describes the 
transformation

• An alternative representation of the edit script 
is the alignment

34

Example

• Given w = GATTACA
y = TATATA

GATTACA? ATTACA? TTACA
? TATACA? TATATA (1 ins, 2 del, 1 sub)

GATTACA? TATTACA
? TATACA? TATATA (0 ins, 1 del, 2 sub)

• Edit distance is 3

35

Corresponding global alignment

• Given w = GATTACA
y = TATATA

• We can produce the following alignments
GAT-TAC-A G-ATTAC-A
--TATA-TA -TAT-A-TA

where “–” represents a space (we cannot have 
“–” aligned with “–”)

36

Profiles

• Position weight matrices, or profiles, are 
|Σ|×m matrices containing real numbers in the 
interval [0,1]
– e.g.

– consensus

0.48

0.09

0.17

0.26

0.540.000.410.45T
0.000.000.000.15G
0.350.000.590.18C
0.111.000.000.22A
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Distance for profiles
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Discovering Deterministic
Patterns

39

The problem

• Input: a string x of length n, a support q
• Output: all substrings y occurring at least q

times in x

• There are O(n2) substrings
• Can we find the frequent substrings faster?

40

Enumerating the O(n2) patterns

a c g t

a c g t

a c g t

a c g t

a c g t

“Trie”
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Suffix trie

• We build a trie with all the suffixes of the text 
x

• Example: if x = GATTACA we use
GATTACA
ATTACA
TTACA
TACA
ACA
CA
A

42

Suffix trie for “GATTACA”

G

A

T

C

A T T A C

T

A

T A C A

T A C A

A C A

C A

A

The suffix trie collects in
the internal nodes all the
substrings of x

A

43

Suffix trie for “GATTACA$”

G

A

T

C

A T T A C

T T A C

T A C

A C

C

The suffix trie collects in
the internal nodes all the
substrings of x$

$A

A $

A

A

A

A

$

$

$

$

$
$ 44

Suffix trie

• Construction O(n2)
• Space O(n2)
• Query O(m)

• We can do better by removing unary nodes 
from the tree, and coalescing the edges

• The result is called suffix tree
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Suffix tree for “GATTACA$”
The suffix tree collects in
the implicit internal nodes
all the substrings of x$

1

2

3

5

7

4

6

GATT
ACA$

TTAC
A$

A
CA$

$

T

CA$
ACA$

TACA$ The label in the leaves
identifies the suffix position
(used to find pos all occs)

The number of leaves in
the subtree corresponds to
the number of occurrences 

The locus of a string is the
node in the tree corre-
sponding to it

1    2   3    4   5   6   7   8

8

$
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Space analysis

• Every node is branching
• The number of leaves is n
• Therefore the overall number of nodes is at 

most 2n-1
• Use two integers (constant space) to identify 

labels on the arcs
• Therefore the overall size of the tree is n

47

Brute force construction

baab$

aabaab$

ab$

1

1 2 3 4 5 6
a b a a b $

2 3

abaab$
1

baab$
2

baab$
1

$

a b a a b $ b a a b $ a a b $

a

ab$
3

$

b
1

b

4

aab$

$
5

6

2

$

......

aab$

Worst case O(n2) Average case O(n log n)
48

Computing number of occurrences

Time complexity is O(n)
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Suffix tree for “abaababaabaababaababa$”

Internal nodes are
annotated the count of the
number of occurrences

50

Suffix links

Suffix links connect the
locus of cw to the locus
of w, c in Σ, w in Σ*

51

Suffix trees

• Assume constant size finite alphabet
• Suffix trees can be built in O(n) time and space 

[Weiner 1973, McCreight 1976, Ukkonen
1995, Farach 1997]

• Number of occurrences can be computed in 
O(n) time

• Observe that several subtrees of the suffix tree 
are isomorphic

• Idea: merge isomorphic trees to save space
52

All the suffix links (except leaves)
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Suffix links

Suffix links help identifying
isomorphic subtrees

54

55

Remarks

• Frequent substrings can be found in O(n) time 
and space

• Pros:
– exhaustive
– linear time and space

• Cons:
– limited to deterministic patterns

56

Discovering Rigid Patterns
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Complexity results

