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Periodicity of Strings

Periods of a string

• Definition: a string y has period w, if y is a 
non-empty prefix of wk for some integer k=1

• Definition: The period y of y is called trivial 
period

• Definition: the set of period lengths of y is
P(y)={ |w|: w is a period of y, w≠y}

w w w w
y

…
1 2 3 k
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Example

P(y) = {13,26,31,33}

Borders of a string

• Definition: a border w of y is any nonempty 
string which is both a prefix and a suffix of y

• Definition: the border y of y is called the trivial
border

• Fact: a string y has a period of length d<m iff
it has a non-trivial border of length m-d
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Finding Borders/Periods

• Borders can be found using the failure function
of the string as done, e.g., in the preprocessing 
step of the classical linear time string search 
algorithms (Knuth, Morris, Pratt)

• Borders can be computed in O(|y|), and so do 
periods

Profiles for sequence classification
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Profiles as classifiers

• Profiles can be used directly to implement very 
simple classifiers

• Suppose we have a sample S+ of known sites, 
and a sample S- of non-sites

• Given a new sequence x, how do we classify x
in S+ or in S-?

Example: CRP binding sites

• S+={TTGTGGC,  ACGTGAT,    CTGTGAC,
TTTTGAT,  ATGTGAG,    ATGAGAC,
AAGTGTC,  TTGTGAG,    TTGTGAG}
ATTTGCA,  CTGTAAC,
CTGTGCG,  CTGTAAC,
ATGCAAA,  TTGTGAC,
GTGTTAA,  GCCTGAC,
ATTTGAA,  TTGTGAT,
TTGTGAT,  TTGTGAT,
ATTTATT,  GTGTGAA,

Cyclic AMP receptor protein TFs in E.coli [Stormo & Hartzell, 89]
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Training (CRP sites)

0.2600.0870.0430.9100.1700.8700.350G
0.1700.0430.8300.0000.7800.0000.130T
0.3000.0430.0000.0430.0430.0870.170C
0.2600.8300.1300.0430.0000.0430.350A

• Assume the uniform Bernoulli model for the 
non-sites S-, that is pA=0.25, pC=0.25, pT=0.25,
pG=0.25 for all the positions

• Assume a Bernoulli model for each position

Testing

• Suppose you get x = GGTGTAC 
Is x more likely to belong to S+ or to S-?
In other words, it is more likely to be generated from 
the Bernoulli model for S+ or from the uniform 
Bernoulli model (for S-)?

• Let’s compute the probability

7

( | ) .35*.87*.78*.91*.83*.83*.3 0.045

( | ) (.25) 0.0000061

( ) ( | ) / ( | )

P x GGTGTAC S

P x GGTGTAC S

LR x P x S P x S

= + = =

= − = =

= + +
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Sequence alignment

Global alignment

• Clearly there are many other possible 
alignments

• Which one is better?
• We assign a score to each

– match (e.g., 2)
– insertion/deletion (e.g., -1)
– substitution (e.g., -2)

• Both previous alignments scored
4*2+3*(-1)+1*(-2)=3   4*2+1*(-1)+2*(-2)=3
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Scoring function

• Given two symbols a, b in SU{-} we define 
σ(a,b) the score of aligning a and b, where a 
and b can not be both “-”

• In the previous example
σ(a,b)=+2  if a=b
σ(a,b)=-2   if a≠b
σ(-,a)=-1
σ(a,-)=-1

Global alignment

• Definition: Given two strings w and y, an
alignment is a mapping of w,y into strings
w’,y’ that may contain spaces, where |w’|=|y’| 
and the removal of the spaces from w’ and y’
returns w and y

• Definition: The value of an alignment (w’,y’)
is

( )
| '|

[ ] [ ]
1

' , '
w

i i
i

w yσ
=

∑
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Global alignment

• Definition: A optimal global alignment of w
and y is one that achieves maximum score

• How to find it?

• How about checking all possible alignments?

