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Periodicity of Strings

Periods of astring

» Definition: astring y has period w, if yisa
non-empty prefix of wk for some integer k=1

1 2 3 k
[ W I W I W ] w1

» Definition: The period y of yiscalled trivial
period

 Definition: the set of period lengthsof y is
P(y)={ [w|: wisaperiod of y, w-=y}
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P(y) = {13,26,31,33}

Borders of astring

» Definition: aborder wof y isany nonempty
string which is both a prefix and a suffix of y

 Definition: the border y of y iscalled the trivial
border

» Fact: astring y has a period of length d<m iff
it has a non-trivial border of length m-d



Finding Borders/Periods

 Borders can be found using the failure function
of the string as done, e.g., in the preprocessing
step of the classical linear time string search
algorithms (Knuth, Morris, Pratt)

» Borders can be computed in O(]y|), and so do
periods

Profiles for sequence classification



Profiles as classifiers

 Profiles can be used directly to implement very
simple classifiers

» Suppose we have a sample S+ of known sites,
and asample S of non-sites

 Given anew segquence x, how do we classify x
inS+ orinS?

Example: CRP binding sites

« S+={TTGIGCC, ACGTGAT, CTGIGAC,
TTTTGAT, ATGIGAG ATGAGAC,
AAGTGIC, TTGIGAG TTGTGAG
ATTTGCA, CTGIAAC,

CTGIGCG,  CTGIAAC,
ATGCAAA, TTGIGAC,
GIGITAA, GCCTGAC,
ATTTGAA, TTGIGAT,
TTGTGAT, TTGIGAT,
ATTTATT, GIGIGAA,

Cyclic AMP receptor protein TFs in E.coli [Stormo & Hartzell, 89]



Training (CRP sites)

» Assume a Bernoulli model for each position

A 0.350 | 0.043 | 0.000 | 0.043 | 0.130 | 0.830 | 0.260
C 0.170 | 0.087 | 0.043 | 0.043 | 0.000 | 0.043 | 0.300
T 0.130 | 0.000 | 0.780 | 0.000 | 0.830 | 0.043 | 0.170
G | 0.350| 0.870 | 0.170 | 0.910 | 0.043 | 0.087 | 0.260

» Assume the uniform Bernoulli model for the

non-sites S-, that is p,=0.25, p=0.25, p;=0.25,

ps=0.25 for all the positions

» Supposeyou get x = GGTGTAC

Testing

Isx more likely to belong to St or to S?
In other words, it is more likely to be generated from
the Bernoulli model for S+ or from the uniform

Bernoulli model (for S)?

» Let’s compute the probability

P(x = GGTGTAC | S+) =.35*.87*.78* .91*.83* .83* .3= 0.045
P(x = GGTGTAC|S-) =(.25)" = 0.0000061
LR(X) = P(x|S+)/P(x| S+)




Sequence alignment

Global alignment

Clearly there are many other possible
alignments

Which oneis better?
We assign a score to each

— match (e.g., 2)

— insertion/deletion (e.g., -1)

— substitution (e.g., -2)

Both previous alignments scored

4* 2+ 3* (-1)+1*(-2)=3 4*2+1*(-1)+2*(-2)=3



Scoring function

» Giventwo symbolsa, b in Su{-} we define
o(a,b) the score of aligning a and b, wherea

and b can not be both “ -

* Inthe previous example
o(a,b)=+2 ifa=b
o(a,b)=-2 ifa=b
o(-,a=-1
o(a,- )=-1

Global alignment

» Definition: Given two strings w and y, an
alignment is amapping of w,y into strings
W'y’ that may contain spaces, where |wW|=|y’|
and the removal of the spaces fromw' and y’

returnsw and y

» Definition: The value of an aignment (w',y’)
IS i

as (WY i)

i=1



Global alignment

» Definition: A optimal global alignment of w
and y is one that achieves maximum score

e How tofind it?

» How about checking all possible alignments?