• Li et al., [Li 1999] proved several important 
theoretical facts

• Many of the problems in pattern discovery turn 
out to be NP-hard

• For some there is a polynomial time 
approximation scheme (PTAS)

58

Consensus Patterns

• Consensus patterns problem: Given a 
multisequence {x1,x2,…,xk} each of length n
and an integer m, FIND a string y of length m
and substring ti of length m from each xi such 
that Σi h(y,t i) is minimized

• Theorem [Li et al., 1999]: The consensus 
pattern problem is NP-hard

59

Closest string

• Closest string problem: given a multisequence
{x1,x2,…,xk} each of length n, FIND a string y 
of length n and the minimum d such that 
h(y,xi)�d, for all i

• Theorem: The closest string problem is NP-
hard

60

Closest substring

• Closest substring problem: given a 
multisequence {x1,x2,…,xk} each of length n 
and an integer m, FIND a median string y of 
length m and the minimum d such that for each 
i there is a substring ti of xi of length m
satisfying h(y,ti) � d

• Theorem: The closest substring problem is NP-
hard (it is an harder version of Closest string)
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NP-hard: what to do?

• Change the problem
– e.g., “relax” the class of patterns

• Accept the fact that the method may fail to 
find the optimal patterns
– Heuristics
– Randomized algorithms
– Approximation schemes

62

Discovering Rigid Patterns

• We report on five recent algorithms

• Teiresias [1998]
• Winnower [2000]
• Projection [2001]
• Weeder [2001]
• Tiling motifs [2003]

• (disclaimer: my selection is biased)

63

Planted (m,d)-motif problem

• Proposed by Pevzner et al.
• Randomly generate k=20 sequences of 

n=1,000 symbols over the DNA alphabet
• Randomly generate a pattern y of length m
• Generate an instance of y by changing d

symbols at random
• Inject one instance of y at a random position in 

each sequence

64

Planted (m,d)-motif problem

• The problem is to determine the unknown
pattern y of length m in a set of k=20
nucleotide sequences each of length n=1,000, 
and each one containing exactly one 
occurrence of a string w such that h(y,w)=d
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Teiresias

66

Teiresias algorithm

• By Rigoustos and Floratos [Rigoustos 1998]

• The worst case running time is exponential, 
but works reasonably fast on average

67

Teiresias patterns

• Teiresias searches for rigid patterns on the 
alphabet Σ U {.} where “.” is the don’t care 
symbol

• Symbols from Σ are called “solid”

• In Teiresias, there are some constrains on the 
density of “.” that can appear in a pattern

68

<L,W> patterns

• Definition: Given integers L and W, L�W, y is 
a <L,W> pattern if 
– y is a string over Σ U {.} 
– y starts and ends with a symbol from Σ
– any substring of y containing exactly L solid

symbols has to be shorter (or equal) to W 

[that is, any substring of length L contains at most
W-L don’t cares]
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Example of <3,5> patterns

• AT..CG..T is a <3,5> pattern

• AT..CG.T. is not a <3,5> pattern, because it 
ends with “.”

• AT.C.G..T is not a <3,5> pattern, because 
the substring C.G..T is 6 characters long
[contains more than 5-3=2 don’t cares]

70

Teiresias

• Definition: A pattern w is more specific than a 
pattern y, if w can be obtained from y by 
changing one or more “.” to symbols from Σ, 
or by appending any sequence of Σ U {.} to the 
left or to the right of y

• Example: given y = AT.CG.T, the following 
patterns are more specific then y
ATCCG.T, CAT.CGCT, AT.CG.T.A, 
T.AT.CGTT.A

71

Teiresias

• Definition: A pattern y is maximal with respect 
to the sequences {x1,x2,…,xk} if there exists no 
pattern w which is more specific than y and 
f(w)=f(y)

• Given {x1,x2,…,xk} and parameters L,W,K,
Teiresias reports all the maximal <L,W>
patterns that have support at least K

72

Teiresias algorithm

• Idea: if y is a <L,W> pattern with support at 
least K, then its substrings are also <L,W> 
patterns with support at least K