Checking all alignments

[ ] [ ]

| | | |
 ,  0  

   subsequences  of  with | |  
     subsequences  of  with | |  
       form an alignment that matche

for all do

s 

for all do
for

 with 

        1 , and matches all

 all do

 
j j

w y m
i i m

A w A i
B y B i

A B

j i

= =
≤ ≤

=
=

∀ ≤ ≤ others with spaces
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Example

• Given  w=ATCTG
y=CATGA (m=5)

• Suppose i=2
• Suppose we choose A=CG B=CT
• We are considering the score of the following 

alignment (length is 2m-i=8)
ATCT-G--
--C-ATGA

Time complexity

2

A string of length  has  subsequences of length .

Thus, there are  pairs of subsequences, each of

length . The length of each alignment is 2 -1.

The total number of operations is at l

m
m i

i

m

i

i m

 
 
 

 
 
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Checking all alignments

• The previous algorithms runs in O(22m) time

• How bad is it?

• Choose m=1,000 and try to wait your 
computer to run 22,000 operations!

Needleman & Wunsch, 70

• The first algorithm to solve efficiently the 
alignment of two sequences

• Based on dynamic programming

• Runs in O(m2) time

• Uses O(m2) space
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Alignment by dyn. programming

• Let w and y be two strings, |w|=n, |y|=m
• Define V(i,j) as the value of the alignment of 

the strings w[1..i] with y[1..j]

• The idea is to compute V(i,j) for all values of
0�i�n and 0�j�m

• In order to do that, we establish a recurrence 
relation between V(i,j) and
V(i-1,j), V(i,j-1),V(i-1,j-1)

Alignment by dyn. programming

[ ] [ ]

[ ]

[ ]

[ ]

[ ]
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Example

-1-4-5-8C

-1-2-3-6A

-20-1-4A

-3-11-2A

-6-4-20

CGA

[ ] [ ]

( , ) 1                    [match]
( , ) 1, if       [substitution]

( , " ") 2                    [deletion]
(" ", ) 2                    [insertion]

( 1, 1) ( , )
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i j

a a
a b a b

a
a
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w
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 
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Example

-1-4-5-8C

-1-2-3-6A

-20-1-4A

-3-11-2A

-6-4-20

CGA

AG-C
AAAC
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Example

-1-4-5-8C

-1-2-3-6A

-20-1-4A

-3-11-2A

-6-4-20

CGA

A-GC
AAAC

Example

-1-4-5-8C

-1-2-3-6A

-20-1-4A

-3-11-2A

-6-4-20

CGA

-AGC
AAAC
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Variations

• Local alignment [Smith, Waterman 81]

• Multiple sequence alignment (local or global)

• Theorem [Wang, Jiang 94]: the optimal sum-
of-pairs alignment problem is NP-complete

Expectation Maximization
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Expectation maximization

The goal of EM is to find the model that maximizes
the (log) likelihood

               ( ) log ( | ) log ( , | ).

Suppose our current estimated of the parameters is .
We want to know what happens to 

y

t

L P x P x yθ θ θ
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= = ∑
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Expectation maximization

After some (complex) algebraic manipulations
one finally gets

( ) ( ) ( | ) ( | )

( | , )
                                      ( | , )log

( | , )

where ( | ) ( | , )log ( , | ).
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Convergence

( )

1

1

The last term is ( | , ) | | ( | , )  which is

always non-negative, and therefore

           ( ) ( ) ( | ) ( | )

with equality iff ( | , ) ( | , ).

Choosing arg max ( | ) will always m

t

t t t t

t t

t t

H P y x P y x

L L Q Q

P y x P y x

Qθ

θ θ

θ θ θ θ θ θ

θ θ

θ θ θ

+

+

− ≥ −

=

=

1

ake

the difference positive and thus the likelihood of the

new model  larger than the likelihood of .t tθ θ+

A step of EM

L(θ)

θ t θ t+1

L(θ t)+Q(θ, θ t)-Q(θ t, θ t)
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Expectation maximization

EM iterates 1), 2) until convergence

1) E-Step: compute the Q(θ |θ t) function with 
respect to the current parameters θ t

2) M-Step: choose θ t+1=argmaxθ Q(θ |θ t)

Expectation maximization

• The likelihood increases at each step, so the 
procedure will always reach a maximum 
asymptotically

• It has been proved that the number of iterations 
to convergence is linear in the input size

• Each step, however, require quadratic time in 
the size of the input
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Expectation maximization