Checking all alignments

Wiy [Fm
forali, O£i £mdo
for all subsequences A of wwith | Al=i do
for al subsequences B of y with |B =i do
form an alignment that matches A ;; with B,

" 1£ ) £i, and matches all others with spaces



Example

* Given w=ATCTG
y=CATGA (m=5)
o Supposei=2
» Suppose we choose A=CG B=CT

» We are considering the score of the following
alignment (length is 2m-i=8)
ATCT- & -
--CATGA

Time complexity
A string of length m has ?:19 subsequences of lengthi.
@

Thus, there are ;ng pairs of subsequences, each of

length i. The length of each aignment is 2m-1.
The tota number of operationsis at least

aaéno a&moy
2m-1)3 m =m —>%m
8';5( ) ag'fa g' 2



Checking all alignments

The previous algorithms runsin O(22M) time
How bad isit?

Choose m=1,000 and try to wait your
computer to run 2290 gperations!

Needleman & Wunsch, 70

The first agorithm to solve efficiently the
alignment of two sequences

Based on dynamic programming
Runsin O(n¥) time

Uses O(n¥) space



Alignment by dyn. programming

Let wand y be two strings, |w|=n, |y|=m
Define V(i,j) asthe value of the alignment of
the strings W1 with YiLi

Theideaisto compute V(i,j) for al valuesof
O<i<nand Ogj<m

In order to do that, we establish arecurrence
relation between V(i,j) and
V(i-1,j), V(i ,J-1),V(i-1,}-1)

Alignment by dyn. programming

IV(i-11-D+s (W, ¥,
V(i j)=max {V(i-1i)+s (w,"") y
VA T-D+s -y b
V(0,0) =0
V(i,0) =V(i - LO)+s (w;,"- ")
V(O,1)=V(0 - D+s (- " y)



Example

s(a,a=+1 [match] A G C
s(a,b)=-1,ifat b [substitution]
s(a"-")=-2 [deletion] (?**- 2—-4-1-6
s("-"a=-2 [insertion] [
WG-20-Des gy | A A T3
V(i j) =max V(- 1)) +s (W, ")y N
VG i-D+s -y p Al- f‘ "1 ?”' 2
V(0,0)=0 AV
V(i,0) =V(i - L0) +s(w;;,"- ") A P \3\ | 1
V() =V, - D+s (- y,) cl-8|-5 4| 1
Example
Al G| C
AG C Nl
Al-2]11]-1]-3
V~V ‘C Al-4]-1]0]-2
|
|
Al-6|-3]-2]-1
cC|-8|-5|-4]|-1




Example

A- GC

AAAC

Example

- AGC

AAAC




Variations

» Loca alignment [Smith, Waterman 81]
» Multiple sequence alignment (local or global)

» Theorem [Wang, Jiang 94]: the optimal sum-
of-pairs aignment problem is NP-complete

Expectation Maximization



Expectation maximization

The goal of EM isto find the model that maximizes
the (log) likelihood

L@) =logP(x|q) =logd P(x ylq).

Suppose our current estimated of the parametersisq’.
We want to know what happensto L when we moveto q.

o) L) log PO & PUXIVaIP ()
R WCTO RS WIS

Expectation maximization

After some (complex) algebraic manipulations
one finally gets

L@)- L@")=Q@Ilg")- Q@' la")
+8 Pyl x,qt)log%

where Q(q [9)° & P(y|xq")logP(x y|q).
y



Convergence

The last termis H (P(y|x,9")|IP( vl x@)) whichis
always non-negative, and therefore

L@)- L@")*Q@la")-Q@'la’)
with equality iff P(y| x,q") = P(y| x,q"").
Choosing q"* =argmax, Q(q |q") will always make
the difference positive and thus the likelihood of the
new model g"* larger than the likelihood of g .

A step of EM

L(6)
</\/\

L(69+Q(6, 61)-Q6", 6")

ot ol



Expectation maximization

EM iterates 1), 2) until convergence

1) E-Step: compute the Q(0 |6 Y) function with
respect to the current parameters o't

2) M-Step: choose 6 t*1=argmax, Q(6 |6 !)

