De novo meta-assembly of
ultra-deep sequencing data

Hamid Mirebrahim?, Timothy J. Close? and Stefano Lonardi’
Department of Computer Science and Engineering
’Department of Botany and Plant Sciences

UNIVERSITY OF CALIFORNIA

IVERSIDE

K




Ultra-deep sequencing (>1,000x coverage)
IS possible and feasible, expected to
become more common
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During the clonal expansion of cancer from an ancestral cell with
an initiati i ion to i the
occurrence of somatic mutations (both driver and passenger) can

tions. This technique has been applied, for example, to the discov-
ery of cells carrying drug resistance mutations before the initiation
of therapy in both cancer (7) and infectious diseases (8, 9). To date,

be used to track the on-going of the I All
subclones within a cancer are phylogenetically related, with the
prevalence of each subclone determined by its evolutionary fitness
and the timing of its origin relative to other subclones. Recently

________ Lo

deep quencing has detected variants down to a frequency of 1
in 100 (7-9), but its sensitivity for the detection of rarer vz
not been tested. With the appropriate informatic anal
experimental design, the depth and breadth of sequencing available
on the next-generation platforms will provide the tools to recon-
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diversity is a prerequisite for tumor evolution.
mingful. Intraclonal heterogeneity in follicular lymphoma
by activation-induced deaminase (AID) in IGH. Aberrant
jminantly targets noncoding regions causing numerous
ficant “driver” mutations. The quantitative relationship
ISHM, ultradeep sequencing (>20,000-fold coverage) was
ally targeted by AID (combined 9411 nt), including the 5'
bund in 12/12 FL specimens (median 136 SHMs and 53
)1). The number of SNVs at BCL2 varied widely among

ial aSHM sites. In contrast, SHM at JGH was not
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Expectation: more data — ‘better’ assemblies
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Expectation: more data — ‘better’ assemblies
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Reality: more data >4 ‘better’ assemblies
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More data are not necessarily better: why?

* Possible “suspects”
< Sequencing errors_>
— Highly uneven coverage
— Read duplication / PCR amplification bias
— Chimeric reads
— “Imperfections” in the assembly algorithms

S. Lonardi, H. Mirebrahim, et al., “When less is more: ‘slicing’ sequencing data improves
read decoding accuracy and de novo assembly quality”, Bioinformatics, 2015.



Possible solutions

« “Classic” error correction
— based on rare k-mers
— ineffective for ultra-deep sequencing data
* Down-sampling
— disregard a fraction of the input reads, according
to some predetermined strategy

— it may remove “critical” reads (i.e., rare error-free
reads that can help bridge or fill assembly gaps)

— not very effective
* SLICEMBLER (next)

S. Lonardi, H. Mirebrahim, et al., “When less is more: ‘slicing’ sequencing data improves
read decoding accuracy and de novo assembly quality”, Bioinformatics, 2015.



SLICEMBLER algorithm

1: “Slice” the input

— The set of input reads is partitioned into n distinct slices, where

n = the depth of coverage for the whole input read set / the
desired depth of coverage for each slice

— Each slice contains approximately the same number of reads
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SLICEMBLER algorithm

2: Assemble the reads in each slice

— Each of the n slices is assembled independently using a
standard assembler (Velvet, SPAdes, IDBA, etc.)

— Each assembly is expected to contain a mix of high-quality and
low-quality contigs
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SLICEMBLER algorithm

3: Find frequently occurring substrings (FOS)

— |dentify high-quality contigs (or fraction thereof) or FOS
— Use a generalized suffix-tree for efficiency

— Remove tandem repeats at the end of FOS
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Finding FOS efficiently

Definition: Given integers kand /, a
FOS is a maximal substring r such
that |r| 2 I and it appears in at least k
assemblies

Build a generalized suffix tree on
the contigs of the n assemblies
(and their reverse complement)
Each input assembly is assigned
a distinct “color” (Hui, CPM’92)
Annotate each internal node u
with the number of distinct colors
In the subtree rooted at u

In order to find FOS, determine
all the deepest internal nodes
(deeper than /) which have a
color count of least k

Building and annotating the
suffix tree can be done in linear
time



SLICEMBLER algorithm

4: Merge FOS

— When detected FOS are overlapping they can be merged to
obtain longer FOS

— Merge based on exact suffix-prefix overlap and bridge reads
(similar to scaffolding)
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SLICEMBLER algorithm

