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Discovery of regulatory elements

Promoter: aregion of DNA involved in
binding of RNA polymerase to initiate
transcription

Enhancer: aregion of DNA that increases the
utilization of (some) promoters (it can function
in either orientation and any location relative
to the promoter)

Repressor: aregion of DNA that decreases the
utilization of (some) promoters



Transcription

Bz Promoter Gene » Different factors areinvolved in the
transcription machinery

IR TN /,\T/QQ N7\ — presence of transcription factors and their binding

sites
Tl ~abp psteamofsiationt — ability of DNA to bend
Contains several closely ~ Separation of Contains dispersed sequence elements that bind — relative location of the bindi ng sites
arranged sequence enhancer from transcription factors
elements that bind romoter may be . .
ranscripton factors SRR e e ey (2 — presence of CpG idlands (“p” is for phosphate)
bp) of the startpoint for iranscription are fixed in
location

] 5
Source: Lewin, genes VII
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Basic concepts

Some notations

Yy ‘the i-th symbol of y (1£i £ m)

Yy thestring v, V.- ¥, LET £] £m)

Yuj -arethe prefixesof y (LE j £m)

Y m -arethe suffixesof y (1£ j £m)

f (y):number of occurrences of y
sometimes called the support of y
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Some notations

S:alphabet
a,b,c,... : symbolsfrom &
X :sequence/string over &, [ =n

{ X%, %} :multi-sequence, § © x| =n
y (orw) :substring of x, |y} =m

y : thesubstring yy---y (i 3 0)
%/_J

i times

Occurrences: types

w w

(‘1) non-overlapping
L w
(ﬁ) adjacent
w
w u
(iii) overlapping

For our purposes, any of the above is smply an occurrence

Keep in mind that in some cases you may have to distinguish them 1



Example (DNA)

X; = CCACCCTTTTGIGGGGCTTCTATTTCAAGG
X, = TTGTTCTTCCTGCATGI TGCGCGCAGTGCG .
X, = TTCTAAMAGGGGCATTATCAGAAAAAGAAG “ Pattern Discovery”: the problem
X, = GTGTAAAATTGTGTGCTACCTACCGTATTA
« X={ACGT} |¥]=4 n=120
* eg., Yy=AAAA isasubstring of x; and x,
— f(y) = 4 (occurrences can overlap)

13 14

Pattern discovery: the problem Pattern discovery problem

» Given aset of sequences S+ and amodel of the
source for S

» Find aset of patternsin St which have a
support that is“ statistically significant” with

respect to the probabilistic model

« If we are also given negative examples S, we
must ensure that the patterns do not appear in - Fs
S

Pos & Neg examples Only Pos examples

15 16



Noisy data Pattern discovery “dimensions’

» Type of learning
— from positive examples only (unsupervised)
— from both positive and negative examples
S\ = (supervised)
g g — noisy data
Type of patterns
— deterministic, rigid, flexible, profiles, ...
» Measure of statistical significance
A priori knowledge

Pos & Neg examples Only Pos examples
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Types of patterns

» Deterministic patterns
* Rigid patterns

— Hamming distance
* Flexible patterns

— Edit distance

e Matrix profiles

v'A motif is any of these patterns, aslong asit is
associated with statistical/biological significance

A classification of patterns

19 20



Deterministic Patterns

« Definition: Deterministic patterns are strings
over the alphabet

—eg., “TATAAA" (TATA-box consensus)

* Discovery agorithms are faster on these types
of patterns

» Usually not flexible enough for the needs of
molecular biology
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Hamming distance

« Definition: Given two stringsy and w such that
|yl=]w|, the Hamming distance h(w,y) is given
by the number of mismatches betweeny and w

» Example:
y=GATTACA
W=TATAATA

h(w,y)=h(y,w)=3
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Rigid patterns

« Definition: Rigid patterns are patterns which

allow substitutions/“don’t care” symbols

— e.g., the patterns under IUPAC a phabet
{ACGT,UMRWS,Y,K V,H D, B, X,
N} where for example R=[A|G], Y=[C|T], etc.