Expectation maximization

» Thelikelihood increases at each step, so the
procedure will always reach a maximum
asymptotically

* |t has been proved that the number of iterations
to convergenceis linear in the input size

» Each step, however, require quadratic timein
the size of the input



Expectation maximization

* Moreimportantly, EM can get stuck (easily) in
local maxima

 Standard techniques in combinatorial
optimization can be used to aleviate this
problem

EM for pattern discovery

» Thefirst attempt to use EM for pattern
discovery has been proposed by Lawrence and
Reilly [Proteins, 1990]

* Input: multisequence {X;,X,,. .., X}
pattern length m

« Output: amatrix profile g, , bl ¥, 1<i<m, and
positions s, 1<j<k, of the profile



EM for pattern discovery

« Assumption: thereis exactly one occurrence of
the profile in each sequence

» The missing information in this case are the
positions s of the motif in {X;,%,,....x} (in fact,
if we knew the positions, the problem of
finding the profile would be trivial)

Lawrence-Reilly EM

The objective is to maximize the following log likelihood

L(g)=ka a f'(log(a,)
i=1 bl'S
+k(n- ma  F°(b)log(c,)
where q, , is the unknown distribution outsi de the site,
Q,; isthe unknown distribution inside the site (profile),
f°(b) is the observed count of b outside the site,

f'(b) isthe observed count of b in the site at position i



Lawrence-Reilly EM

The value of q that maximizesthelog likelihood L is
G, =f'(b)/k
Gy, = F7(0)/(k(n- m))
which corresponds to idea of computing the profile
by counting the symbols column-by-column

Lawrence-Reilly EM

« E-step: use the current parameters q® to compute

P(observing x |profile starts at position sinx;)
foral 1£i £k, 1£ s£|x|-m+1, and then

r. s = P(profile starts at position sin x ) using Bayes
foral 1Ei £k, 1£ S£|x[-m+1.
Align the profile at each position (i, s) and for each column
1£ j £ m, accumulate in the dmsﬂ__l], ; the contributions of

i s.1- Attheend, g contains the expected count of
each symbol in each position of the profile.



Lawrence-Reilly EM

« M-step: use the expected count § of each symbol in each

position to compute the ML (re)estimate of the parameters

o =% pia 1giem

k
ar = b i g
k(n- m)
« Termination: when Hq(“l) - q“’H £ e or max iterations
reached

Lawrence-Reilly EM

« Congtrainsin the structure of the profile can be
easily incorporated (e.g., being palindrome)

 Variable length gaps within the profile can be
handled by adding new variables to the model
(that increase the complexity of the mode,
however)



Discovering Profiles

Discovering Profiles

* If one assumes the unknown profile to have
been generated by a sequence of independent
r.v.sthen the observed frequency of lettersin
the columns of the profile are the ML
estimates of the distributions of ther.v.s

 Unfortunately we do not know the positions of
the profile in the multisequence



Gibbs sampler

Gibbs sampling

» Proposed by Lawrence, et al., [Science, 1993]

» Web servers at

http://bayesweb.wadsworth.ora/qibbs/aibbs.html and
http://argon.cshl.org/ioschikz/gibbsDNA/

* Input: multisequence {X;,X,,.... X}
pattern length m
» Output: amatrix profile g, , bl ¥, 1<i<m, and
positions s, 1<j<Kk, of the profilein thek

sequences




Gibbs sampling

» The algorithm maintains the background
distribution p,,....Jp; of the symbols not
described by the profiles

* P(y) isthe probability of y based on the
background distribution p,, bl X

* Q(y) isthe probability of y based on the
profileq, ,, 1<i<m, bl X

Gibbs sampling

« |dea the profile is obtained by locating the
positions which maximizes Q(y)/P(y); once the
positions are obtained a new, more accurate,
version of the profile can be obtained

* Initidizetheinitial positions s randomly



Gibbs sampling

Gibbs sampler iterates 1), 2) until convergence

1) Predictive update step: randomly choose one of
the k sequences, say r. The matrix profile g ,
and the background frequenciesp, are
recomputed from the current positionss in all
sequences excluding r

