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Periodicity of Strings

Periods of astring

» Definition: astring y has period w, if yisa
non-empty prefix of wk for some integer k=1
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 Definition: The period y of yiscalled trivial

period

 Definition: the set of period lengths of y is
P(y)={ |wl|: wisa period of y, w=y}
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P(y) = {13,26,31,33}

Borders of astring

o Definition: aborder w of y is any nonempty
string which is both a prefix and a suffix of y

o Definition: the border y of yiscalled the trivial
border

» Fact: astring y has a period of length d<m iff
it has anon-trivial border of length m-d




Finding Borders/Periods

» Borders can be found using the failure function
of the string as done, e.g., in the preprocessing
step of the classical linear time string search
algorithms (Knuth, Morris, Pratt)

» Borders can be computed in O(]y|), and so do
periods

DNA micro-arrays




Gene expression

» Gene expression does depend on “ space
location” and “time location”

— Cellsfrom different tissues produce different
proteins

— Certain genes are expressed only during
development or in response to changes to
environment, while others are always active
(housekeeping genes)

Comparative hybridization

o Comparative hybridization can reveal genes
which are preferentially expressed
— in specific tissues
— during specific phases of cell cycle (e.g., mitosis,
sporulation, death)

— during specific changes in the environment (e.g.,
cold/heat shock, nutrient availability, ...)

— in the context of heterogeneous diseases (e.g.,
certain types of cancer, diabetes, ...)




DNA microarrays

Monitor the activity of several thousand genes
simultaneously

They exploit, in aclever way, the property of
DNA to hybridize

DNA “chips’” with probesin the order of
10,000-100,000 are common nowadays
Perlegen, a spin-off of Affymetrix, isbuilding
chips with 60 millions probes to discover
SNPs in human genome

DNA microarrays

They “measure” the amount of mRNA in the
cell

However, we cannot measure directly the
MRNA because it is quickly degraded by
RNA-digesting enzymes

We use reverse transcription to get cONA out
of the mRNA

The assumption is that amount of cDNA will
be proportional to the MRNA




DNA microarrays

cDNA islabeled using fluorescent dyes
The fluorescent dyes can be detected only if

stimulated by a specific frequency of light by a

|aser

The number of fluorescent dyes molecules

which label each cDNA depends on the cDNA
length and its composition

Normal cell

Treated cell

DNA with
fluorescent tags
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DNA microarrays

» The array holds thousands of spots each
containing a different DNA sequence

o |f the cDNA happens to be complementary of
the DNA of agiven spot, that cDNA will
hybridize, and will be detected by its
fluorescence
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Seguence alignment

Global alignment

Clearly there are many other possible
alignments

Which oneis better?

We assign a score to each

— match (e.g., 2)

— insertion/deletion (e.g., -1)

— substitution (e.g., -2)

Both previous alignments scored

4* 2+ 3*(-1)+1*(-2)=3 4*2+1*(-1)+2*(-2)=3




Scoring function

» Given two symbols a, b in Su{-} we define
o(a,b) the score of aligning a and b, where a

and b can not be both “ - "

* Inthe previous example
o(a,b)=+2 ifa=b
o(a,b)=-2 ifa=b
o(- ,a)=-1
o(a,- )=-1

Global alignment

» Definition: Given two stringsw and y, an
alignment is a mapping of w,y into strings
w’,y' that may contain spaces, where |W'|=|y’|
and the removal of the spaces fromw’ and y’
returnsw and y

« Definition: The value of an alignment (W',y’)
IS
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Global alignment

 Definition: A optimal global alignment of w
and y is one that achieves maximum score

« How tofind it?

» How about checking all possible alignments?

Checking all alignments

|Wi=y|Fm
fordli, OEi £mdo
for all subsequences A of wwith | Al=i do
for all subsequencesB of y with |B|=i do
form an aignment that matches A, with B,

" 1£ j £i, and matches all others with spaces




Example

* Given w=ATCTG
y=CATGA (m=5)
* Supposei=2
» Suppose we choose A=CG B=CT

» We are considering the score of the following
alignment (Ilength is 2m-i=8)
ATCT- & -
--C-ATGA

Time complexity
A string of length m has gﬁng subsequences of lengthi.
a

Thus, there are %Ing pairs of subsequences, each of
a

length i. The length of each alignment is 2m-1.

