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Periodicity of Strings

Periods of a string

• Definition: a string y has period w, if y is a 
non-empty prefix of wk for some integer k=1

• Definition: The period y of y is called trivial 
period

• Definition: the set of period lengths of y is
P(y)={ |w|: w is a period of y, w≠y}

w w w w
y

…
1 2 3 k
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Example

P(y) = {13,26,31,33}

Borders of a string

• Definition: a border w of y is any nonempty 
string which is both a prefix and a suffix of y

• Definition: the border y of y is called the trivial
border

• Fact: a string y has a period of length d<m iff
it has a non-trivial border of length m-d
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Finding Borders/Periods

• Borders can be found using the failure function
of the string as done, e.g., in the preprocessing 
step of the classical linear time string search 
algorithms (Knuth, Morris, Pratt)

• Borders can be computed in O(|y|), and so do 
periods

DNA micro-arrays
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Gene expression

• Gene expression does depend on “space 
location” and “time location”
– Cells from different tissues produce different 

proteins
– Certain genes are expressed only during 

development or in response to changes to 
environment, while others are always active 
(housekeeping genes)

– …

Comparative hybridization

• Comparative hybridization can reveal genes 
which are preferentially expressed
– in specific tissues
– during specific phases of cell cycle (e.g., mitosis, 

sporulation, death)
– during specific changes in the environment (e.g., 

cold/heat shock, nutrient availability, …)
– in the context of heterogeneous diseases (e.g., 

certain types of cancer, diabetes, …)
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DNA microarrays

• Monitor the activity of several thousand genes 
simultaneously

• They exploit, in a clever way, the property of 
DNA to hybridize

• DNA “chips” with probes in the order of 
10,000-100,000 are common nowadays

• Perlegen, a spin-off of Affymetrix, is building 
chips with 60 millions probes to discover 
SNPs in human genome

DNA microarrays

• They “measure” the amount of mRNA in the 
cell

• However, we cannot measure directly the 
mRNA because it is quickly degraded by 
RNA-digesting enzymes

• We use reverse transcription to get cDNA out 
of the mRNA

• The assumption is that amount of cDNA will 
be proportional to the mRNA
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DNA microarrays

• cDNA is labeled using fluorescent dyes
• The fluorescent dyes can be detected only if 

stimulated by a specific frequency of light by a 
laser

• The number of fluorescent dyes molecules 
which label each cDNA depends on the cDNA
length and its composition
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DNA microarrays

• The array holds thousands of spots each 
containing a different DNA sequence

• If the cDNA happens to be complementary of 
the DNA of a given spot, that cDNA will 
hybridize, and will be detected by its 
fluorescence
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Sequence alignment

Global alignment

• Clearly there are many other possible 
alignments

• Which one is better?
• We assign a score to each

– match (e.g., 2)
– insertion/deletion (e.g., -1)
– substitution (e.g., -2)

• Both previous alignments scored
4*2+3*(-1)+1*(-2)=3   4*2+1*(-1)+2*(-2)=3
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Scoring function

• Given two symbols a, b in SU{-} we define 
σ(a,b) the score of aligning a and b, where a 
and b can not be both “-”

• In the previous example
σ(a,b)=+2  if a=b
σ(a,b)=-2   if a≠b
σ(-,a)=-1
σ(a,-)=-1

Global alignment

• Definition: Given two strings w and y, an
alignment is a mapping of w,y into strings
w’,y’ that may contain spaces, where |w’|=|y’| 
and the removal of the spaces from w’ and y’
returns w and y

• Definition: The value of an alignment (w’,y’)
is

( )
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Global alignment

• Definition: A optimal global alignment of w
and y is one that achieves maximum score

• How to find it?

• How about checking all possible alignments?

Checking all alignments
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Example

• Given  w=ATCTG
y=CATGA (m=5)

• Suppose i=2
• Suppose we choose A=CG B=CT
• We are considering the score of the following 

alignment (length is 2m-i=8)
ATCT-G--
--C-ATGA

Time complexity

2

A string of length  has  subsequences of length .

Thus, there are  pairs of subsequences, each of

length . The length of each alignment is 2 -1.
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Checking all alignments

• The previous algorithms runs in O(22m) time

• How bad is it?

• Choose m=1,000 and try to wait your 
computer to run 22,000 operations!