2) Sampling step: assign aweight z(y)=Q(y)/P(y)
to each substring y of length m. Select randomly
asubstring y with probability z(y)/>-,z(y), and
then update s

Gibbs sampling

» The more accurate the pattern description in step 1),
the more accurate the determination of its position in
step 2), and vice versa

» Once some correct positions have been selected by
chance, g, , begins to reflect, albeit imperfectly, the
unknown pattern

» This process tends to recruit further correct positions
which in turn improve the discriminating power of
the evolving pattern



Gibbs sampling

* How to update the matrix profile g; , and the

background frequencies p,,?

Weset g, ,=(f'(b)+d, )/(k-1+ > . d) wherefi(b) is
the number of times we observe symbol b in the
positioni of the profile (currently placed at
position s;), except for sequencer (d,, are pseudo-
counts)

We set the background probabilities

p,=f(b)/22, f(c) for all symbolsin positions not
covered by the profile

Phase shift problem

Suppose that the “ strongest” pattern begin, for
example, at position 7, 19, 8, 23, ...

If Gibbs happens to choose s, =9, s,=21 it will
most likely choose s,=10 and s,=25

The agorithm can get stuck in local maxima,
which are the shifted form of the optimal
pattern



Phase shift problem

» The problem can be adleviated by adding a step
in which the current set of positions are
compared with sets of shifted left and right
positions, up to a certain number of symbols

 Probability ratios may be calculated for all
positions, and a random selection is made with
respect to the appropriate weight

Gibbs sampling

* |t can be generalized to:
» Find also the length of pattern m

» Find aset of matrix profiles, instead of one



Gibbs sampling

 Since Gibbs sampler is an heuristic rather than
arigorous optimization procedure, one cannot
guarantee the optimality of the result

* Itisagood practice to run the algorithm
severa times from different random initial
positions

Gibbs sampling vs. EM

 Although EM and Gibbs are built on common
statistical foundation, the authors claim that
Gibbs outperforms EM both in term of time
complexity and performance

» “EM isdeterministic and tends to get trapped
by local optima which are avoided by Gibbs ...
HMMs permit arbitrary gaps ... have greater
flexibility, but suffer the same penalties....”



Expectation Maximization
and MEME

Expectation maximization

 EM was designed by Dempster, Laird, Rubin
[1977]

 EM isafamily of algorithms for maximum
likelihood estimation of parameters with
“missing data’



EM, when?

* \WWhen we want to find the maximum
likelihood estimate of the parameters of a
model and

— datais incomplete, or

— the optimization of the maximum likelihood
function is analytically intractable but the
likelihood function can be simplified by assuming
the existence of additional, missing, parameters
value

Expectation maximization

» EM approaches the problem of missing
information by iteratively solving a sequence
of problemsin which expected information is
substituted for missing information




Expectation maximization

» All EM agorithms consists of two steps:
1) the expectation step (E-step)
2) the maximization step (M-step)

» The expectation step is with respect to the
unknown underlying variables, using the
current estimate of the parameters and
conditioned upon the observation

Expectation maximization

» The maximization step provides a new
estimate of the parameters

e 01p 02p 03p ... Ol p Ol p ..

» Thetwo steps are iterated until convergence



Genera framework for EM

» Suppose we want to find the parameters 6 of a
model (training)

» We observe x (training set)

» The probability of x under 6 isaso determined
by the missing datay

Incompl ete data model

Complete data model

Incompl ete data model

An occurrence of (xy) implies an occurrence of x, however only x can be
observed. This observation reveals the subset {(x,y), for all y}



Expectation maximization

« Example: For HMMs, x is the sequence we
want to learn from, 0 is the transition and

emission probabilities, y is the path through the
model

« Example: In the case of Random Projections, x

are the subsequences corresponding to a cell
with count higher than the threshold, 6 are the

parameters of a representation of the (m,d)
pattern, y are all the missing positions