—e.g, “ARNNTTYCGA” under IUPAC means
“AIAIG[AICGT][AICGT]TT[CT]GA”

» Note that the size of the pattern is not allowed
to change
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Hamming neighborhood

 Definition: Given astringy, al strings at
Hamming distance at most d fromy areinits
d-neighborhood

 Fact: The size N(m,d) of the d-neighborhood
of astringy, |[y|=m,is

N(m.d) =4 oS- 2)'T o(n|sf)
el @
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Hamming neighborhood Models

» Example: » We may be able to observe occurrences of the
y= ATA the 1-neighborhood is neighbors of y, but we may never observe an
{CTA, GTA, TTA, occurrence of y

AAA, ACA, AGA,
2;2} ATG ATT, « Definition: The center of the d- neighborhood

y isalso called the model

» This set can be written as arigid pattern
{ NTA| ANA| ATN}

25 26

Hamming neighborhood

« Fact: Given two stringsw; and w, in thed-
neighborhood of the model y, then
h(w,,w,)<2d

* The problem of findingy given w;,w,,...is aso
called the Seiner sequence problem

» Unfortunately, even if we were ableto
determine exactly all thew; in the

isthe (unkniowr) oo neighborhood, there is no guarantee to find the
yis ul w

d isthe number of allowed mismatches unknown model y
Wy, W,, Ws belongs to the neighborhood of y " ®




Example

» Suppose m=4, d=1 and that we found
occurrences of { AAAA, TATA, CACA}

 The pairwise Hamming distance is 2 but there
is no string at Hamming distance 1 to each of
these
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Flexible patterns

Definition: Flexible patterns are patterns
which allow substitutions/* don't care”
symbols and variable-length gaps

—eg., Proste F-x(5)-Gx(2,4)-G*-H

Note that the length of these patternisvariable
» Very expressive
Space of al patternsis huge
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Word match filtering

« Fact: Given two stringsw; and w, in thed-
neighborhood of the model y, they both
contain an occurrence of aword of length at
least Im/(2d+1)!

» Example: y= GATTACA
w, = GATTTCA
w, = GGTTACA
TT and CA are occurring exactly. In fact
lm/(2d+1)I=7/31=2

Edit distance

« Definition: the edit distance between two
stringsy and wis defined as the minimum
number of edit operations- insertions,
deletions and substitutions - necessary to
transformy into w (matches do not count)

« Definition: a sequence of edit operationsto
transformy into wis called an edit script

30
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Edit distance
The edit distance problemis to compute the
edit distance betweeny and w, along with an

optimal edit script that describes the
transformation

An dternative representation of the edit script
isthealignment
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Corresponding global alignment

Givenw = GATTACA
y = TATATA

We can produce the following alignments

GAT-TAG-A G ATTAC A
--TATA-TA  -TAT-A-TA
where “=" represents a space (we cannot have

w_n a“gned Wlth u_n)
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Example

» Givenw= GATTACA
y= TATATA
GATTACA? ATTACA? TTACA
? TATACA? TATATA (lins, 2del, 1 sub)

GATTACA? TATTACA
? TATACA? TATATA (Oins, 1del, 2 sub)
» Edit distanceis3

Profiles

* Position weight matrices, or profiles, are
| =] ><mmatrices containing real numbersin the

interval [0,1]
—-eg.

0.26 | 0.22 | 0.00 | 1.00 | 0.11
0.17 | 0.18 | 0.59 | 0.00 | 0.35
0.09 | 0.15 | 0.00 | 0.00 | 0.00
0.48 | 045 | 041 | 0.00 | 0.54

QIO|>

_‘

— consensus
36



Distance for profiles

The relative entropy H ( p|| g) between two
discrete probability distributionsp ={ p, ¥ ,p, }
and g ={q,,...,q,} isdefined by
H(pla) =4 p log 2
i=1 G
Also called cross-entropy or Kullback - Liebler
distance. It is easy to verify that H(p,q) 2 O

with equality iff p=q.

The problem
 Input: astring x of length n, a support g
» Qutput: all substringsy occurring at least g

timesin x

 There are O(n?) substrings
» Can we find the frequent substrings faster?

39

Discovering Deterministic
Patterns

Enumerating the O(n?) patterns

38



Suffix trie Suffix trie for “ GATTACA”

®&—0C—A

S

* We build atrie with all the suffixes of the text

X
» Example: if x= GATTACA weuse ©—A]
GATTACA
ATTACA
TTACA
TACA
ACA
CA The suffix trie collectsin
A the internal nodesall the
" substrings of x 0
Suffix trie for “ GATTACA$” Suffix trie
 Construction O(n?)
» Space O(n?)
* Query O(m)

» We can do better by removing unary nodes
from the tree, and coal escing the edges

» Theresult is called suffix tree

The suffix trie collectsin
the internal nodesall the
substrings of x$ P a



Suffix treefor “ (133\1;1;ACA$

56738

The suffix tree collectsin
theimplicit internal nodes
all the substrings of x$

Thelocusof astringisthe
node in the tree corre-
sponding to it

Thelabel in the leaves
identifies the suffix position
(used to find pos all occs)

The number of leavesin
the subtree corresponds to
the number of occurrences

Brute force construction

abaab$ abaab$
o] ) e

baab$

abaabs baab$

aabs$

Worst case O(r?)