• Therefore, Teiresias assembles the maximal 
patterns from smaller patterns

• Definition: A pattern y is elementary if is a 
<L,W> pattern containing exactly L symbols 
from Σ
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Teiresias algorithm

• Teiresias works in two phases
– Scanning: find all elementary patterns with support 

at least K; these become the initial set of patterns
– Convolution: repeatedly extend the patterns by 

“gluing” them together 

• Example: y = AT..CG.T and w = G.T.A 
can be merged to obtain AT..CG.T.A

74

Convolution phase

• For each elementary pattern y, try to extend it 
with all the other elementary patterns

• Any pattern that cannot be extended without 
losing support can be potentially maximal 

75

Convolution phase

• To speed-up this phase, one wants to avoid the 
all-against-all comparison

• The authors devise two partial orderings <pf

and <sf on the universe of patterns
• Using these orderings to schedule the 

convolution phase, they guarantee that
– all patterns are generated
– a maximal pattern y is generated before any non-

maximal pattern subsumed by y
76

Partial ordering <pf

• Definition: determine whether y <pf w or w <pf

y using the following algorithm
– align y and w such that the leftmost residues are in 

the same column
– examine one column after the other (left to right) 

and stop whenever one column has a residue and 
the other has a “.”

– if the residue comes from y then y <pf w 
– if the residue comes from w then w <pf y 
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Example

• y = ASD...F
w = SE.ERF.DG
y <pf w

• y = ASD...F
w = SE.ERF.DG
w <sf y

78

Teiresias algorithm

• Initialize the stack with elementary patterns with 
support at least K

• Order the stack according to <pf and <sf
• Repeat

– Repeat
• Try to extend the top pattern to the right with all the others in the 

prefix-wise ordering
• If a new pattern is formed with have enough support, it becomes 

the new top
– Until the top can no longer be extended to the right
– Do the same for left extension, using the ordering <sf
– Check the top for maximality, if so pop it and report it

• Until stack is empty

79

Remarks on Teiresias

• It can be proved that Teiresias correctly reports 
all <L,W> maximal patterns

• Pros:
– provably correct
– fast on average input

• Cons:
– exponential time complexity
– limited to <L,W> patterns

80

Winnower

Pevzner and Sze, UCSD
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Winnower

• Invented by Pevzner and Sze [Pevzner 2000]

• Initially designed to solve the (15,4)-motif 
challenge

82

Winnower

• Pevzner and Sze show that the most popular 
algorithms (Consensus, GibbsDNA, MEME) 
fail to solve (most of the times) the (15,4)-
motif problem [n=600, k=20]

• (Note: this comparison is not totally fair)
• Why the (15,4)-motif problem is difficult?
• Because two strings in the class of the (15,4)

unknown pattern may differ by as many as 8 
positions out of 15, a rather large number

83

Winnower

• Idea: Search for a set of strings of length m 
such that any two in a set differ at most by 2d 
positions

• Remember however that this may not be 
sufficient

84

Winnower

• How to find groups of patterns such that given 
any two elements w1 and w2 in the group, 
h(w1,w2)�2d?

• One could generate (k choose 2) multiple 
alignments to find out all pairs of substrings of 
length m that have at most 2d mismatches 
(Consensus [Hertz & Stormo 1999])
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Winnower
• Winnower builds a graph G in which

– each vertex corresponds to a distinct string of 
length m

– two vertices are connected by an edge if the 
Hamming distance between the corresponding 
strings is at most 2d, and the strings do not come 
from the same sequence (remember that we are 
guaranteed that there is only one occurrence of the 
unknown pattern in each sequence)

86

Graph for the (15,4)-problem

• The authors report that for each “signal”-edge 
there are about 20,000 spurious-edges

• Finding the signal among the noise is a 
“daunting task”

87

Winnower

• Winnower searches the graph G for cliques, 
which are subsets of vertices totally connected

• But the problem of finding large cliques in 
graphs is NP-complete

88

Multipartite graphs

• Definition: A graph G is n-partite if its vertices 
can be partitioned into n sets, such that there is 
no edge between any two vertices within a set

• Fact: Winnower’s graph is k-partite
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Example