MEME

» Proposed by Bailey and Elkan [Machine
Learning J., 1995]

o “Multiple EM for Matif Elicitation” (MEME)
Is an improved version of the expectation
maximization approach by Lawrence and
Reilly [Proteins, 1990] (see appendix)

» Designed to discover profiles (no gaps)

e Server da http://meme.sdsc.edu/meme/




1)

2)

3)

MEME

There are three main differences w.r.t.
Lawrenceet al .:

theinitial profiles are not chosen randomly,
but they are substrings which actually occur
In the sequences

the assumption that thereis only one
occurrence of the motif is dropped

once a profile has been found, it is reported,
and the iterative process continues

Using substring as starting points

|dea: substrings actually occurring in sequence
are better starting points than random choices

Each substring is converted into a profile

Assigning 1.0 to the occurring symbol and 0.0
to the othersis a bad choice, because EM
cannot move from this

The authors arbitrarily assign probability 0.5 to
the symbol and 0.5/3 for the other three



Using substring as starting points

* It would be too expensive to run EM until
convergence from each substring

* |t turnsout that thisis not necessary

« EM converges very quickly from profiles
obtained from substrings, and the best starting
point can be found running only one iteration

MEME algorithm

* Repeat
— For each substring y in {X;,X,,..., %} do
* Run one EM iteration with profile computed from y
» Choose the profile g with highest likelihood
* Run EM until convergence starting fromq

* Report the profile g
* Erase the occurrences of g from dataset

e Until max number of iterationsis reached



Dealing with multiple occurrences

« MEME alowsto drop the “ one-per-sequence”
assumption

* Thebasicideaisto require the user to supply
an estimated number of occurrences of the
unknown profile and use that to normalize the
estimation process of the EM agorithm

» The authors claim that the exact value of the
number of occurrencesis not critical

Finding multiple profiles

« MEME does not stop after finding the most
likely profile

» Onceaprofileisfound and reported, it is
“probabilistically erased” by changing some
position-dependent weight

 The process continues until a number of

predetermined motifs have been found
* (see appendix for mega-prior heuristic)



Megaprior heuristics for MEME

Convex combination problem

» Bailey and Gribskov [ISMB, 1996] describe a
problem common to all statistical methods
(HMMs, Gibbs, MEME) which discover
profiles in protein sequences

» These algorithms are prone to produce profiles
that are incorrect because two or more distinct
patterns can be incorrectly combined



Convex combination problem

« MEME islikely to produce these profileif the
estimated number of occurrences isinaccurate
or missing

« MEME tendsto select aprofilethatisa
combination of two or more patterns because
the convex combination can maximize the
objective function by explaining more of the
data using fewer free parameters

Convex combination problem

e The authors call this profile convex
combination, because the parameters of the
profile that erroneously combines distinct
patterns are aweighted average of the
parameters of the correct profiles, where the
weights are positiveand sumuptoone—i.e, a
convex combination



Example of convex combination

Training Set

Aligned Fragments

ICYA MANSE
TCYA MANSE
ICYA MANSE
ICYA MANSE

LACB-BOVIN
LACB-BOVIN
LACB_BOVIN
LACB BOVIN

BBP_PIEBR
BBP_PTEBR

BBP_PIEBR
BBP PTEBR

RETB_BOVIN
RETB BOVIN
RETB_BOVIN
RETB-BOVIN

MUP2 MOUSE
MUP2_MOUSE
MUP2_MOUSE
MUP2-MOUSE

51

151

1

51
101
151

1
51

101
151

51
101
151

1
51
101
151

gdifypgycpdukpvnl FDLSAFAGAWHETA [K1plenenqgkctiaeyky
dgkkasvynsfusngvkeymegdleiapdakytkqgkyvmt fkigqrvn
11| pWVLATDYKNYATN [YNCdyhpdkkahs ihawilskskvlegntkevvd
nviktfshlidaskfisndfseaacqysttysltgpdrh