123456
abaabs

Average case O(n log n)
47

Space analysis

Every node is branching
The number of leavesisn

Therefore the overall number of nodesis at
most 2n-1

Use two integers (constant space) to identify
labels on the arcs

Therefore the overall size of thetreeisn

Comyputing number of occurrences

ANNOTATE-f(w) (suffix-tree T')
for each leaf u of T do
let f(L(u)) =1
visit T in depth-first traversal, for each internal node u do
let f(L(u)) equal to the sum of f(-) of the children of u

Time complexity is O(n)



Suffix tree for “abaababaabaababaababa$”

Internal nodes are
annotated the count of the
number of occurrences

Suffix trees

» Assume constant size finite al phabet

 Suffix trees can be built in O(n) time and space
[Weiner 1973, McCreight 1976, Ukkonen
1995, Farach1997]

» Number of occurrences can be computed in
O(n) time

» Observe that several subtrees of the suffix tree
areisomorphic

 Idea merge isomorphic treesto save space

51

Suffix links

Suffix links connect the
locusof ow to the locus
o w, cin X, win X*

All the suffix links (except leaves)

50
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Suffix links

a ba
@
|
|
\__ aba
1\
| \pa aba

Suffix links help identifying
isomorphic subtrees
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Remarks

* Frequent substrings can be found in O(n) time
and space

e Pros:
— exhaustive
— linear time and space
e Cons:
— limited to deterministic patterns

55

Discovering Rigid Patterns

56



Complexity results

e Lietal., [Li 1999] proved several important
theoretical facts

» Many of the problemsin pattern discovery turn
out to be NP-hard

» For somethereisapolynomial time
approximation scheme (PTAS)

57

Closest string

+ Closest string problem: given a multisequence
{X1,%5,... % each of lengthn, FIND astringy

of length n and the minimum d such that
h(y,x;)<d, for all i

» Theorem: The closest string problem is NP-
hard

59

Consensus Patterns

+ Consensus patterns problem: Given a
multisequence {X;,X,,....X} €ach of length n
and an integer m, FIND astring y of length m
and substring t; of length mfrom each x; such
that X, h(y,t;) is minimized

» Theorem [Li et al., 1999]: The consensus
pattern problem is NP-hard

58

Closest substring

* Closest substring problem: given a
multisequence {X;,X,,....X} €ach of length n
and an integer m, FIND amedian stringy of
length m and the minimum d such that for each
i thereisasubstring t; of x; of length m
satisfying h(y,t;) <d

» Theorem: The closest substring problem is NP-
hard (it is an harder version of Closest string)

60



NP-hard: what to do?

» Change the problem
—eg., “relax” the class of patterns

» Accept the fact that the method may fail to
find the optimal patterns
— Heuristics
— Randomized algorithms
— Approximation schemes

61

Planted (m,d)-motif problem

* Proposed by Pevzner et al.

Randomly generate k=20 sequences of
n=1,000 symbols over the DNA a phabet

Randomly generate a pattern y of lengthm

» Generate an instance of y by changingd
symbols at random

* Inject oneinstance of y at arandom position in

each sequence

63

Discovering Rigid Patterns

We report on five recent algorithms

Teiresias [1998]
Winnower [2000]
Projection [2001]
Weeder [2001]
Tiling motifs[2003]

¢ (disclaimer: my selection is biased)

62

Planted (m,d)-motif problem

The problem is to determine the unknown
patterny of length min a set of k=20
nucleotide sequences each of length n=1,000,
and each one containing exactly one
occurrence of astring w such that h(y,w)=d



Teiresias

Teiresias patterns

» Teiresias searchesfor rigid patterns on the
aphabet X u{.} where “.” isthedon't care
symbol

» Symbolsfrom X are called “solid”

* |n Teiresias, there are some constrains on the
density of “.” that can appear in a pattern

67
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Teiresiasalgorithm
» By Rigoustos and Floratos [Rigoustos 1998]

» Theworst case running timeis exponential,
but works reasonably fast on average

<L,W> patterns

 Definition: GivenintegersL and W, L<W, yis

a<L,W> pattern if
—yisadringover Y u{.}
—y starts and ends with a symbol from X

— any substring of y containing exactly L solid
symbols has to be shorter (or equal) to W