• Given sequences {abde,afcg,hbci,jbck} we  
look for a (3,1)-motif

abd bde

fcg

afc hbc

bci

jbc bck

hbci

abde

afcg

jbck 90

Idea

• Each vertex of the clique has to be in a 
different partition

• We look for cliques that have exactly one 
vertex in each partition

91

Extendable cliques

• Definition: a vertex u is a neighbor of a clique 
{v1,…,vs} if {v1,…,vs,u} is also a clique for G, 
when s<k

• Definition: a clique is called extendable if it 
has at least one neighbor in every part of the k-
partite graph G

92

Extendable cliques

• Definition: A clique with k vertices, each in a 
different partition is called maximal

• Consider a maximal clique and take a subset 
of t of its vertices: this subset is an 
extendable clique

• Idea: remove edges that do not belong to 
extendable cliques
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Extendable cliques

Fact: For any clique of size  there are 

extendable cliques with  vertices

Fact: Any edge belonging to a clique with 

- 2
vertices is member of at least 

- 2

extendable cliques of size 

k
k

t

t

k

k
t

t
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Idea

- 2
An edge that is not member of at least 

- 2

expandable cliques of size  cannot be part of
a maximal clique and therefore it can be

removed

k

t

t

 
 
 

95

t=1

• For t=1, each vertex is a clique
– it is extendable if it is connected to at least one 

vertex in each partition

• Delete all edges corresponding to vertices that 
do not have a neighbor in each partition

• Iterate

96

Example

abd bde

fcg

afc hbc

bci

jbc bck

hbci

abde

afcg

jbck
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Example

abd bde

fcg

afc hbc

bci

jbc bck

hbci

abde

afcg

jbck
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Example

abd bde

fcg

afc hbc

bci

jbc bck

hbci

abde

afcg

jbck

99

Example

abd bde

fcg

afc hbc

bci

jbc bck

hbci

abde

afcg

jbck

100

t=2

• For t=2, each pair of vertices u,v such that 
there is an edge (u,v ) is a clique
– it is extendable if there is vertex z in each of the 

other k-2 partitions such that (u,v,z) is a cycle of 
length 3

– each edge should belong to at least (k-2 choose t-
2)=(n-2 choose 0)=1 clique of size 2
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t>2

• For t=3, Winnower removes edges that belong 
to less than k-2 extendable cliques of size 3

• For t=4, Winnower remove edges that belong 
to less than (k-2)(k-1)/2 extendable cliques of 
size 4

• …

102

Remarks on Winnower

• Pros:
– more effective than Meme, Consensus and 

GibbsDNA for the (15,4) problem

• Cons:
– randomized
– time-complexity can be very high (e.g., for t=3 is 

O(n4))
– need to know m and d in advance
– assume exactly one occurrence per sequence

103

Projection

104

Random Projection algorithm

• Proposed by Buhler and Tompa [Buhler 2001]

• The algorithm was initially designed to solve 
the (m,d)-motif planted problem
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Analysis on (m,d)-motif problem

(0)

(1) (0)

Suppose A,C,T,G have probability 1/4. Then the
probability that a pattern of size  occurs at a

given position is (1/4) . If we allow up to

one mismatch, the probability becomes

(3/4)(1/4)
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p p m
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Analysis on (m,d)-motif problem

1
( )

If  is the r.v. for the number of occurrences,

then ( 0) 1- ( 0) 1-(1- )

If we have  sequences, we get that the probability
that a particular  occurs at least once in each
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Stats of spurious (m,d)-motifs in 
simulated data (k=20,n=600)

m iterE(600,m,20,d) E(600,m+1,20,d)

Bottom-line: the (9,2)-, (11,3)-, (13,4)-, (15,5)- and (17,6)-motif
problems are probably impossible to solve 108

Random Projections

• Idea: select t random positions and for each 
substring of length m of the text hash its 
selected positions into a table

• Hopefully, the cell corresponding to the 
planted motif will be the one with the highest 
count 
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Random Projection algorithm

• Parameters (m,d), n, k, s, possibly i
• Set t < m-d and 4t > k(n-m+1)
• Build a table with all substrings of length m
• Repeat i times