The total number of operationsis at |east

aﬂéno a@mo
2m 13m =>2%m
8 z ag' 8' o




Checking all alignments

 The previous algorithms runsin O(22") time

« How bad isit?

» Choose m=1,000 and try to wait your

computer to run 2%9% pperations!

Needleman & Wunsch, 70

The first algorithm to solve efficiently the
alignment of two sequences

Based on dynamic programming
Runsin O(n¥) time

Uses O(n¥) space




Alignment by dyn. programming

Let wand y be two strings, |[w|=n, |y|=m
Define V(i,j) asthe value of the alignment of
the strings Wi with YL

Theideaisto compute V(i,j) for all values of
O<i<nand Oj<m

In order to do that, we establish arecurrence
relation between V(i,j) and

V(i'l,j), V(I sj _1)1V(| _11j-1)

Alignment by dyn. programming

}V(i -1, J - 1) +S (\A{i]’%j]){_’]
V() =max iV(i-1j)+s (w,"-") y
VG, -D+s -y p
V(0,0)=0
V(i,0) =V(i- 10) +s (w;,"- ")
V(0,1)=V(0,- D+s (- ", y,)




Example

s(a,a)=+1 [match] A G C
s(a,b)=-1 ifat b [substitution]
s(a""=-2 [deletion] 9,{* 2+4-4--6
s("-"a=-2 [insertion] \
V(-1 j-D+s (v, y;)u A -¢ %Hi i 1‘<7- 3
VG, ) =max V(-1 ])+s (w7 g PN
VA -D+s -y b A -T | }1\ 9{' 2
V(0,0)=0
A|l-6|-3|-2|-1
V(i,0)=V/(i- 1,0)+s (w,," ") A AN
V(O,§)=V (0, j- D+s (- ") cl.gl-5l.al21

Example

AG C -

Al-21]-1/-3
AAAC .
Al-4]-1 -2
Al-6|-3|-2]|-1
N
C|-8|-5|-4|%1




Example

A- GC

AAAC

Example

- AGC

AAAC




Variations

» Local alignment [ Smith, Waterman 81]
» Multiple sequence alignment (local or global)

* Theorem [Wang, Jiang 94]: the optimal sum-
of-pairs alignment problem is NP-complete

Expectation Maximization




Expectation maximization

The goal of EM isto find the model that maximizes
the (log) likelihood

L(@)=logP(x|q) =logq P(x y|q).

Suppose our current estimated of the parametersisq'.
We want to know what happensto L when we moveto q.
a Pxyla) & PxIy.a)P(yla)

L - L@") =1 5 = <]
@)- L@") Ogayp(x,qu‘) OgayF>(x|y,q‘)P(y|qt)

Expectation maximization

After some (complex) algebraic manipulations
one finally gets

L@)- L@")=Q@la’)- Q@' |a")
+& PlyIxa)iog )

where Q(@ 19) © & P(y|xq")logP(x y|q).
y




Convergence

Thelast termisH (P(y|x,a") | P(y|xa)) whichis
always non-negative, and therefore

L@)- L@")* Q@la")- Q@'lq")
with equality iff P(y|x,q') = P(y|x,q"™).
Choosing '™ =argmax, Q(q |q") will always make
the difference positive and thus the likelihood of the
new model q'** larger than the likelihood of .

A step of EM

</v\

L(69+Q(8,6)-Q(8", 6




Expectation maximization

EM iterates 1), 2) until convergence

1) E-Step: compute the Q(6 |6 1) function with
respect to the current parameterso !