[that is, any substring of length L contains at most
WAL don't cares]

68
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Example of <3,5> patterns

* AT.. CG . Tisa<3,5> pattern

» AT.. CG T. isnot a<3,5> pattern, because it
ends with “.”

e AT. C. G . Tisnot a<3,5> pattern, because
the substring C. G. . T is6 characterslong
[contains more than 5-3=2 don't cares]

69

Teresias

 Definition: A patterny is maximal with respect
to the sequences {X;,X,,....X} if there exists no
pattern w which is more specific thany and

f(w)=f(y)

* Given {X;,X,,...,%} and parameters L, WK,
Teiresias reports all the maximal <L,W>
patterns that have support at least K

71

Teresias

 Definition: A pattern w is more specificthan a
patterny, if w can be obtained fromy by

won

changing one or more “.” to symbols from X,
or by appending any sequence of ¥ u{.} to the

left or to theright of y

» Example: giveny = AT. CG. T, the following
patterns are more specifictheny
ATCCG. T, CAT.CGCT, AT.CG T.A
T. AT. CGIT. A

70

Teiresiasalgorithm

 ldea if yisa<L,W> pattern with support at
least K, then its substrings are also <L,W>
patterns with support at least K

» Therefore, Teiresias assembles the maximal
patterns from smaller patterns

» Definition: A patterny iselementary if isa
<L,W> pattern containing exactly L symbols
from X

72



Teiresiasalgorithm

» Teiresias worksin two phases

— Scanning: find all elementary patterns with support
at least K; these become the initial set of patterns

— Convolution: repeatedly extend the patterns by
“gluing” them together

e Example y=AT. . CG Tandw=G T. A
can bemergedto obtain AT. . CG. T. A

73

Convolution phase

 To speed-up this phase, one wants to avoid the
al-against-all comparison
* The authors devise two partial orderings <
and < 4 on the universe of patterns
 Using these orderings to schedule the
convolution phase, they guarantee that
— all patterns are generated

—amaximal pattern y is generated before any non-
maximal pattern subsumed by y

75

Convolution phase

* For each elementary patterny, try to extend it
with all the other elementary patterns

» Any pattern that cannot be extended without
losing support can be potentially maximal

74

Partial ordering <

« Definition: determine whethery <., wor w <
y using the following algorithm

— align y and w such that the leftmost residues are in
the same column

— examine one column after the other (left to right)
and stop whenever one column has a residue and

won

the other hasa“.
— if theresidue comesfrom y theny <, w
— if the residue comes fromw then w < y

76



Example

«y= ASD...F
w = SE. ERF. DG
Y <pW

«y= ASD..F
w = SE. ERF. DG
wW<g4y

7

Remarks on Teiresias

* It can be proved that Teiresias correctly reports
al <L,W> maximal patterns
* Pros:
— provably correct
— fast on average input
» Cons:
— exponentia time complexity
— limited to <L ,W> patterns

9

Teiresiasalgorithm

Initialize the stack with elementary patterns with
support at least K

Order the stack according to < and <«
Repeat
— Repeat

* Try to extend the top pattern to the right with all the othersin the

prefix-wise ordering

« If anew pattern isformed with have enough support, it becomes
the new top

— Until the top can no longer be extended to the right

— Do the samefor left extension, using the ordering <

— Check the top for maximality, if so pop it and report it
Until stack is empty

Winnower

Pevzner and Sze, UCSD

78
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Winnower

* Invented by Pevzner and Sze [Pevzner 2000]

« Initially designed to solve the (15,4)- motif
challenge

Winnower

* |dea Search for aset of strings of length m
such that any two in a set differ at most by 2d
positions

» Remember however that this may not be
sufficient

81
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Winnower

Pevzner and Sze show that the most popular
agorithms (Consensus, GibbsDNA, MEME)
fail to solve (most of the times) the (15,4)-
motif problem [ n=600, k=20]

(Note: this comparison is not totally fair)
Why the (15,4)-motif problem is difficult?
Because two strings in the class of the (15,4)
unknown pattern may differ by as many as 8
positions out of 15, arather large number

82

Winnower

How to find groups of patterns such that given

any two elementsw,; and w, in the group,
h(w,,w,)<2d?