mkclllalaltcgaqalivtqtmkG LDIQKVAGTWYSLA Maasdisllda

qsaplrvyveelkptpegdleillqkvengecaqgkkiiacktkipavrki
dalnenkvLVLDTDYKKYLLFCMEnsaepeqslacqclvrtpevddeale
kfdkalkalprhirlsfnptqleeqchi

nvyhdgacpevkpudl FDRSNYHGKWWEVA Kypnsvekygkcguaeytpe
gksvkvsnyhvihgkeyf iegtaypvgdskigkiyhkl tyggvtkent £l
VLSTDNKNYTIG [YYCkydedkkghqdfvuvlsrskvltgeaktavenyli
gspvvdsqklvysdfseaackvn

erdcrvsstrvkeN FDKARFAGTHYAMA Kkdpegl f1qdnivaefsvden
ghnsatakgrvrllnnvdvcadmugtftdtedpakfkmkyugvasflakg
nddhWIIDTDYETFAVQYSCrl| Inldgtcadsystv [fardpsgfspevak
ivrqrqeelclarqyrliphngycdgksernil
mkn1111clgltlvcvhaeeasstgrl] FNVERINGEWHTII [Lasdkreki
edngnfrlfleqihvlekslvlkfhtvrdeecselsmvadktekageysv
+tydgnt[fTIPKTDYDNFLMA HLInekdgetfqluglygrepdlssdike

rfaklceehgilreniidlsnanrclqare

(1) TCYA_MANSE 18 ycpdvkpvnD FDLSAFAGAWHETA Klplenenqg
(2) ICYA_MANSE 103 Xfgqrvvnlv pWVLATDYRNYAIN YNCAyhpdidk
(1) LACB_BOVIN 26 alivtqtmkG LDIQKVAGTWYSLA Maasdislld
(1) BBP_PIEBR 17 acpevkpvdli FDWSNYHGKWWEVA Kypnsvekyg
(2) BBP_PIEBR 99 tyggvtkenv fNVLSTDNKNYIIG YYCkydedidk

(1) RETB_BOVIN

rvssfrvkelN FDKARFAGTWYAMA Kkdpeglflq

15
(=) RETB_BOVIN 123 TFAVQYSCrl Inldgtcadsysfv fardpsgfsp
(1) MUP2_MOUSE 28 aceasstgrN FNVEKINGEWHTII Lasdkrekie
(2) MUP2_MOUSE 108 ysvtydgfnt fTIPKTDYDNFIMA HLInekdget

Example

Convex Combination
Model

HE<HuToYREEC-AADHeTME DR

From Bailey and Gribskov [ISMB, 1996]

» Suppose we generate a random sequence, with a
symmetric Bernoulli source and we inject two
substrings of sizem, aa..aaa, and bb..bbb

» The following HMM would explain the
sequence

N ﬁ®ﬁmﬁ®
@B
—(b)o0o—(b)

As

From Bailey and Gribskov [ISMB, 1996]



Example

» One would expect that MEME finds

M+ @——@————@\
L i

or the one modeling the all “b” component

From Bailey and Gribskov [ISMB, 1996]

Example

« Unfortunately, the following convex
combination has sometimes higher likelihood

M B () oo
®\
Az + Xy TG b)) —o0—(/)

From Bailey and Gribskov [ISMB, 1996]



Convex combination problem

« Convex combinations are undesirable because
the make unrel ated sequence region to appear
to be related

» The problem becomes worse and worse as the
size of the alphabet, the length of the profile,
or the size of the dataset increases

» |n fact, convex combinations are less of a
problem with DNA sequences

Convex combination problem

» Bailey and Gribskov propose a heuristic
solution based on the use of prior distributions,
called megaprior heuristic

» Megaprior heuristic is now part of MEME



Megaprior heuristic

» Theideaisto use our prior knowledge about
the similarities about the amino acids

Megaprior heuristic

» The heuristic is based on the biological
knowledge about what constitute a
“reasonable’ columnin aprofile

» The prior distribution favor amino-acids in the
same class to be in the same column

« Although it does not forbid two amino acid,
say one hydrophobic and hydrophilic, to bein
the same column, it makesit less likely to
happen