Needleman & Wunsch, 70

• The first algorithm to solve efficiently the 
alignment of two sequences

• Based on dynamic programming

• Runs in O(m2) time

• Uses O(m2) space
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Alignment by dyn. programming

• Let w and y be two strings, |w|=n, |y|=m
• Define V(i,j) as the value of the alignment of 

the strings w[1..i] with y[1..j]

• The idea is to compute V(i,j) for all values of
0�i�n and 0�j�m

• In order to do that, we establish a recurrence 
relation between V(i,j) and
V(i-1,j), V(i,j-1),V(i-1,j-1)

Alignment by dyn. programming
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Example

-1-4-5-8C

-1-2-3-6A
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-1-4-5-8C

-1-2-3-6A

-20-1-4A
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AG-C
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Example

-1-4-5-8C

-1-2-3-6A

-20-1-4A

-3-11-2A

-6-4-20

CGA

A-GC
AAAC

Example

-1-4-5-8C

-1-2-3-6A

-20-1-4A

-3-11-2A

-6-4-20

CGA

-AGC
AAAC
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Variations

• Local alignment [Smith, Waterman 81]

• Multiple sequence alignment (local or global)

• Theorem [Wang, Jiang 94]: the optimal sum-
of-pairs alignment problem is NP-complete

Expectation Maximization
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Expectation maximization

The goal of EM is to find the model that maximizes
the (log) likelihood

               ( ) log ( | ) log ( , | ).

Suppose our current estimated of the parameters is .
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Expectation maximization

After some (complex) algebraic manipulations
one finally gets
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Convergence

( )
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Expectation maximization

EM iterates 1), 2) until convergence

1) E-Step: compute the Q(θ |θ t) function with 
respect to the current parameters θ t

2) M-Step: choose θ t+1=argmaxθ Q(θ |θ t)

Expectation maximization

• The likelihood increases at each step, so the 
procedure will always reach a maximum 
asymptotically

• It has been proved that the number of iterations 
to convergence is linear in the input size

• Each step, however, require quadratic time in 
the size of the input
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Expectation maximization

• More importantly, EM can get stuck (easily) in 
local maxima

• Standard techniques in combinatorial 
optimization can be used to alleviate this 
problem

EM for pattern discovery

• The first attempt to use EM for pattern 
discovery has been proposed by Lawrence and 
Reilly [Proteins, 1990]

• Input: multisequence {x1,x2,…,xk}
pattern length m

• Output: a matrix profile qi,b, b∈Σ, 1�i�m, and 
positions sj, 1�j�k, of the profile
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EM for pattern discovery

• Assumption: there is exactly one occurrence of 
the profile in each sequence

• The missing information in this case are the 
positions sj of the motif in {x1,x2,…,xk} (in fact,
if we knew the positions, the problem of 
finding the profile would be trivial)

Lawrence-Reilly EM
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The objective is to maximize the following log likelihood
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Lawrence-Reilly EM
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The value of  that maximizes the log likelihood  is
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by counting the symbols column-by-column
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Lawrence-Reilly EM
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Lawrence-Reilly EM
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Lawrence-Reilly EM

• Constrains in the structure of the profile can be 
easily incorporated (e.g., being palindrome)

• Variable length gaps within the profile can be 
handled by adding new variables to the model 
(that increase the complexity of the model, 
however)
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Megaprior heuristics for MEME

Convex combination problem

• Bailey and Gribskov [ISMB, 1996] describe a 
problem common to all statistical methods 
(HMMs, Gibbs, MEME) which discover 
profiles in protein sequences

• These algorithms are prone to produce profiles 
that are incorrect because two or more distinct 
patterns can be incorrectly combined
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Convex combination problem

• MEME is likely to produce these profile if the 
estimated number of occurrences is inaccurate 
or missing

• MEME tends to select a profile that is a 
combination of two or more patterns because 
the convex combination can maximize the 
objective function by explaining more of the 
data using fewer free parameters

Convex combination problem

• The authors call this profile convex 
combination, because the parameters of the 
profile that erroneously combines distinct 
patterns are a weighted average of the 
parameters of the correct profiles, where the 
weights are positive and sum up to one – i.e., a 
convex combination
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Example of convex combination

From Bailey and Gribskov [ISMB, 1996]

Example

• Suppose we generate a random sequence, with a 
symmetric Bernoulli source and we inject two 
substrings of size m, aa…aaa, and bb…bbb

• The following HMM would explain the 
sequence

From Bailey and Gribskov [ISMB, 1996]
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Example

• One would expect that MEME finds

or the one modeling the all “b” component

From Bailey and Gribskov [ISMB, 1996]

Example

• Unfortunately, the following convex 
combination has sometimes higher likelihood

From Bailey and Gribskov [ISMB, 1996]
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Convex combination problem

• Convex combinations are undesirable because 
the make unrelated sequence region to appear 
to be related

• The problem becomes worse and worse as the 
size of the alphabet, the length of the profile, 
or the size of the dataset increases

• In fact, convex combinations are less of a 
problem with DNA sequences

Convex combination problem

• Bailey and Gribskov propose a heuristic 
solution based on the use of prior distributions, 
called megaprior heuristic

• Megaprior heuristic is now part of MEME
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Megaprior heuristic

• The idea is to use our prior knowledge about 
the similarities about the amino acids

Megaprior heuristic

• The heuristic is based on the biological 
knowledge about what constitute a 
“reasonable” column in a profile

• The prior distribution favor amino-acids in the 
same class to be in the same column

• Although it does not forbid two amino acid, 
say one hydrophobic and hydrophilic, to be in 
the same column, it makes it less likely to 
happen