One could generate (k choose 2) multiple
alignmentsto find out all pairs of substrings of
length m that have at most 2d mismatches
(Consensus [Hertz & Stormo 1999])



Winnower Graph for the (15,4)-problem

* Winnower builds a graph G in which « The authors report that for each “signal”-edge

— each vertex corresponds to a distinct string of there are about 20,000 spurious-edges
length m

— two vertices are connected by an edge if the
Hamming distance between the corresponding « Finding the signal among the noiseisa
strings is a most 2d, and the strings do not come “daunting task”

from the same sequence (remember that we are
guaranteed that there is only one occurrence of the
unknown pattern in each sequence)

85 86

Winnower Multipartite graphs
» Winnower searches the graph G for cliques,  Definition: A graph Gisn-partiteif its vertices
which are subsets of verticestotally connected can be partitioned into n sets, such that thereis

no edge between any two vertices within a set

» But the problem of finding large cliquesin
graphs isNP-complete » Fact: Winnower’s graph isk-partite
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Example

« Given sequences {abde, af cg, hbci , j bck} we
look for a (3,1)-motif

89

Extendable cliques

« Definition: avertex uisaneighbor of aclique
{vy,...vg if {vy,....v,u} isalso acliquefor G,
whens<k

 Definition: acliqueis called extendable if it
has at least one neighbor in every part of thek-
partite graph G

91

ldea

» Each vertex of the clique hasto bein a
different partition

» Welook for cliques that have exactly one
vertex in each partition

Extendable cliques

« Definition: A clique with k vertices, eachin a
different partition is called maximal

» Consider amaximal clique and take a subset
of t of itsvertices: thissubset isan
extendable clique

« Idea remove edges that do not belong to
extendable cliques

90
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Extendable cliques

Fact: For any clique of size k there are ¢t 2
elog

extendable cliqgueswith t vertices

Fact: Any edge belonging to a clique with k
225
verticesis member of at least gek 0
ét-2g
extendable cliques of sizet

93

t=1

» Fort=1, each vertex isaclique

— it is extendable if it is connected to at least one
vertex in each partition

» Delete all edges corresponding to vertices that
do not have a neighbor in each partition

* |terate

95

ldea

, ak-20
An edge that is not member of at |east -
§t-2
expandable cliques of sizet cannot be part of
amaximal clique and therefore it can be

removed

96
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t=2

» Fort=2, each pair of verticesu,v such that
thereisan edge (u,v) isaclique
— it isextendable if there is vertex z in each of the
other k-2 partitions such that (u,v,z) isacycle of
length 3

— each edge should belong to at least (k-2 choose t-
2)=(n-2 choose 0)=1 clique of size 2

99 100



t>2

 For t=3, Winnower removes edges that belong
to lessthan k-2 extendable cliques of size3

 For t=4, Winnower remove edges that belong
tolessthan (k-2)(k-1)/2 extendable cliques of
size4

101

Projection

103

Remarks on Winnower

e Pros:

— more effective than Meme, Consensus and
GibbsDNA for the (15,4) problem

e Cons:
— randomized
— time-complexity can be very high (e.g., for t=3 is
Oo(n)
—need to know mand d in advance

— assume exactly one occurrence per sequence
102

Random Projection agorithm

* Proposed by Buhler and Tompa [Buhler 2001]

» The algorithm was initialy designed to solve
the (m,d)-motif planted problem

104



Analysis on (m,d)-motif problem

Suppose A,C,T,G have probability 1/4. Thenthe
probability that a pattern of size m occursat a

given position is p,, = (1/4)™. If weallow upto

one mismatch, the probability becomes

Py = Py +M(3/4)(1/4)™*. If we allow at most two, it
m(m

2’ ) (3/4)*(1/4)™ 2. In general, if

becomesp,,, = Py, +

. 8 amdaBoad o
we alow up to d mismatches, = eI o—r .
P Ro .a:'ogl 284253421

105

Stats of spurious (m,d)-motifsin
simulated data (k=20,n=600)

[m ] d [[ee0m20]E60om1209 [T ape Correct  Spurious 19720 [iter ]

9 2 1.6 6.1x 1078 | 028 11 5 4 1483
13 4.7 3.2x 1077 | 0.026 1 13 6 2443
13 4| 52 42x1077 | 0.062 2 15 3 4178
15 5 2.8 2.3%x 1077 | 0.018 0 7 13 6495
17 6 0.88 7.1 %1078 | 0.022 0 8 12 9272

Bottom-line: the (9,2)-, (11,3)-, (13,4)-, (15,5)- and (17,6)-motif
problems are probably impossible to solve 107

Analysis on (m,d)-motif problem

If Z isther.v. for the number of occurrences,
thenP(Z >0) =1-P(Z =0)=1-(1- p(d))“' ml
If we have k sequences, we get that the probability

that a particular y occurs at least oncein each

sequenceis (1-(1- p(d))”‘m*l)k.