• More importantly, EM can get stuck (easily) in 
local maxima

• Standard techniques in combinatorial 
optimization can be used to alleviate this 
problem

EM for pattern discovery

• The first attempt to use EM for pattern 
discovery has been proposed by Lawrence and 
Reilly [Proteins, 1990]

• Input: multisequence {x1,x2,…,xk}
pattern length m

• Output: a matrix profile qi,b, b∈Σ, 1�i�m, and 
positions sj, 1�j�k, of the profile
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EM for pattern discovery

• Assumption: there is exactly one occurrence of 
the profile in each sequence

• The missing information in this case are the 
positions sj of the motif in {x1,x2,…,xk} (in fact,
if we knew the positions, the problem of 
finding the profile would be trivial)

Lawrence-Reilly EM

,
1

0
,0

,0

,

The objective is to maximize the following log likelihood

      ( ) ( )log( )

               ( ) ( )log( )

where  is the unknown distribution outside the site,

 is the 

m
i

b i
i b

bb

b

b i

L q k f b q

k n m f b q

q

q

= ∈Σ

∈Σ

=

+ −

∑∑

∑

0

unknown distribution inside the site (profile),

( ) is the observed count of  outside the site,

( ) is the observed count of  in the site at position ii

f b b

f b b
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Lawrence-Reilly EM

,

0
0,

The value of  that maximizes the log likelihood  is

      ( ) /

      ( )/( ( ))

which corresponds to idea of computing the profile
by counting the symbols column-by-column

i
i b

b

q L

q f b k

q f b k n m

=

= −

Lawrence-Reilly EM
( )

,

 E-step: use the current parameters  to compute

         (observing |profile starts at position  in )

   for all 1 ,  1 - 1, and then

        (profile starts at position  in ) 

t
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   each symbol in each position of the profile.
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Lawrence-Reilly EM

,( 1)
,

,0( 1)
,0

ˆ M-step: use the expected count  of each symbol in each

   position to compute the ML (re)estimate of the parameters

ˆ
    ,     ,  1

ˆ
    ,    
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 Termination:

b it
b i

bt
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q
q b i m

k
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+

+

= ∈∑ ≤ ≤

= ∈∑
−

i

i ( 1) ( ) when -  or max iterations

   reached

t tq q ε+ ≤

Lawrence-Reilly EM

• Constrains in the structure of the profile can be 
easily incorporated (e.g., being palindrome)

• Variable length gaps within the profile can be 
handled by adding new variables to the model 
(that increase the complexity of the model, 
however)
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Discovering Profiles

Discovering Profiles

• If one assumes the unknown profile to have 
been generated by a sequence of independent 
r.v.s then the observed frequency of letters in 
the columns of the profile are the ML 
estimates of the distributions of the r.v.s

• Unfortunately we do not know the positions of 
the profile in the multisequence
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Gibbs sampler

Gibbs sampling

• Proposed by Lawrence, et al., [Science, 1993]
• Web servers at 

http://bayesweb.wadsworth.org/gibbs/gibbs.html and
http://argon.cshl.org/ioschikz/gibbsDNA/

• Input: multisequence {x1,x2,…,xk}
pattern length m

• Output: a matrix profile qi,b, b∈Σ, 1�i�m, and 
positions sj, 1�j�k, of the profile in the k
sequences
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Gibbs sampling

• The algorithm maintains the background 
distribution pA,…,pT of the symbols not 
described by the profiles

• P(y) is the probability of y based on the 
background distribution pb, b∈Σ

• Q(y) is the probability of y based on the 
profile qi,b , 1�i�m, b∈Σ

Gibbs sampling

• Idea: the profile is obtained by locating the 
positions which maximizes Q(y)/P(y); once the 
positions are obtained a new, more accurate, 
version of the profile can be obtained

• Initialize the initial positions sj randomly
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Gibbs sampling

Gibbs sampler iterates 1), 2) until convergence
1) Predictive update step: randomly choose one of 

the k sequences, say r. The matrix profile qi,b
and the background frequencies pb are 
recomputed from the current positions sj in all 
sequences excluding r

2) Sampling step: assign a weight z(y)=Q(y)/P(y)
to each substring y of length m. Select randomly 
a substring y with probability z(y)/Σyz(y), and 
then update sj

Gibbs sampling

• The more accurate the pattern description in step 1), 
the more accurate the determination of its position in 
step 2), and vice versa

• Once some correct positions have been selected by 
chance, qi,b begins to reflect, albeit imperfectly, the 
unknown pattern

• This process tends to recruit further correct positions 
which in turn improve the discriminating power of 
the evolving pattern
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Gibbs sampling

• How to update the matrix profile qi,b and the 
background frequencies pb?