– Select randomly t positions
– Repeat for all substrings in the table

• Increase the count of the cell indexed by the t positions

• Select all cells with count �s

110

Random Projection algorithm

• We want t < m-d because we want to sample 
from the “non-varying” positions

• The number of iterations i can be estimated 
from m, d and t

111

Random Projection algorithm

• Since we are hashing k(n-m+1) substrings of 
size m into 4t buckets, if 4t > k(n-m+1) each 
bucket will contain on average less than one 
substring (set s=1)

• The constrain is designed to filter out the noise
• The bucket corresponding to the planted motif 

is expected to contain more motif instances 
than those produced by a random sequence

112

Random Projection algorithm

• If the constrain 4t > k(n-m+1) cannot be 
enforced, the authors suggest to set
t = m-d-1 and the threshold
s = 2 [k(n-m+1)/4t] (twice the average bucket 
size)
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Motif refinement

• The algorithm will try to recover the unknown 
motif from each cell having at least s elements

• The primary tool for motif refinement is 
expectation maximization (EM)

114

Experiments

• Projection can handle the (15,4)- (14,4)-
(16,5)- and (18,6)-motif problem (k=20, 
n=600)

• Winnower fails the (14,4)- (16,5)- and (18,6)-
motif problem

115

Results

m iter

k=20, n=600,  winnower (t=2), projection (t=7,s=4, 20 randominstances)
116

Remarks about Projection

• Pros:
– fast and effective

• Cons:
– need to know m and d in advance
– randomized



30

117

Weeder

118

Weeder

• Proposed by Pavesi, Mauri and Pesole [Pavesi
2001]

• Draw ideas from PRATT by [Jonassen 1995, 
Jonassen 1997] and [Sagot 1998]

• It is an exhaustive approach for a particular 
class of rigid patterns

119

Exhaustive approach

• Suppose that you want to spell out all possible 
(m,d) rigid patterns that has at support least q

• One way to do it, is to use a (generalized) 
suffix tree [Sagot 1998]

120

Idea [Sagot 1998]

• Any deterministic pattern (substring) w
corresponds to a path in the tree ending in a 
node u, called the locus of w – the number of 
leaves in the subtree rooted at u gives the 
support

• Any model (rigid pattern) corresponds to a set 
of paths in the tree ending in nodes 
{u1,u2,…,ul} – the total number of leaves in the 
subtrees rooted at {u1,u2,…,ul} gives the 
support
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Example

Hamming distance

approx c(ATA)=2   f(ATA)=4
d = 2
q = 2

122

Example

This path belongs to models:
(AGA,0)
(AAA,1)

(CGA,1) (ACA,1) (AGC,1)
(TGA,1) (ATA,1) (AGT,1)

(GGA,1) (AGG,1)
………

d = 2
q = 2

123

Exhaustive approach [Sagot 1998]

• Start with all paths of length d with enough 
support (they represent valid models)

• At each path-extension keep track of the 
mismatches and the support
– if the number of mismatches has not been reached 

the model will be extended by the symbols in Σ
(therefore the number of models will be scaled up 
by a factor |Σ|)

– otherwise we are allowed just to follow the arcs 

124

Time complexity [Sagot 1998]

• Finding all the models with 
support=occurrences in a single sequence takes 
O(n N(m,d)) = O(n md |Σ|d)

• Note that the complexity is exponential
(with d)
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Weeder

• Pavesi et al., implemented the algorithm by 
Sagot but it was running too slow, and they 
decided to change the class of patterns

• Weeder is designed to find rigid patterns 
which have an amount of mismatches 
proportional to their length (the same constrain 
applies also to all their prefixes)

126

Example ε =0.25

1

2

3

4

127

Time complexity

• By restricting the number of mismatches to 
εm, the time complexity becomes
O(n k 1/ε εm |Σ|εm)

128

The (15,4)-motif challenge … again

• Since the restriction on the density of the 
mismatches, the authors report that Weeder
has probability 0.6 to catch the motif in ONE 
sequence

• Then, the probability of Weeded to get the 
motif in all the 20 sequence is almost zero

• On the other hand, running the Sagot’s version 
is too time-consuming
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Idea