Therefore, the expected number of patternsis
Emkd P 4°(1-(1- p.))" ™).

106

Random Projections

* ldea select t random positions and for each
substring of length mof the text hash its
selected positionsinto atable

» Hopefully, the cell corresponding to the
planted motif will be the one with the highest
count

108



Random Projection agorithm

Parameters (md), n, k, s, possibly i

Sett < md and 4'> k(n-m+1)

Build atable with all substrings of lengthm
Repeat i times

— Select randomly t positions

— Repeat for dl substrings in the table

« Increase the count of the cell indexed by thet positions
Select all cellswith count >s

109

Random Projection agorithm

* Since we are hashing k(n-m+1) substrings of
size minto 4' buckets, if 4t > k(n-m+1) each

bucket will contain on average less than one
substring (set s=1)

» Theconstrainis designed to filter out the noise

» The bucket corresponding to the planted motif
is expected to contain more motif instances
than those produced by a random sequence

111

Random Projection agorithm

» Wewant t < m-d because we want to sample
from the “non-varying” positions

* The number of iterationsi can be estimated
fromm,d and t

110

Random Projection agorithm

* If the constrain 4t > k(n-m+ 1) cannot be

enforced, the authors suggest to set

t = md-1 and the threshold

s= 2 [k(n-m+1)/4Y (twice the average bucket
size)

112



Motif refinement

» Thealgorithm will try to recover the unknown
motif from each cell having at least s elements

» The primary tool for motif refinement is
expectation maximization (EM)

113
Results
|m_| d | Gibbs  WINNOWER SP-STAR | PROJECTION  Correct iter
10 21 020 0.78 0.56 0.82 20 72
I 2| 0.68 0.90 0.84 0.91 20 16
12 31| 003 0.75 033 0.81 20 259
13 3| 0.60 0.92 0.92 0.92 20 62
14 4 0.02 0.02 0.20 0.77 19 647
15 41 0.19 0.92 0.73 0.93 20 172 |
16 5| 0.02 0.03 0.04 0.70 16 1292
17 5| 028 0.03 0.69 0.93 19 378
18 6| 0.03 0.03 0.03 0.74 16 2217
19 6 0.05 0.03 0.40 0.96 20 711

k=20, n=600, winnower (t=2), projection (t=7,s=4, 20 randominstances)
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Experiments

* Projection can handle the (15,4)- (14,4)-
(16,5)- and (18,6)-motif problem (k=20,
n=600)

» Winnower failsthe (14,4)- (16,5)- and (18,6)-
motif problem

Remarks about Projection

e Pros:
— fast and effective

e Cons:
—need to know mand d in advance
— randomi zed

114
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Weeder

117

Exhaustive approach

* Suppose that you want to spell out all possible
(m,d) rigid patterns that has at support least g

» Oneway to do it, isto use a (generalized)
suffix tree [Sagot 1998]

119

Weeder

Proposed by Pavesi, Mauri and Pesole [Pavesi
2001]

Draw ideas from PRATT by [Jonassen 1995,
Jonassen 1997] and [Sagot 1998]

It is an exhaustive approach for a particular
class of rigid patterns

118

|dea[Sagot 1998

Any deterministic pattern (substring) w
corresponds to a path in the treeending in a
node u, called the locus of w— the number of
leaves in the subtree rooted at u gives the
support

Any model (rigid pattern) corresponds to a set
of paths in the tree ending in nodes
{uy,u,,...,u} —the total number of leavesin the
subtreesrooted at {u,,u,,...,u} givesthe
support 120



'Virtual trie of the models Suffix tree of the sequences

Hamming distan

Exhaustive approach [Sagot 1998]

» Start with al paths of length d with enough
support (they represent valid models)
» At each path-extension keep track of the
mismatches and the support
— if the number of mismatches has not been reached
the model will be extended by the symbolsin %
(therefore the number of models will be scaled up
by afactor |X])
— otherwise we are allowed just to follow the arcs
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Example

Virtual trie of the models Suffix tree of the sequences
"TCAGAS$," and "CTTAGS }

IThis path belongs to models:

(AAA,1)

d=2 (CGA,1) (ACA1) (AGC,1)

q=2 (TGA,1) (ATA1) (AGT,1)
(GGAL) (AGG1)

Time complexity [ Sagot 1998]

 Finding al the models with
support=occurrences in a single sequence takes
O(n N(m,d)) = O(n m¢ |X]9)

* Note that the complexity is exponential
(withd)
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Weeder