• We set qi,b=(f i(b)+db )/(k-1+Σc dc) where f i(b) is 
the number of times we observe symbol b in the 
position i of the profile (currently placed at 
position sj), except for sequence r (db are pseudo-
counts)

• We set the background probabilities
pb=f(b)/Σc f(c) for all symbols in positions not 
covered by the profile

Phase shift problem

• Suppose that the “strongest” pattern begin, for 
example, at position 7, 19, 8, 23, …

• If Gibbs happens to choose s1=9,  s2=21 it will 
most likely choose s3=10 and s4=25 

• The algorithm can get stuck in local maxima, 
which are the shifted form of the optimal 
pattern 
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Phase shift problem

• The problem can be alleviated by adding a step 
in which the current set of positions are 
compared with sets of shifted left and right 
positions, up to a certain number of symbols

• Probability ratios may be calculated for all 
positions, and a random selection is made with 
respect to the appropriate weight

Gibbs sampling

• It can be generalized to:

• Find also the length of pattern m

• Find a set of matrix profiles, instead of one
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Gibbs sampling

• Since Gibbs sampler is an heuristic rather than 
a rigorous optimization procedure, one cannot 
guarantee the optimality of the result

• It is a good practice to run the algorithm 
several times from different random initial 
positions

Gibbs sampling vs. EM

• Although EM and Gibbs are built on common 
statistical foundation, the authors claim that 
Gibbs outperforms EM both in term of time 
complexity and performance

• “EM is deterministic and tends to get trapped 
by local optima which are avoided by Gibbs … 
HMMs permit arbitrary gaps … have greater 
flexibility, but suffer the same penalties …”
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Expectation Maximization
and MEME

Expectation maximization

• EM was designed by Dempster, Laird, Rubin 
[1977]

• EM is a family of algorithms for maximum 
likelihood estimation of parameters with 
“missing data”
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EM, when?

• When we want to find the maximum 
likelihood estimate of the parameters of a 
model and
– data is incomplete, or
– the optimization of the maximum likelihood 

function is analytically intractable but the 
likelihood function can be simplified by assuming 
the existence of additional, missing, parameters 
value

Expectation maximization

• EM approaches the problem of missing 
information by iteratively solving a sequence 
of problems in which expected information is 
substituted for missing information
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Expectation maximization

• All EM algorithms consists of two steps:
1) the expectation step (E-step)
2) the maximization step (M-step)

• The expectation step is with respect to the 
unknown underlying variables, using the 
current estimate of the parameters and 
conditioned upon the observation

Expectation maximization

• The maximization step provides a new 
estimate of the parameters

• θ1% θ2 % θ3 % … % θt  % θt+1 % …

• The two steps are iterated until convergence
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General framework for EM

• Suppose we want to find the parameters θ of a 
model (training)

• We observe x (training set)

• The probability of x under θ is also determined 
by the missing data y

Incomplete data model

Incomplete data model

Complete data model

(x,y)

An occurrence of (x,y) implies an occurrence of x, however only x can be 
observed. This observation reveals the subset {(x,y), for all y}

x
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Expectation maximization

• Example: For HMMs, x is the sequence we 
want to learn from, θ is the transition and 
emission probabilities, y is the path through the 
model

• Example: In the case of Random Projections, x
are the subsequences corresponding to a cell 
with count higher than the threshold, θ are the 
parameters of a representation of the (m,d)
pattern, y are all the missing positions 

MEME

• Proposed by Bailey and Elkan [Machine 
Learning J., 1995]

• “Multiple EM for Motif Elicitation” (MEME) 
is an improved version of the expectation 
maximization approach by Lawrence and 
Reilly [Proteins, 1990] (see appendix)