2) M-Step: choose 6 *1=argmax, Q(6 [0 1)

Expectation maximization

* Thelikelihood increases at each step, so the
procedure will always reach a maximum
asymptotically

* |t has been proved that the number of iterations
to convergenceislinear in the input size

» Each step, however, require quadratic timein
the size of the input




Expectation maximization

» Moreimportantly, EM can get stuck (easily) in
local maxima

 Standard techniques in combinatorial
optimization can be used to alleviate this
problem

EM for pattern discovery

» Thefirst attempt to use EM for pattern
discovery has been proposed by Lawrence and
Reilly [Proteins, 1990]

* Input: multisequence {X;,X,, ..., X}
pattern length m

» Output: amatrix profile g, bl 3, 1<i<m, and
positions §, 1<) <k, of the profile




EM for pattern discovery

» Assumption: there is exactly one occurrence of
the profile in each sequence

* The missing information in this case are the
positions § of the motif in {x;,X,,....%} (in fact,
if we knew the positions, the problem of
finding the profile would be trivial)

Lawrence-Reilly EM

The objective is to maximize the following log likelihood
L(@)=ka & f'(b)log(c,)
i=1 bl'S
+k(n- m3 . f°(b)log(dh)

where g, , isthe unknown distribution outside the site,

0y, iSthe unknown distribution inside the site (profile),

f °(b) is the observed count of b outside the site,

f'(b) is the observed count of b in the site at position |




Lawrence-Reilly EM

The value of g that maximizesthelog likelihood L is
Gp = f'(b)/ K
Gop, = T°(0) /(k(n- m))
which corresponds to idea of computing the profile
by counting the symbols column-by-column

Lawrence-Reilly EM

- E-step: use the current parameters ' to compute
P(observing x |profile starts at position s in x)
foral 1£i £k, 1£s£|x|-m+1, and then
r, . = P(profile starts at position s in x) using Bayes
forall 1Ei £k, 1ES£|x|-m+1.
Align the profile at each position (i, s) and for each column
1£ j £m, accumulatein the c“]mw_”, ; the contributions of

r At the end, § contains the expected count of

i,s+j-1°

each symbol in each position of the profile.




Lawrence-Reilly EM

« M-step: use the expected count § of each symbol in each

position to compute the ML (re)estimate of the parameters

o =% bl &, 1£i £m

Qi) =20, b1 &
k(n- m)
« Termination: when Hq(“l) —q“’H £ e or max iterations
reached

Lawrence-Reilly EM

» Constrains in the structure of the profile can be
easily incorporated (e.g., being palindrome)

 Variable length gaps within the profile can be
handled by adding new variables to the model
(that increase the complexity of the model,
however)




Megaprior heuristics for MEME

Convex combination problem

» Bailey and Gribskov [ISMB, 1996] describe a
problem common to all statistical methods
(HMMs, Gibbs, MEME) which discover
profilesin protein sequences

» These algorithms are prone to produce profiles
that are incorrect because two or more distinct
patterns can be incorrectly combined




Convex combination problem

« MEME islikely to produce these profileif the
estimated number of occurrences is inaccurate
or missing

« MEME tendsto select aprofilethat isa
combination of two or more patterns because
the convex combination can maximize the
objective function by explaining more of the
data using fewer free parameters

Convex combination problem

» The authors call this profile convex
combination, because the parameters of the
profile that erroneously combines distinct
patterns are a weighted average of the
parameters of the correct profiles, where the
weights are positive and sum up toone—i.e,, a
convex combination




Example of convex combination

ICYA MANSE gd_lfypgycpdvkplplenenqgkctjaeyky
ICYAMANSE 51 dgkkasvynsfvsngvkeymegdleiapdakytkqgkyvmtfkfgy

ICYA MANSE 101 1v| pWVLATDYKNYAIN Cdyhpdkkahsmawuskskvlegntkewd
ICYAMANSE 151 nvIktfshlidaskfisndfseaacqysttysltgpdrh Convex Combination

Model
LACBBOVIN 1 mkclllalaltcgaqaliviqtmkGLDIGKVAGTHYSLA Maasdis11da
LACBBOVIN 51 gsaplrvyveelkptpegdleillqkvengecaqkkiiaektkipavfki
LACBBOVIN 101 dalnenkvLVLDTDYRKYLLFCMEnsaepeqslacqclvrtpevddeale
LACB BOVIN 151 kfdkalkalpmhirlsfnptqleeqchi