» Pavesi et al., implemented the algorithm by
Sagot but it was running too slow, and they
decided to change the class of patterns

» Weeder isdesigned to find rigid patterns
which have an amount of mismatches
proportional to their length (the same constrain
applies also to al their prefixes)
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Time complexity

By restricting the number of mismatchesto
em, the time complexity becomes
O(n k[1/el em|53|em)
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Example e =0.25

[
ﬂ

H A
\V4
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The (15,4)-motif challenge ... again

* Since the restriction on the density of the
mismatches, the authors report that Weeder
has probability 0.6 to catch the motif in ONE
sequence

» Then, the probability of Weeded to get the
motif in all the 20 sequence is aimost zero

» On the other hand, running the Sagot’s version
i too time-consuming
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ldea

Split the set of sequenceinto two halves

Run Weeder on each of the two sets requiring
support k/4 (instead of k/2)

The probability that the (15,4)-motif will bein
either subset is 0.98

The pool of model candidatesisthen
processed with Sagot’s algorithm
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Irredundant and Tiling Motifs

Slides 132-153 by N. Pisanti, U. of Pisa

131

Remarks about Weeder

* Pros:
— Possibly exhaustive (if using Sagot’s algorithm)
— Therelative error rate e may be more meaningful
than d and allows one not to specify in advance m

e Cons:

— Very dow if run exhaustively - it cannot be
considered exhaustive in practice
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The problem

e Input: astring s of length n, asupport q

e Output: al patterns p approximatively repeated at
least q timesin s

¢ The problem isinherently difficult due to the possible
exponentia output size

¢ [Parida 2000] Rather than finding all repeated
patterns, only find a subset of them that

— has polynomial size and can be computed
efficiently

— can generate al the others
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Rigid motif = motif with don’t cares

» Given x = S"and a support g, a pattern
w=(SE{.})*isamotif U
« w gtarts and ends with a (solid) letter in S
« w has at least g occurrencesin x

133

Specificity of amotif

e Fordls 1S wehave

s=s ... isless specific or equal to ...
« recal that w[i] istheith letter of w
definew[i] =- fori < l1andi> |w|
* w, islessspecificthan w, U wy[i] = w,[i] for
ali
« w, occursinw, at d U w;[i] = w,[i+d]

135

! 1 14
X =FABCXFADCYZEADCEADC (= 2,
123456 7890 7 8

w; = A - CwithL, ={1,6,12,16}
w, =FA - CwithL,={0,5}
w; = DCwith Ly = {7,13,17}

the symbol -
matches all letters
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Maxima motifs

« A motif wismaximal U for all y* wsuch that
woccursiny, we have|L,| > |L,]|

« A motif ismaximal U however you specify
further (i.e., extend and/or replacea- by a
letter), you loose at |east one occurrence
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Examples

1! 11 1y 4
x=FABCXFADCYZEADCEADC q= 2,
0123456 7890123456178
w; = A - Cwith L, ={1,6,12,16}, maximal
w, = FA - CwithL, = {0,5}, maximal
w; = DC with Ly ={7,13,17}, not maximal
because DC occursin ADC that occurs
three timestoo

The basis of irredundant motifs

* In[Parida 2000] the set of all non redundant
motifs has been suggested as a basis, that
¢ has size at most h foral q

¢ can be found in O(n3log n) for dl q, and

 can generate all maximal motifs
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Redundant motifs

o Wmaximal isredundant U $ maximal motifs
y1!y21---;ykl WSUChthaIL‘N:LylE Ly2E E

fodor o T MR L =Ly B

« that is, the occurrenceslist of wcan be
recovered from those of y;, V,, ..., Vi
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A n? lower bound

* Intheword x, = A<X A< thereisan
exponential number of maximal motifs

* By suitably prefixing x, (increasing its size by
a constant factor only), at least n? of them are
aso irredundant motifs
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Tiling motifs

* Introduced by [Pisanti 2003]

» wmaximal istiling U there are no maximal motifs
Vir Yor - » Yt W and no integers d,, d,, ..., d, such that

L, =(L, +d)E (L, +d,)E..E (L, +d,)
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The basis of tiling motifs

The basis of tiling motifs
¢ has size at most n-1 for g=2
e can befound in O(n2log n) for q=2
 can generate all maximal motifs for al supports
« it isasubset of the basis of irredundant motifs
« it is symmetric
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Example
! 1 1
X = FABCXFADCYZEADCEADC q = 2,

012345%789012345678

w, = ADCwith L, ={6,12,16} tiling
w, = FA. Cwith L, ={0,5} tiling
w; =A. Cwith L, ={1,6,12,16} tiled

by ws and w, because L, = Lg E (L, +1)
butitisirredundant

tiling
w, = EADC with L, ={11,15
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The A operator