• Split the set of sequence into two halves
• Run Weeder on each of the two sets requiring 

support k/4 (instead of k/2)
• The probability that the (15,4)-motif will be in 

either subset is 0.98
• The pool of model candidates is then 

processed with Sagot’s algorithm

130

Remarks about Weeder

• Pros:
– Possibly exhaustive (if using Sagot’s algorithm)
– The relative error rate ε may be more meaningful 

than d and allows one not to specify in advance m

• Cons:
– Very slow if run exhaustively - it cannot be 

considered exhaustive in practice

131

Irredundant and Tiling Motifs

Slides 132-153 by N. Pisanti, U. of Pisa
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The problem

• Input: a string s of length n, a support q
• Output: all patterns p approximatively repeated at 

least q times in s
• The problem is inherently difficult due to the possible 

exponential output size
• [Parida 2000] Rather than finding all repeated 

patterns, only find a subset of them that
– has polynomial size and can be computed 

efficiently
– can generate all the others
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Rigid motif = motif with don’t cares

• Given  x = Σn and a support q, a pattern
w = (Σ ∪ {.})* is a motif ⇔
• w starts and ends with a (solid) letter in Σ
• w has at least q occurrences in x

134

Example

x = FABCXFADCYZEADCEADC q = 2,  

w1 = A • C with L1 = {1,6,12,16}
w2 = FA • C with L2 = {0,5}
w3  = DC with L3 = {7,13,17}

0   1   2   3  4   5  6    7   8   9  0  1   2   3   4   5   6  7   8

the symbol •
matches all letters

135

Specificity of a motif

• For all σ ∈Σ we have
– • = σ

– σ = σ

• recall that w[i] is the ith letter of w
define w[i] = • for i < 1 and i > |w|

• w1 is less specific than w2 ⇔ w1[i] = w2[i] for 
all i 

• w1 occurs in w2 at d ⇔ w1[i] = w2[i+d ]

… is less specific or equal to …

136

Maximal motifs

• A motif w is maximal ⇔ for all y ≠ w such that 
w occurs in y, we have |Lw| > |Ly|

• A motif is maximal ⇔ however you specify 
further  (i.e., extend and/or replace a • by a 
letter), you loose at least one occurrence
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• x = FABCXFADCYZEADCEADC q = 2,  

• w1 = A • C with L1 = {1,6,12,16}, maximal
• w2 = FA • C with L2 = {0,5}, maximal

• w3 = DC with L3 = {7,13,17}, not maximal 
because DC occurs in ADC that occurs 
three times too

Examples

0   1   2   3  4   5  6    7   8   9  0  1   2   3   4   5   6  7   8
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Redundant motifs

• w maximal is redundant ⇔ ∃ maximal motifs
y1, y2, …, yk ≠ w such that Lw = Ly1 ∪ Ly2 ∪ ······ ∪
Lyk

• that is, the occurrences list of w can be 
recovered from those of y1, y2, …, yk

139

The basis of irredundant motifs

• In [Parida 2000] the set of all non redundant 
motifs has been suggested as a basis, that
• has size at most 3n for all q

• can be found in O(n3 log n) for all q , and 

• can generate all maximal motifs

140

A n2 lower bound

• In the word  xk =  Ak X Ak there is an 
exponential number of maximal motifs

• By suitably prefixing xk (increasing its size by 
a constant factor only), at least n2 of them are 
also irredundant motifs
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Tiling motifs

• Introduced by [Pisanti 2003]

• w maximal is tiling ⇔ there are no maximal motifs
y1, y2, ... , yk ≠ w and no integers d1, d2, …, dk such that

1 21 2( ) ( ) ... ( ) 
kw y y y kL L d L d L d= + ∪ + ∪ ∪ +

142

x = FABCXFADCYZEADCEADC q = 2,  

w3  = ADC with L3 = {6,12,16}
w2 = FA.C with L2 = {0,5}

w1 = A.C with L1 = {1,6,12,16}

w4  = EADC with L4 = {11,15}

Example

0   1   2   3  4   5  6    7   8   9  0  1   2   3   4   5   6  7   8

tiling

tiled

tiling

by w3 and w4 because L1 = L3 ∪ (L2 + 1) 
but it is irredundant

tiling

143

The basis of tiling motifs

The basis of tiling motifs
• has size at most n-1 for q=2
• can be found in O(n2 log n) for q =2
• can generate all maximal motifs for all supports
• it is a subset of the basis of irredundant motifs
• it is symmetric