BBP_PIEBR nvyhdgacpevkpvdN FDHSNYHGKWWEVA [Kypnsvekygkcgwaeytpe
BBP_PIEBR gksvkvsnyhvihgkeyfiegtaypvgdskigkiyhkl tyggutken

BBPPTEBR 101 |VLSTDNKNYIIG[YYCkydedkkghqdfvuvlsrskvltgeaktavenyli
BBP_PIEBR 151 gspvvdsqklvysdfseaackvn

12: 311::2 6

@
2

Training Set

RETB BOVIN erdcrvssfrvkeN| FDKARFAGTHYAMA Kkdpeglf1qdnivaefsvden
RETBBOVIN 51 ghusatakgrvrllnnwdvcadnvgtitdtedpakflukywgvasflkg
RETB.BOVIN 101 nddhWIIDTDYETFAVQYSCrlInldgtcadsysfv fardpsgfspevgk
RETB.BOVIN 151 ivrqrqeelclarqyrliphngycdgksernil

MUPZNOUSE 1 mkmllllclgltlvcvhaceasstgrM FNVEKINGEWHTII [Lasdkreki
MUP2MOUSE 51 edngnfrlfleqihvlekslvikfhtvrdeecselsmvadktekageysv
MUP2MOUSE 101 tydgfntLInekdgequlmglygrepdlssdike
MUP2MOUSE 151 rfaklcechgilreniidlsnanrclqare

“E<dumovEECr-®"RADQaEmMECQRE

(1) ICYA_MANSE 18 ycpdvkpvnD FDLSAFAGAWHETA Klplenenqg
(2) TCYA_MANSE 103 kfgqrvvnlv pWVLATDYKNYATN YNCAyhpdkk
(1) LACB_BOVIN 26 alivtqtmkG LDIGKVAGTWYSLA Maasdis1ld
. (1) BBP_PTEBR 17 acpevkpvdll FDWSNYHGKWWEVA Kypnsvek
Aligned Fragments (2) BBP_PIEBR 99 ty];gvgenv FNVLSTDNKNYTIG Y¥gkyded§
(1) RETB_BOVIN 15 rvssfrvkell FOKARFAGTWYAMA Kkdpeglflq
(=) RETB_BOVIN 123 TFAVQYSCrl Inldgtcadsysfv fardpsgfsp
(1) MUP2_MOUSE 28 aeeasstgrll FIVEKTNGEWHTTT Lasdkrekie
(2) MUP2_MOUSE 108 ysvtydgfnt £TIPKTDYDNFLMA HLInekdget

From Bailey and Gribskov [ISMB, 1996]

Example

» Suppose we generate a random sequence, with a
symmetric Bernoulli source and we inject two
substrings of sizem, aa..aaa, and bb..bbb

» Thefollowing HMM would explain the
sequence

OO0
F-@—@—@—D
A 00

From Bailey and Gribskov [ISMB, 1996]




Example

» One would expect that MEME finds

M+ @——@————@\
%o

or the one modeling the all “b” component

From Bailey and Gribskov [ISMB, 1996]

Example

» Unfortunately, the following convex
combination has sometimes higher likelihood

WcRcm=ouy
(8) (E)
A2+ A3 ————000——

From Bailey and Gribskov [ISMB, 1996]




Convex combination problem

» Convex combinations are undesirable because
the make unrelated sequence region to appear
to berelated

» The problem becomes worse and worse as the
size of the aphabet, the length of the profile,
or the size of the dataset increases

» |nfact, convex combinations are less of a
problem with DNA sequences

Convex combination problem

» Bailey and Gribskov propose a heuristic
solution based on the use of prior distributions,
called megaprior heuristic

» Megaprior heuristic is now part of MEME




Megaprior heuristic

* Theideaisto useour prior knowledge about
the similarities about the amino acids

aliphatic

Megaprior heuristic

* The heuristic is based on the biological
knowledge about what constitute a
“reasonable’” columnin aprofile

» The prior distribution favor amino-acids in the
same class to be in the same column

 Although it does not forbid two amino acid,
say one hydrophobic and hydrophilic, to bein
the same column, it makes it lesslikely to

happen