5: Filter reads

— Input reads are mapped to FOS (e.g., BWA)

— Any read that maps to a contig in the current assembly is
removed from input (unless it maps close to the end)

— Only the remaining reads are re-assembled in the next iteration
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Experimental results

* Real ultra-deep sequencing data
« Sequenced 16 barley BACs with lllumina HiSeq
« Depth of coverage: 8,000x-15,000x
« Paired-end reads (avg length ~88bp after trimming)
« Selected 8,000x paired-end reads
« High-quality references are available for five BACs

« Synthetic ultra-deep reads (wgsim)
* Generated from the reference barley BACs
« Paired-end reads (2x100 bp)
« \arious levels of coverage and error rates



Experimental results
(real barley BACs)
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Assembly quality vs. base assembler
(real barley BAC)

Number % ref Duplication Mismatches Longest
Method N50
of contigs covered ratio per 100Kbp contig
IDBA (8,000x) 34 97.0% 1.010 0.93 7,335 13,889
SiicemBLER + IDBA
13 97.0% 1.010 1.1 16,121 31,161
(10 slices of 800x)
Velvet (8,000x) 39 94.7% 1.027 20.0 3,649 16,048
SticemBLER + Velvet
14 95.1% 1.001 0 12,178 16,128

(10 slices of 800x)
SPAdes (8,000x) 49  95.7% 1.006 0,94 9,129 21,872

SticemBLER + SPAdes

11 96.9% 1.024 1.2 27,685 31,158
(10 slices of 800x)

Ray (8,000x) 35 80.0% 1.003 0 3,99 7,186

SLicEMBLER + Ray

24 88.0% 1.000 0 7,192 12,842
(10 slices of 800x)

Statistics collected with QUAST for contigs longer than 500 bp



Assembly quality vs. sequencing error rate
(simulated barley BACs)
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Conclusions

 Modern de novo genome assemblers seem unable to take
advantage of ultra-deep coverage

* SLICEMBLER iS an iterative meta-assembler that takes
advantage of the whole dataset and due to its “majority
voting” scheme

— Is more resilient to sequencing errors than its base
assemblers

— Almost never incorporates misassemblies in the
consensus assembly

 SLiceMmBLER IS available at www.slicembler.cs.ucr.edu

e SLICEMBLER IS slow, but a C++ implementation called
SLicemBLER++, Will be available soon
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Will sequencing cost continue to decrease?

“It's difficult to make predictions, especially about the future”

Cost per Raw Megabase of DNA Sequence

National Human Genome
Research Institute

genome.gov/sequencingcosts

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
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Experimental results
(real barley BACs)
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Frequently occurring substrings (FOS)
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Varying sequencing error rate (Velvet)
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Varying sequencing error rate (IDBA)
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Sketch of the algorithm

partition the input read set to n slices, each of which has D, coverage
while the cumulative length of FOS is less than the length of genome
« assemble the reads in all n slices individually
« create a suffix-tree from the n assemblies and their reverse compl
« assign k=n, | = le/d
« while(/>1,,)
« find FOS longer than /, appearing in at least k assemblies
« if FOS found then merge them with the previous FOS, break
« elseifk >n/2then assign k = k-1
« elseassignl|=1/2,k=n
« if(l<=1/,,) and (no FOS were found) then break
« map reads to FOS and eliminate mapped reads from the input
report FOS



Percentage of reads that map exactly
to the reference, iteration by iteration

100

—BAC1
90 .
BAC2

B
80 I\ AC3 |

\ BAC 4
70 \ ~ BACS |
60

40

27



Assembly quality vs. slice coverage

500x  1,000x  2,500x 5,000x 7,500x 10,000x

Number of contigs 20 12 11 10 18 38
Longest contig 27,364 31,823 31,946 31,950 21,865 9425
N50 6,707 26,275 26,288 26,267 12,428 3,643

Percent Refer. Covered 90.6% 88.7% 94% 93.9% 92.9% 84.7%
Duplication ratio 1 1 1 1 1 1

Mismatches per 100kbp 0 0 0 0 0 0




Another application for SLICEMBLER:
co-assembly of single cell sequencing data
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