144

The ⊕ operator

• Given two symbols σ1 ,σ2∈Σ with σ1 ≠ σ2 , we 
have σ1 ⊕ σ2 = • and σ1 ⊕ σ1 = σ1

• Given two strings x1 , x2 ∈ Σ*, we have
x1 ⊕ x2 = t, where t[i] = x1[i] ⊕ x2[i]
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The merges

x = x[0]x[1]x[2] ...... x[k] x[k+1] ...... x[n-1]
x1 = x[0]x[1] ...... x[k-1] x[k] ...... x[n-2]

......
xk = x[0]  x[1] ...... x[n-k-1]

......
xn-1 = x[0] 

mergek = x ⊕ xk for all 1 ≤ k ≤ n-1

146

Examples

x = FABCXFADCYZEADCEADC q = 2

merge4  = EADC

merge5 = FA • C

merge6 = merge10 = ADC

merge11 = merge15 = A • C
all other merges are empty

0  1   2   3  4   5   6   7   8   9  0  1   2   3   4   5   6   7   8
45
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Tiling motifs and merges (q=2)

• All non empty merges of x are maximal motifs 
for x

• Each tiling motif is a merge
• There are at most n-1 tiling motifs
• The set of tiling motifs can be found by means 

of a suitable selection among the merges

148

The non tiling merges
• Among the merges, the non tiling motifs are those that are 

tiled by other merges; this check would cost O(n3) because
Σmerges w |Lw|  = O(n2) 

• mergek has two obvious occurrences occk = {i,i+k }, where i is 

the first non • in x ⊕ xk 

• For all distinct merges w we can collect Lw and 
Tw = ∪{occk | mergek = w} ⊆ Lw

[ Σmerges w |Tw|  <  2n ]
• For tiling merges w, we have Tw =  Lw, if  Tw ≠ Lw then w is 

not tiling

1 ≤ k ≤ n-1
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The algorithm

• Find all merges and their occ in O(n2)
• Find all distinct merges in O(n2)
• Find also theirs lists L in O(n2 log n log Σ)
• Detect and discard tiled motifs in O(n2)

150

1. Find all merges and their occ: the O(n2) worst case complexity 
in not reached in practice. This step takes O(n ·1/p) where p=1/|Σ| is 
the probability that two characters match (and 1/p the expected 
number of comparison to be done before finding a match).

2. Find all distinct merges with the lists T: again, the time in 
practice is linear using hashing techniques. 

3. Find also theirs lists L (and discard those for which T ≠ L): 
unfortunately meets the worst case.

4. Detect and discard tiled ones : negligible. O(n)

O(n|Σ| )

O(n)

ABOUT 15 MINUTES ON THE WHOLE C.elegans GENOME (21 millions bases)

bottleneck
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What if q>2?

• One can show an exponential lower bound on 
both bases for higher supports

• Again the word xk =  Ak X Ak can be prefixed in 
order to have O(nq) tiling (hence irredundant) 
motifs

• The efficient computation of any basis for 
unbounded supports is an open problem

152

Experimental comparison
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Experimental evaluation

• Recently [Tompa 2005] compared experimentally 13 
pattern discovery tools
– AlignACE, ANN-Spec, Consensus, GLAM, The 

Improbizer, MEME, MITRA, MotifSampler, Oligo/Dyad-
analysis, QuickScore, SeSiMCMC, Weeder, YMF

• 52 datasets containing real binding sites from 
TRANSFAC (6 fly, 26 human, 12 mouse, 8 yeast)

• Computed several performance measures
• Main conclusions

– Sensitivity is very low
– The winner is Weeder

154

nSn=nucleotide sensitivity                             sSn=site sensitivity
nPPV=nucleotide positive predicted value    sPPV=site positive predicted value
nPC=nucleotide performance coefficient       sASP=site average performance coefficient
nCC=nucleotide correlation coefficient         [Figure from Tompa et al. 2005]
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Synthetic Data (Length = 400)
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