• Designed to discover profiles (no gaps)
• Server at http://meme.sdsc.edu/meme/
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MEME

• There are three main differences w.r.t. 
Lawrence et al.:

1) the initial profiles are not chosen randomly, 
but they are substrings which actually occur 
in the sequences

2) the assumption that there is only one 
occurrence of the motif is dropped

3) once a profile has been found, it is reported, 
and the iterative process continues

Using substring as starting points

• Idea: substrings actually occurring in sequence 
are better starting points than random choices

• Each substring is converted into a profile
• Assigning 1.0 to the occurring symbol and 0.0 

to the others is a bad choice, because EM 
cannot move from this

• The authors arbitrarily assign probability 0.5 to 
the symbol and 0.5/3 for the other three
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Using substring as starting points

• It would be too expensive to run EM until 
convergence from each substring

• It turns out that this is not necessary

• EM converges very quickly from profiles 
obtained from substrings, and the best starting 
point can be found running only one iteration

MEME algorithm

• Repeat
– For each substring y in {x1,x2,…,xk} do

• Run one EM iteration with profile computed from y
• Choose the profile q with highest likelihood
• Run EM until convergence starting from q
• Report the profile q
• Erase the occurrences of q from dataset

• Until max number of iterations is reached
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Dealing with multiple occurrences

• MEME allows to drop the “one-per-sequence” 
assumption

• The basic idea is to require the user to supply 
an estimated number of occurrences of the 
unknown profile and use that to normalize the 
estimation process of the EM algorithm

• The authors claim that the exact value of the 
number of occurrences is not critical

Finding multiple profiles

• MEME does not stop after finding the most 
likely profile

• Once a profile is found and reported, it is 
“probabilistically erased” by changing some 
position-dependent weight

• The process continues until a number of 
predetermined motifs have been found

• (see appendix for mega-prior heuristic)
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Megaprior heuristics for MEME

Convex combination problem

• Bailey and Gribskov [ISMB, 1996] describe a 
problem common to all statistical methods 
(HMMs, Gibbs, MEME) which discover 
profiles in protein sequences

• These algorithms are prone to produce profiles 
that are incorrect because two or more distinct 
patterns can be incorrectly combined
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Convex combination problem

• MEME is likely to produce these profile if the 
estimated number of occurrences is inaccurate 
or missing

• MEME tends to select a profile that is a 
combination of two or more patterns because 
the convex combination can maximize the 
objective function by explaining more of the 
data using fewer free parameters

Convex combination problem

• The authors call this profile convex 
combination, because the parameters of the 
profile that erroneously combines distinct 
patterns are a weighted average of the 
parameters of the correct profiles, where the 
weights are positive and sum up to one – i.e., a 
convex combination
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Example of convex combination

From Bailey and Gribskov [ISMB, 1996]

Example

• Suppose we generate a random sequence, with a 
symmetric Bernoulli source and we inject two 
substrings of size m, aa…aaa, and bb…bbb

• The following HMM would explain the 
sequence

From Bailey and Gribskov [ISMB, 1996]
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Example

• One would expect that MEME finds

or the one modeling the all “b” component

From Bailey and Gribskov [ISMB, 1996]

Example

• Unfortunately, the following convex 
combination has sometimes higher likelihood

From Bailey and Gribskov [ISMB, 1996]
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Convex combination problem

• Convex combinations are undesirable because 
the make unrelated sequence region to appear 
to be related

• The problem becomes worse and worse as the 
size of the alphabet, the length of the profile, 
or the size of the dataset increases

• In fact, convex combinations are less of a 
problem with DNA sequences

Convex combination problem

• Bailey and Gribskov propose a heuristic 
solution based on the use of prior distributions, 
called megaprior heuristic

• Megaprior heuristic is now part of MEME
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Megaprior heuristic

• The idea is to use our prior knowledge about 
the similarities about the amino acids

Megaprior heuristic

• The heuristic is based on the biological 
knowledge about what constitute a 
“reasonable” column in a profile

• The prior distribution favor amino-acids in the 
same class to be in the same column

• Although it does not forbid two amino acid, 
say one hydrophobic and hydrophilic, to be in 
the same column, it makes it less likely to 
happen