+ Given two symbolss, ,s,I Swiths,;*s,, we
haves,As,=- ands;As,=s;

« Giventwo stringsx, ,X,1 S*, wehave
X, A x, = t, wheret[i] = x,[i] A x,[i]
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The merges

X =X[o]X[1]x[2] ...... X[K] X[k+1] ...... X[n-1]
Xp=  X[olx[a] ... X[k-1] X[K] ...... X[n-2]
VI x[o] X[1] ... X[n-k-1]
. -

merge, = xA x, forall 1£k £ n-1
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Tiling motifs and merges (g=2)

 All non empty merges of x are maximal motifs
for x

Each tiling motif isamerge
» There are at most n-1 tiling motifs

The set of tiling motifs can be found by means
of asuitable selection among the merges
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Examples

X=FABCXFADCYZEADCEADC (=2

012345678901234567 8
5 4

merge, = EADC
merge;=FA - C

merge; = merge;, = ADC
merge;; =merge;=A - C
al other merges are empty
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The non tiling merges

¢ Among the merges, the non tiling motifs are those that are

tiled by other merges; this check would cost O(n3) because
Stergesw |Lul = O(1¥P)

» merge, has two obvious occurrencesocc, = {i,i+k}, wherei is

thefirst non - inx A x,

 For al distinct mergesw we can collect L, and

Tw = Efoco  mergg = wh i L,
[SmergeswlTvJ < 2n]

 Fortiling mergesw, wehaveT,, = L, if T,* L,thenwis

nottiling
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The agorithm _ _
1. Eind &l merges and their occ: the O(r?) worst case complexity

in not reached in practice. This step takes O(n -1/p) where p=1/|S| is
¢ Find all mer ges and their occin O(nZ) the probability that two characters match (and 1/p the expected

. Lo . number of comparison to be done before finding a match). O(n|S| )
e Find all distinct mergesin O(n?)

» Find asotheirslistsL in O(n?log nlog S) 2. Find all distinct mergeswith thelists T: again, thetimein
. . . practiceislinear using hashing techniques. O(n)
» Detect and discard tiled motifsin O(n?)

3. Find also theirslistsL (and discard those for which T1 L):
unfortunately meets the worst case. hott] eneck

4. Detect and discardtiled ones: negligile.  O(N)

149 ABOUT 15 MINUTES ON THE WHOLE C.dlegans GENOME (21 millionsbasss) 150

What if g>27?

 One can show an exponential lower bound on
both bases for higher supports

* Again theword x, = A<X Ak can be prefixed in Experi mental compari sSon
order to haveO(nd) tiling (hence irredundant)
motifs

» The efficient computation of any basis for
unbounded supportsis an open problem

151 152



Experimental evaluation

Recently [Tompa 2005] compared experimentally 13
pattern discovery tools
— AlignACE, ANN-Spec, Consensus, GLAM, The
Improbizer, MEME, MITRA, MotifSampler, Oligo/Dyad-
analysis, QuickScore, SeSIMCMC, Weeder, YMF
52 datasets containing real binding sites from
TRANSFAC (6 fly, 26 human, 12 mouse, 8 yeast)
Computed several performance measures
Main conclusions
— Sensitivity isvery low
— The winner isWeeder
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Synthetic Data (Length = 400)

1
0.9
0.8
071 —a— CONSENSUS
< 061 MEME
2 MOTIF
8057 ——PRATT
& 0.47 —»— PROJECTION
037 ——WEEDER
0.21 —— ALIGNACE
0.11
R e o

0 0.1020.304050.60.70809 1

Accuracy
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.35

.30

25

.20

w 9 o 5w @ = O o 5 W
& 83 2 R s 8F 28,8938 ¢
< o § 4 58 O 2 E g§3%238 05 ¢ >
S 2 8 0O ¢ = W s E3%29¢ = 9
Sz ¢ g = §55¢ 2 =
< Z § E £0%3 ¢

=
OnSn OnPPV EnPC ENCC =FsSn =i sPPV =@=sASP
nSn=nuclectide sensitivity SSresite sensitivity

nPPV=nucleotide positive predicted value sPPV=site positive predicted value
nPC=nucleotide performance coefficient SASP=site average performance coeffluent
nCC=nucleotide correlation coefficient [Figure from Tompaet a. 2005]
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THE END

Latest version of the dides at http://www.cs.ucr.edu/~stelo/slides/
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